Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Using movies to analyse gene circuit dynamics in single cells

Key Points

  • Movies, acquired by time-lapse microscopy, provide a powerful way to analyse the dynamics of genetic circuits at the level of individual cells.

  • The combination of time-lapse microscopy, quantitative image analysis and fluorescent protein reporters has enabled direct observation of various cellular components over time in individual cells. In conjunction with mathematical modelling, these techniques are now providing powerful insights into genetic circuit behaviour in diverse microbial systems.

  • Movies have proved crucial for our understanding of how phenotypic variability is generated in clonal populations, through noise in gene expression, heritability of cellular states, ageing and other mechanisms.

  • Movies allow researchers to analyse the dynamics of biochemical events, such as the production of mRNA and protein, down to the level of individual molecules.

  • Using strains engineered to produce fluorescent protein reporters for key genetic circuit components, researchers are now able to analyse the genetic circuits that give rise to differentiation and stress responses at the single-cell level.

Abstract

Many bacterial systems rely on dynamic genetic circuits to control crucial biological processes. A major goal of systems biology is to understand these behaviours in terms of individual genes and their interactions. However, traditional techniques based on population averages 'wash out' crucial dynamics that are either unsynchronized between cells or are driven by fluctuations, or 'noise', in cellular components. Recently, the combination of time-lapse microscopy, quantitative image analysis and fluorescent protein reporters has enabled direct observation of multiple cellular components over time in individual cells. In conjunction with mathematical modelling, these techniques are now providing powerful insights into genetic circuit behaviour in diverse microbial systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: circuit-driven versus noisy cells.
Figure 2: Tracking and segmenting single cells.
Figure 3: Automated lineage analysis reveals epigenetic states.
Figure 4: In vivo biochemistry.
Figure 5: Circuit-level dynamics.

Similar content being viewed by others

References

  1. Marcus, J. S., Anderson, W. F. & Quake, S. R. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 78, 3084–3089 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Dickinson, M. E., Bearman, G., Tille, S., Lansford, R. & Fraser, S. E. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31, 1272–1278 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Reddy, G. V., Heisler, M. G., Ehrhardt, D. W. & Meyerowitz, E. M. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131, 4225–4237 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Megason, S. G. & Fraser, S. E. Imaging in systems biology. Cell 130, 784–795 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, A. C. et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129, 605–616 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maddox, P. et al. Microtubule dynamics from mating through the first zygotic division in the budding yeast Saccharomyces cerevisiae. J. Cell Biol. 144, 977–987 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143, 687–694 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raskin, D. M. & de Boer, P. A. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl Acad. Sci. USA 96, 4971–4976 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meyer, P. & Dworkin, J. Applications of fluorescence microscopy to single bacterial cells. Res. Microbiol. 158, 187–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Straight, A. F., Marshall, W. F., Sedat, J. W. & Murray, A. W. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277, 574–578 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Viollier, P. H. et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA 101, 9257–9262 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nature Genet. 31, 69–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Raser, J. M. & O'Shea, E. K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Smits, W. K., Kuipers, O. P. & Veening, J. W. Phenotypic variation in bacteria: the role of feedback regulation. Nature Rev. Microbiol. 4, 259–271 (2006).

    Article  CAS  Google Scholar 

  16. Arkin, A., Ross, J. & McAdams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Raser, J. M. & O'Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Powell, E. O. Growth rate and generation time of bacteria, with special reference to continuous culture. J. Gen. Microbiol. 15, 492–511 (1956).

    Article  CAS  PubMed  Google Scholar 

  19. Powell, E. O. An outline of the pattern of bacterial generation times. J. Gen. Microbiol. 18, 382–417 (1958).

    Article  CAS  PubMed  Google Scholar 

  20. Wakamoto, Y., Inoue, I., Moriguchi, H. & Yasuda, K. Analysis of single-cell differences by use of an on-chip microculture system and optical trapping. Fresenius J. Anal. Chem. 371, 276–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Kaeberlein, M., Burtner, C. R. & Kennedy, B. K. Recent developments in yeast aging. PLoS Genet. 3, e84 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ackermann, M., Stearns, S. C. & Jenal, U. Senescence in a bacterium with asymmetric division. Science 300, 1920 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Stewart, E. J., Madden, R., Paul, G. & Taddei, F. Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biol. 3, e45 (2005). Automated lineage tracking of E. coli through several generations revealed that even an apparently symmetrically dividing organism could age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dhar, N. & McKinney, J. D. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 10, 30–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503–514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004). This work characterizes bacterial persistence at the single-cell level using a linear microfluidics device, and shows that cells transition spontaneously to the persistent state prior to exposure to antibiotics.

    Article  CAS  PubMed  Google Scholar 

  27. Gefen, O., Gabay, C., Mumcuoglu, M., Engel, G. & Balaban, N. Q. Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria. Proc. Natl Acad. Sci. USA 105, 6145–6149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McKinney, J. D. In vivo veritas: the search for TB drug targets goes live. Nature Med. 6, 1330–1333 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Moyed, H. S. & Bertrand, K. P. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lewis, K. Persister cells, dormancy and infectious disease. Nature Rev. Microbiol. 5, 48–56 (2007).

    Article  CAS  Google Scholar 

  31. Acar, M., Becskei, A. & van Oudenaarden, A. Enhancement of cellular memory by reducing stochastic transitions. Nature 435, 228–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Kaufmann, B. B., Yang, Q., Mettetal, J. T. & van Oudenaarden, A. Heritable stochastic switching revealed by single-cell genealogy. PLoS Biol. 5, e239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Talia, S., Skotheim, J. M., Bean, J. M., Siggia, E. D. & Cross, F. R. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448, 947–951 (2007). This work analyses the role of cell size and variability in cell cycle progression.

    Article  CAS  PubMed  Google Scholar 

  34. Bean, J. M., Siggia, E. D. & Cross, F. R. Coherence and timing of cell cycle start examined at single-cell resolution. Mol. Cell 21, 3–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Nachman, I., Regev, A. & Ramanathan, S. Dissecting timing variability in yeast meiosis. Cell 131, 544–556 (2007). This study shows that the timing of sporulation varies considerably among cells, and that this variability in the initiation of sporulation can be explained, in part, by slow and noisy accumulation of the master regulator Ime1p.

    Article  CAS  PubMed  Google Scholar 

  36. Siegal-Gaskins, D. & Crosson, S. Tightly regulated and heritable division control in single bacterial cells. Biophys. J. 95, 2063–2072 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomita, J., Nakajima, M., Kondo, T. & Iwasaki, H. No transcription–translation feedback in circadian rhythm of KaiC phosphorylation. Science 307, 251–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Barkai, N. & Leibler, S. Circadian clocks limited by noise. Nature 403, 267–268 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Vilar, J. M., Kueh, H. Y., Barkai, N. & Leibler, S. Mechanisms of noise-resistance in genetic oscillators. Proc. Natl Acad. Sci. USA 99, 5988–5992 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonze, D., Halloy, J. & Goldbeter, A. Robustness of circadian rhythms with respect to molecular noise. Proc. Natl Acad. Sci. USA 99, 673–678 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hasty, J., Dolnik, M., Rottschafer, V. & Collins, J. J. Synthetic gene network for entraining and amplifying cellular oscillations. Phys. Rev. Lett. 88, 148101 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Tsai, T. Y. et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mihalcescu, I., Hsing, W. & Leibler, S. Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430, 81–85 (2004). Using a sensitive luciferase reporter system, the authors imaged circadian clock dynamics in individual cynobacteria cells of growing micro-colonies. They found that individual cells oscillated with a robust 24-hour rhythm irrespective of the phases of neighbouring cells.

    Article  CAS  PubMed  Google Scholar 

  47. Amdaoud, M., Vallade, M., Weiss-Schaber, C. & Mihalcescu, I. Cyanobacterial clock, a stable phase oscillator with negligible intercellular coupling. Proc. Natl Acad. Sci. USA 104, 7051–7056 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chabot, J. R., Pedraza, J. M., Luitel, P. & van Oudenaarden, A. Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock. Nature 450, 1249–1252 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S. & O'Shea, E. K. Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 318, 809–812 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Accurate prediction of gene feedback circuit behavior from component properties. Mol. Syst. Biol. 3, 143 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Austin, D. W. et al. Gene network shaping of inherent noise spectra. Nature 439, 608–611 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sprinzak, D. & Elowitz, M. B. Reconstruction of genetic circuits. Nature 438, 443–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Andrianantoandro, E., Basu, S., Karig, D. K. & Weiss, R. Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2, 2006.0028 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Grilly, C., Stricker, J., Pang, W. L., Bennett, M. R. & Hasty, J. A synthetic gene network for tuning protein degradation in Saccharomyces cerevisiae. Mol. Syst. Biol. 3, 127 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005). This work analyses the expression of individual mRNAs in individual living cells over time.

    Article  CAS  PubMed  Google Scholar 

  57. Yu, J., Xiao, J., Ren, X., Lao, K. & Xie, X. S. Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600–1603 (2006). A seminal work showing that the production of individual proteins can be detected and quantified in individual living cells.

    Article  CAS  PubMed  Google Scholar 

  58. Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the single molecule level. Nature 440, 358–362 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Friedman, N., Cai, L. & Xie, X. S. Linking stochastic dynamics to population distribution: an analytical framework of gene expression. Phys. Rev. Lett. 97, 168302 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Karpova, T. S. et al. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 319, 466–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Elf, J., Li, G. W. & Xie, X. S. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316, 1191–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dubnau, D. Genetic competence in Bacillus subtilis. Microbiol. Rev. 55, 395–424 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Maamar, H. & Dubnau, D. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56, 615–624 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Suel, G. M., Garcia-Ojalvo, J., Liberman, L. M. & Elowitz, M. B. An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440, 545–550 (2006). This work analyses the probabilistic and transient differentiation system of competence-using movies. It shows that key properties of the system can be tuned, and that differentiation depends on noise in genetic components.

    Article  CAS  PubMed  Google Scholar 

  66. Suel, G. M., Kulkarni, R. P., Dworkin, J., Garcia-Ojalvo, J. & Elowitz, M. B. Tunability and noise dependence in differentiation dynamics. Science 315, 1716–1719 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Veening, J. W. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl Acad. Sci. USA 105, 4393–4398 (2008). This work shows that the (probabilistic) propensity to sporulate is itself heritable from one cell generation to the next. Variability in the decision to sporulate depends on a phosphorelay circuit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamoen, L. W., Venema, G. & Kuipers, O. P. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149, 9–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Keener, J. & Sneyd, J. Mathematical Physiology (Springer, New York, 1998).

    Google Scholar 

  70. Maamar, H., Raj, A. & Dubnau, D. Noise in gene expression determines cell fate in Bacillus subtilis. Science 317, 526–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Piggot, P. J. & Hilbert, D. W. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7, 579–586 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Veening, J. W., Hamoen, L. W. & Kuipers, O. P. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56, 1481–1494 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Jiang, M., Shao, W., Perego, M. & Hoch, J. A. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38, 535–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Cai, L., Dalal, C. K. & Elowitz, M. B. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 455, 485–490 (2008). Yeast responds to stress using a frequency-modulated nuclear localization burst system that enables coordinated control of various target genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nelson, D. E. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Lahav, G. et al. Dynamics of the p53–Mdm2 feedback loop in individual cells. Nature Genet. 36, 147–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Garmendia-Torres, C., Goldbeter, A. & Jacquet, M. Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation. Curr. Biol. 17, 1044–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Medvedik, O., Lamming, D. W., Kim, K. D. & Sinclair, D. A. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol. 5, e261 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for systems biology. Nature Rev. Mol. Cell Biol. 7, 690–696 (2006).

    Article  CAS  Google Scholar 

  80. Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Groisman, A. et al. A microfluidic chemostat for experiments with bacterial and yeast cells. Nature Methods 2, 685–689 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Cookson, S., Ostroff, N., Pang, W. L., Volfson, D. & Hasty, J. Monitoring dynamics of single-cell gene expression over multiple cell cycles. Mol. Syst. Biol. 1, 2005.0024 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vlamakis, H., Aguilar, C., Losick, R. & Kolter, R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22, 945–953 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tuch, B. B., Li, H. & Johnson, A. D. Evolution of eukaryotic transcription circuits. Science 319, 1797–1799 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Gonzalez, R. C. & Woods, R. E. Digital Image Processing 2nd edn. (Prentice Hall, New Jersey, 2002).

    Google Scholar 

  88. Victoria, G., Michael, E., Tigran, B. & Eric, M. in Proc. 2005 IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition (CVPR'05) Vol. 3 (IEEE Computer Society, 2005).

    Google Scholar 

  89. Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. & Elowitz, M. B. Gene regulation at the single-cell level. Science 307, 1962–1965 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, Q., Niemi, J., Tan, C., You, L. & West, M. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy. J. Synth. Biol. (in the press).

  91. Gordon, A. et al. Single-cell quantification of molecules and rates using open-source microscope-based cytometry. Nature Methods 4, 175–181 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Shen, H. et al. Automated tracking of gene expression in individual cells and cell compartments. J. R. Soc. Interface 3, 787–794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Friedman, N., Vardi, S., Ronen, M., Alon, U. & Stavans, J. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol. 3, e238 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Andersen, J. B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ashby, M. C., Ibaraki, K. & Henley, J. M. It's green outside: tracking cell surface proteins with pH-sensitive GFP. Trends Neurosci. 27, 257–261 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Dunlop, M. J. et al. Regulatory activity revealed by dynamic correlations in gene expression noise. Nature Genet. 40, 1493–1498 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Eldar, J. Young, L. Cai, C. Dalal and all members of the Elowitz groups for their feedback and suggestions. J.L. was supported by a Human Frontiers Fellowship. This work was supported by US National Institutes of Health grants R01GM079771 and P50 GM068763, National Science Foundation CAREER Award 0644463 and the Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Elowitz.

Supplementary information

Supplementary information S1 (movie) | Analysis of gene regulation in Escherichia coli.

This movie shows the dilution of a fusion protein composed of lambda repressor and yellow fluorescence protein (YFP) domains (red) in cells that also express cyan fluorescent protein (CFP; green) from a lambda–regulated promoter. As the cell grows into a micro–colony, the repressor is diluted and CFP expression increases. (MOV 190 kb)

Supplementary information S2 (movie) | Analysis of the competence differentiation circuit in Bacillus subtilis.

This movie shows a micro–colony of B. subtilis cells growing vegetatively (green cells), sporulating (to produce white phase–bright spores) and occasionally switching to the competent state (red cell). Here, one fluorescent protein, labelled green, reports expression of comS, a gene necessary, but not sufficient, for competence. The other fluorescent protein, labelled red, is activated by ComK during competence. (MOV 3175 kb)

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Caulobacter crescentus

Escherichia coli

FURTHER INFORMATION

Michael Elowitz's homepage

μManager

Glossary

Noise

Fluctuations in molecular components. Noise arises owing to the low copy numbers of molecular species and the burst-like nature of transcription, among other mechanisms.

Segmentation

Breaking up a complex image into individual objects, such as cells.

Edge detection

A computational algorithm that identifies sharp changes in intensity associated with boundaries between objects, such as cells.

Thresholding

One of the simplest segmentation techniques, in which groups of pixels for which the intensity exceeds a defined cut-off value are identified.

Hough transform

An algorithm for identifying particular shapes, such as circular disks, in complex images. The Hough transform is useful in many segmentation systems.

Linear microfluidic chamber

A microfluidic device in which cells are confined to grow in a narrow groove. These devices facilitate analysis of cell lineages, as more closely related cells are located closer together.

Galactose utilization system

A system of genes used by yeast to control the uptake and metabolism of galactose. This system is characterized by several feedback loops, both positive and negative.

Repressilator

A synthetic genetic circuit designed to produce clock-like oscillations in the levels of its components. The circuit consists of a 'rock–scissors–paper' feedback loop of three repressors, in which the first represses the expression of the second, the second represses the expression of the third and the third represses the expression of the first.

Spo0A

The master transcriptional regulator for sporulation in Bacillus subtilis. Spo0A is controlled by phosphorylation and transcriptional regulation.

Frequency modulation

A way to encode information about the frequency of events or oscillations. Frequency modulation is often contrasted with amplitude modulation, in which signals are encoded by varying the magnitude of a signal. In engineering applications, such as broadcasting, the frequency-modulated signal is typically periodic (oscillatory). In the example of Crz1 it is the frequency of discrete stochastically timed bursts that is varied.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locke, J., Elowitz, M. Using movies to analyse gene circuit dynamics in single cells. Nat Rev Microbiol 7, 383–392 (2009). https://doi.org/10.1038/nrmicro2056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing