Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The role of predictive modelling in rationally re-engineering biological systems

Abstract

Technologies to synthesize and transplant a complete genome into a cell have opened limitless potential to redesign organisms for complex, specialized tasks. However, large-scale re-engineering of a biological circuit will require systems-level optimization that will come from a deep understanding of operational relationships among all the constituent parts of a cell. The integrated framework necessary for conducting such complex bioengineering requires the convergence of systems and synthetic biology. Here, we review the status of these rapidly developing interdisciplinary fields of biology and provide a perspective on plausible venues for their merger.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of events that resulted in the development of systems biology and synthetic biology.
Figure 2: Convergence of systems and synthetic biology.

Similar content being viewed by others

References

  1. Yeh, B. J. & Lim, W. A. Synthetic biology: lessons from the history of synthetic organic chemistry. Nature Chem. Biol. 3, 521–525 (2007).

    Article  CAS  Google Scholar 

  2. Williams, D. C., Frank, R. M. V., Muth, W. L. & Burnett, J. P. Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins. Science 215, 687–689 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Bonneau, R. et al. A predictive model for transcriptional control of physiology in a free living cell. Cell 131, 1354–1365 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sprinzak, D. & Elowitz, M. B. Reconstruction of genetic circuits. Nature 438, 443–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Sharma, S. S., Blattner, F. R. & Harcum, S. W. Recombinant protein production in an Escherichia coli reduced genome strain. Metab. Eng. 9, 133–141 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Grilly, C., Stricker, J., Pang, W. L., Bennett, M. R. & Hasty, J. A synthetic gene network for tuning protein degradation in Saccharomyces cerevisiae. Mol. Syst. Biol. 3, 127 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cox, M. M. & Battista, J. R. Deinococcus radiodurans — the consummate survivor. Nature Rev. Microbiol. 3, 882–892 (2005).

    Article  CAS  Google Scholar 

  9. Laksanalamai, P., Whitehead, T. A. & Robb, F. T. Minimal protein-folding systems in hyperthermophilic archaea. Nature Rev. Microbiol. 2, 315–324 (2004).

    Article  CAS  Google Scholar 

  10. Shi, L., Squier, T. C., Zachara, J. M. & Fredrickson, J. K. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol. Microbiol. 65, 12–20 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brenner, K., You, L. & Arnold, F. H. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26, 483–489 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Mukhopadhyay, A., Redding, A. M., Rutherford, B. J. & Keasling, J. D. Importance of systems biology in engineering microbes for biofuel production. Curr. Opin. Biotechnol. 19, 228–234 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. de Lorenzo, V. Systems biology approaches to bioremediation. Curr. Opin. Biotechnol. 19, 579–589 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Anderson, J. C., Clarke, E. J., Arkin, A. P. & Voigt, C. A. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Boldt, J. & Muller, O. Newtons of the leaves of grass. Nature Biotechnol. 26, 387–389 (2008).

    Article  CAS  Google Scholar 

  16. Rai, A. & Boyle, J. Synthetic biology: caught between property rights, the public domain, and the commons. PLoS Biol. 5, e58 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dingermann, T. Recombinant therapeutic proteins: production platforms and challenges. Biotechnol. J. 3, 90–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Shewry, P. R., Jones, H. D. & Halford, N. G. Plant biotechnology: transgenic crops. Adv. Biochem. Eng. Biotechnol. 111, 149–186 (2008).

    CAS  PubMed  Google Scholar 

  19. Wang, K., Neumann, H., Peak-Chew, S. Y. & Chin, J. W. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nature Biotechnol. 25, 770–777 (2007).

    Article  CAS  Google Scholar 

  20. Pósfai, G. et al. Emergent properties of reduced-genome Escherichia coli. Science 312, 1044–1046 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kafri, R., Levy, M. & Pilpel, Y. The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl Acad. Sci. USA 103, 11653–11658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Smith, H. O., Hutchison, C. A., Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 100, 15440–15445 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Lartigue, C. et al. Genome transplantation in bacteria: changing one species to another. Science 317, 632–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Noireaux, V., Bar-Ziv, R., Godefroy, J., Salman, H. & Libchaber, A. Toward an artificial cell based on gene expression in vesicles. Phys. Biol. 2, P1–P8 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Serrano, L. Synthetic biology: promises and challenges. Mol. Syst. Biol. 3, 158 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martin, V. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol. 21, 796–802 (2003).

    Article  CAS  Google Scholar 

  28. Ro, D. K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Wei, M. Q., Mengesha, A., Good, D. & Anné, J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett. 259, 16–27 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Guido, N. J. et al. A bottom-up approach to gene regulation. Nature 439, 856–860 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Bennett, M. R. et al. Metabolic gene regulation in a dynamically changing environment. Nature 454, 1119–1122 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Isaacs, F. J., Hasty, J., Cantor, C. R. & Collins, J. J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl Acad. Sci. USA 100, 7714–7719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Maheshri, N. & O'Shea, E. K. Living with noisy genes: how cells function reliably with inherent variability in gene expression. Annu. Rev. Biophys. Biomol. Struct. 36, 413–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. López-Maury, L., Marguerat, S. & Bähler, J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nature Rev. Genet. 9, 583–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nature Biotechnol. 26, 787–793 (2008).

    Article  CAS  Google Scholar 

  42. Aderem, A. Systems biology: its practice and challenges. Cell 121, 511–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Schmid, A. K. & Baliga, N. S. in Systems Biology Vol. 5 (eds Al-Rubeai, M. & Fussenegger, M.) 395–423 (Springer, New York, 2007).

    Book  Google Scholar 

  44. Laub, M. T., Shapiro, L. & McAdams, H. H. Systems biology of Caulobacter. Annu. Rev. Genet. 41, 429–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X., Wu, M., Li, Z. & Chan, C. Short time-series microarray analysis: methods and challenges. BMC Syst. Biol. 2, 58 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Facciotti, M. T., Bonneau, R., Hood, L. & Baliga, N. S. Systems biology experimental design: considerations for building predictive gene regulatory network models for prokaryotic systems. Curr. Genomics 5, 527–544 (2004).

    Article  CAS  Google Scholar 

  47. Reiss, D. J., Baliga, N. S. & Bonneau, R. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 7, 280 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baker, M. D., Wolanin, P. M. & Stock, J. B. Systems biology of bacterial chemotaxis. Curr. Opin. Microbiol. 9, 187–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Thanbichler, M. & Shapiro, L. Getting organized — how bacterial cells move proteins and DNA. Nature Rev. Microbiol. 6, 28–40 (2008).

    Article  CAS  Google Scholar 

  50. Gama-Castro, S. et al. RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and textpresso navigation. Nucleic Acids Res. 36, D120–D124 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Medini, D. et al. Microbiology in the post-genomic era. Nature Rev. Microbiol. 6, 419–430 (2008).

    Article  CAS  Google Scholar 

  52. Fredrickson, J. K. et al. Towards environmental systems biology of Shewanella. Nature Rev. Microbiol. 6, 592–603 (2008).

    Article  CAS  Google Scholar 

  53. Young, D., Stark, J. & Kirschner, D. Systems biology of persistent infection: tuberculosis as a case study. Nature Rev. Microbiol. 6, 520–528 (2008).

    Article  CAS  Google Scholar 

  54. Price, N. D., Reed, J. L. & Palsson, B. Ø. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nature Rev. Microbiol. 2, 886–897 (2004).

    Article  CAS  Google Scholar 

  55. Reed, J. L., Famili, I., Thiele, I. & Palsson, B. Ø. Towards multidimensional genome annotation. Nature Rev. Genet. 7, 130–141 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Feist, A. M. & Palsson, B. Ø. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nature Biotechnol. 26, 659–667 (2008).

    Article  CAS  Google Scholar 

  57. David, H., Ozçelik, I. S., Hofmann, G. & Nielsen, J. Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics 9, 163 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, I. et al. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nature Genet. 40, 181–188 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Zak, D. E. & Aderem, A. Systems biology of innate immunity. Immunol. Rev. 227, 264–282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lusis, A. J., Attie, A. D. & Reue, K. Metabolic syndrome: from epidemiology to systems biology. Nature Rev. Genet. 9, 819–830 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Zahn, J. M. & Kim, S. K. Systems biology of aging in four species. Curr. Opin. Biotechnol. 18, 355–359 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jamshidi, N. & Palsson, B. Ø. Formulating genome-scale kinetic models in the post-genome era. Mol. Syst. Biol. 4, 171 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ishii, N. et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316, 593–597 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Barrett, C. L., Herring, C. D., Reed, J. L. & Palsson, B. Ø. The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states. Proc. Natl Acad. Sci. USA 102, 19103–19108 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Breitling, R., Vitkup, D. & Barrett, M. P. New surveyor tools for charting microbial metabolic maps. Nature Rev. Microbiol. 6, 156–161 (2008).

    Article  CAS  Google Scholar 

  66. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reiss, D. J., Facciotti, M. T. & Baliga, N. S. Model-based deconvolution of genome-wide DNA binding. Bioinformatics 24, 396–403 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nature Methods 4, 651–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. McGrath, P. T. et al. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nature Biotechnol. 25, 584–592 (2007).

    Article  CAS  Google Scholar 

  71. Sharan, R. & Ideker, T. Modeling cellular machinery through biological network comparison. Nature Biotechnol. 24, 427–433 (2006).

    Article  CAS  Google Scholar 

  72. Kelley, B. P. et al. Pathblast: a tool for alignment of protein interaction networks. Nucleic Acids Res. 32, W83–W88 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baliga, N. S. Systems biology: the scale of prediction. Science 320, 1297–1298 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Tagkopoulos, I., Liu, Y. C. & Tavazoie, S. Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Isalan, M. et al. Evolvability and hierarchy in rewired bacterial gene networks. Nature 452, 840–845 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barrett, C. L., Kim, T. Y., Kim, H. U., Palsson, B. Ø. & Lee, S. Y. Systems biology as a foundation for genome-scale synthetic biology. Curr. Opin. Biotechnol. 17, 488–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Fisher, J. & Henzinger, T. A. Executable cell biology. Nature Biotechnol. 25, 1239–1249 (2007).

    Article  CAS  Google Scholar 

  78. Schlitt, T. & Brazma, A. Current approaches to gene regulatory network modelling. BMC Bioinformatics 8 (Suppl. 6), S9 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Price, N. D. & Shmulevich, I. Biochemical and statistical network models for systems biology. Curr. Opin. Biotechnol. 18, 365–370 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stein, M., Gabdoulline, R. R. & Wade, R. C. Bridging from molecular simulation to biochemical networks. Curr. Opin. Struct. Biol. 17, 166–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Ayton, G. S., Noid, W. G. & Voth, G. A. Multiscale modeling of biomolecular systems: in serial and in parallel. Curr. Opin. Struct. Biol. 17, 192–198 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Melin, J. & Quake, S. R. Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Kremling, A. & Saez-Rodriguez, J. Systems biology — an engineering perspective. J. Biotechnol. 129, 329–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Meyer, A., Pellaux, R. & Panke, S. Bioengineering novel in vitro metabolic pathways using synthetic biology. Curr. Opin. Microbiol. 10, 246–253 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Doktycz, M. J. & Simpson, M. L. Nano-enabled synthetic biology. Mol. Syst. Biol. 3, 125 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Longo, D. & Hasty, J. Dynamics of single-cell gene expression. Mol. Syst. Biol. 2, 64 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of community function. Nature Rev. Microbiol. 6, 693–699 (2008).

    Article  CAS  Google Scholar 

  91. Hood, L. & Galas, D. The digital code of DNA. Nature 421, 444–448 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Bennett, S. T., Barnes, C., Cox, A., Davies, L. & Brown, C. Toward the 1,000 dollars human genome. Pharmacogenomics 6, 373–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Hoheisel, J. D. Microarray technology: beyond transcript profiling and genotype analysis. Nature Rev. Genet. 7, 200–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Gresham, D., Dunham, M. J. & Botstein, D. Comparing whole genomes using DNA microarrays. Nature Rev. Genet. 9, 291–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Suzuki, M. M. & Bird, A. DNA methylation landscapes: provocative insights from epigenomics. Nature Rev. Genet. 9, 465–476 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Phizicky, E., Bastiaens, P. I., Zhu, H., Snyder, M. & Fields, S. Protein analysis on a proteomic scale. Nature 422, 208–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature 422, 216–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Want, E. J., Nordstrom, A., Morita, H. & Siuzdak, G. From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. J. Proteome Res. 6, 459–468 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Barabasi, A. L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Karlebach, G. & Shamir, R. Modelling and analysis of gene regulatory networks. Nature Rev. Mol. Cell Biol. 9, 770–780 (2008).

    Article  CAS  Google Scholar 

  103. Shannon, P. T., Reiss, D. J., Bonneau, R. & Baliga, N. S. The gaggle: an open-source software system for integrating bioinformatics software and data sources. BMC Bioinformatics 7, 176 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH; P50GM076547 and 1R01GM077398-01A2), Department of Environment (DoE; DE-FG02-07ER64327 and DE-FG02-07ER64327), National Science Foundation (NSF; EF-0313754, EIA-0220153, MCB-0425825 and DBI-0640950) and NASA (National Aeronautics and Space Administration; NNG05GN58G) to N.S.B. The authors thank D. Reiss and A. Schmid for critical reading of the manuscript and R. Vencio for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin S. Baliga.

Related links

Related links

DATABASES

Entrez Genome Project

Aspergillus nidulans

Caulobacter crescentus

Caenorhabditis elegans

Deinococcus radiodurans

Escherichia coli

Halobacterium salinarum NRC-1

Pyrococcus furiosus

Saccharomyces cerevisiae

Shewanella oneidensis MR-1

Vibrio fischeri

Yersinia pseudotuberculosis

FURTHER INFORMATION

Halobacterium systems Biology

MIT Registry of Standard Biological Parts

RegulonDB

SBML Software Matrix

Synthetic Biology community

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koide, T., Lee Pang, W. & Baliga, N. The role of predictive modelling in rationally re-engineering biological systems. Nat Rev Microbiol 7, 297–305 (2009). https://doi.org/10.1038/nrmicro2107

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing