Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Do symbiotic bacteria subvert host immunity?

Abstract

The mammalian intestine is home to dense and complex indigenous bacterial communities. Most of these bacteria establish beneficial symbiotic relationships with their hosts, making important contributions to host metabolism and digestive efficiency. The vast numbers of intestinal bacteria and their proximity to host tissues raise the question of how symbiotic host–bacterial relationships are established without eliciting potentially harmful immune responses. In light of the varied ways in which pathogenic bacteria manipulate host immunity, this Opinion article explores the role of immune suppression, subversion and evasion in the establishment of symbiotic host–bacterial associations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metabolic adaptations of symbiotic bacteria to the intestinal lumen.
Figure 2: Immune mechanisms that confine intestinal bacteria to the lumen.
Figure 3: Control of immune activation in response to symbiotic bacteria.

Similar content being viewed by others

References

  1. Xu, J. & Gordon, J. I. Inaugural Article: Honor thy symbionts. Proc. Natl Acad. Sci. USA 100, 10452–10459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang, T. et al. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 4, e3 (2006).

    Article  PubMed  Google Scholar 

  3. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Darveau, R. P., McFall-Ngai, M., Ruby, E., Miller, S. & Mangan, D. Host tissues may actively respond to beneficial microbes. ASM News 186–191 (2003).

  6. Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448, 427–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Peterson, D. A., Frank, D. N., Pace, N. R. & Gordon, J. I. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3, 417–427 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suau, A. et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65, 4799–4807 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Palmer, C., Bik, E. M., Digiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Rev. Microbiol. 6, 776–788 (2008).

    Article  CAS  Google Scholar 

  14. Wostmann, B. S., Larkin, C., Moriarty, A. & Bruckner-Kardoss, E. Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. Lab. Anim. Sci. 33, 46–50 (1983).

    CAS  PubMed  Google Scholar 

  15. McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R. & White, B. A. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Rev. Microbiol. 6, 121–131 (2008).

    Article  CAS  Google Scholar 

  17. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Martens, E. C., Chiang, H. C. & Gordon, J. I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4, 447–457 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lozupone, C. A. et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc. Natl Acad. Sci. USA 105, 15076–15081 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stecher, B. et al. Comparison of Salmonella enterica serovar Typhimurium colitis in germfree mice and mice pretreated with streptomycin. Infect. Immun. 73, 3228–3241 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stecher, B. et al. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Sansonetti, P. J. War and peace at mucosal surfaces. Nature Rev. Immunol. 4, 953–964 (2004).

    Article  CAS  Google Scholar 

  23. Xu, J. et al. A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Macpherson, A. J., Geuking, M. B. & McCoy, K. D. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115, 153–162 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neish, A. S. Molecular aspects of intestinal epithelial cell–bacterial interactions that determine the development of intestinal inflammation. Inflamm. Bowel Dis. 10, 159–168 (2004).

    Article  PubMed  Google Scholar 

  27. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Mukherjee, S., Vaishnava, S. & Hooper, L. V. Multi-layered regulation of intestinal antimicrobial defense. Cell. Mol. Life Sci. 65, 3019–3027 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Putsep, K. et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem. 275, 40478–40482 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunol. 4, 269–273 (2003).

    Article  CAS  Google Scholar 

  33. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brandl, K., Plitas, G., Schnabl, B., Dematteo, R. P. & Pamer, E. G. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1891–1900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host–microbial interface. Proc. Natl Acad. Sci. USA 105, 20858–20863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Fagarasan, S. & Honjo, T. Intestinal IgA synthesis: regulation of front-line body defences. Nature Rev. Immunol. 3, 63–72 (2003).

    Article  CAS  Google Scholar 

  40. Andoh, A., Fujiyama, Y., Bamba, T. & Hosoda, S. Differential cytokine regulation of complement C3, C4, and factor B synthesis in human intestinal epithelial cell line, Caco-2. J. Immunol. 151, 4239–4247 (1993).

    CAS  PubMed  Google Scholar 

  41. Pasquier, B. et al. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγ ITAM. Immunity 22, 31–42 (2005).

    CAS  PubMed  Google Scholar 

  42. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  43. Guerry, P. Campylobacter flagella: not just for motility. Trends Microbiol. 15, 456–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Zhou, D. & Galan, J. Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes Infect. 3, 1293–1298 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Galan, J. E. Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol. 20, 263–271 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Shi, Y., Cromie, M. J., Hsu, F. F., Turk, J. & Groisman, E. A. PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol. Microbiol. 53, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Groisman, E. A., Parra-Lopez, C., Salcedo, M., Lipps, C. J. & Heffron, F. Resistance to host antimicrobial peptides is necessary for Salmonella virulence. Proc. Natl Acad. Sci. USA 89, 11939–11943 (1992).

    CAS  Google Scholar 

  48. Guerry, P. & Szymanski, C. M. Campylobacter sugars sticking out. Trends Microbiol. 16, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Coyne, M. J., Reinap, B., Lee, M. M. & Comstock, L. E. Human symbionts use a host-like pathway for surface fucosylation. Science 307, 1778–1781 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Comstock, L. E. & Coyne, M. J. Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont. Bioessays 25, 926–929 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Krinos, C. M. et al. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414, 555–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Kuwahara, T. et al. Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc. Natl Acad. Sci. USA 101, 14919–14924 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cerdeno-Tarraga, A. M. et al. Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307, 1463–1465 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Rev. Immunol. 8, 411–420 (2008).

    Article  CAS  Google Scholar 

  56. Abreu, M. T. et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J. Immunol. 167, 1609–1616 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Melmed, G. et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host–microbial interactions in the gut. J. Immunol. 170, 1406–1415 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Ortega-Cava, C. F. et al. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J. Immunol. 170, 3977–3985 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Gewirtz, A. T., Navas, T. A., Lyons, S., Godowski, P. J. & Madara, J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunol. 5, 104–112 (2004).

    Article  CAS  Google Scholar 

  65. Bates, J. M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2, 371–382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vaishnava, S. & Hooper, L. V. Alkaline phosphatase: keeping the peace at the gut epithelial surface. Cell Host Microbe 2, 365–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Wehkamp, J. et al. Reduced Paneth cell α-defensins in ileal Crohn's disease. Proc. Natl Acad. Sci. USA 102, 18129–18134 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Macpherson, A. J. & Slack, E. The functional interactions of commensal bacteria with intestinal secretory IgA. Curr. Opin. Gastroenterol. 23, 673–678 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA 101, 1981–1986 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Deng, W. et al. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J. Bacteriol. 185, 2330–2337 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wei, J. et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun. 71, 2775–2786 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the students and colleagues from her laboratory for the many discussions that contributed to the ideas in this manuscript. Work in the author's laboratory is supported by the Howard Hughes Medical Institute, the National Institutes of Health (DK070855), the Burroughs Wellcome Foundation (New Investigators in the Pathogenesis of Infectious Diseases Award) and the Crohn's and Colitis Foundation.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Bacteroides thetaiotaomicron

Campylobacter jejuni

Enterobacter cloacae

FURTHER INFORMATION

Lora V. Hooper's homepage

CAZY

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooper, L. Do symbiotic bacteria subvert host immunity?. Nat Rev Microbiol 7, 367–374 (2009). https://doi.org/10.1038/nrmicro2114

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing