Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DSB proteins and bacterial pathogenicity

Key Points

  • A key rate-limiting step in protein folding is the introduction of correct disulphide bonds between cysteine residues in a process called oxidative protein folding. Organisms ranging from bacteria to humans use specialized machinery to perform this step, which is essential for the assembly and function of many secreted and membrane proteins.

  • The DSB (disulphide bond) protein family that performs oxidative folding in Escherichia coli K-12 has been comprehensively characterized, and this machinery has since become the paradigm for oxidative folding in all bacteria and archaea.

  • The E. coli K-12 complement of DSB proteins is not shared by all bacteria. Indeed, seven different disulphide bond-forming models have recently been proposed, and bacterial genomic analysis suggests that many more are likely to be encoded. Clearly, our current concept of the bacterial DSB machinery and how it operates will need to change.

  • Importantly, many pathogenic bacteria have developed distinct DSB systems. In these organisms, DSB proteins have a pivotal role in the generation of virulence factors and can contribute to pathogenicity. The increasing volume of evidence linking DSB proteins to virulence identifies these proteins as targets for novel antibacterial drugs.

  • Bacterial infection remains a major cause of death and disease worldwide, and antibiotic resistance is on the rise. Consequently, there is a pressing need for new, validated antibacterial drug targets. The possibility of targeting DSB proteins to attenuate bacterial virulence represents an innovative approach to combat bacterial infection and antibiotic resistance.

Abstract

If DNA is the information of life, then proteins are the machines of life — but they must be assembled and correctly folded to function. A key step in the protein-folding pathway is the introduction of disulphide bonds between cysteine residues in a process called oxidative protein folding. Many bacteria use an oxidative protein-folding machinery to assemble proteins that are essential for cell integrity and to produce virulence factors. Although our current knowledge of this machinery stems largely from Escherichia coli K-12, this view must now be adjusted to encompass the wider range of disulphide catalytic systems present in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disulphide bonds.
Figure 2: The DSB machinery in the periplasm of Escherichia coli K-12.
Figure 3: Schematic of the different types of oxidative pathways found so far in bacteria.
Figure 4: Representative phylogenetic tree that shows the distribution of DsbAs in bacteria and archaea.
Figure 5: Overview of selected virulence mechanisms that are dependent on DsbA-mediated disulphide bond formation.

Similar content being viewed by others

References

  1. Heras, B., Kurz, M., Shouldice, S. R. & Martin, J. L. The name's bond......disulfide bond. Curr. Opin. Struct. Biol. 17, 691–698 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Lee, Y. M., Almqvist, F. & Hultgren, S. J. Targeting virulence for antimicrobial chemotherapy. Curr. Opin. Pharmacol. 3, 513–519 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Dutton, R. J., Boyd, D., Berkmen, M. & Beckwith, J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl Acad. Sci. USA 105, 11933–11938 (2008). This thorough study combines bioinformatic and experimental data to show the great diversity of the disulphide machinery throughout the bacterial kingdom.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacob-Dubuisson, F. et al. PapD chaperone function in pilus biogenesis depends on oxidant and chaperone-like activities of DsbA. Proc. Natl Acad. Sci. USA 91, 11552–11556 (1994). This paper shows that DsbA catalyses the correct folding of the fimbrial chaperone PapD, ensuring its subsequent complex formation with the fimbrial subunits and PapG adhesin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stenson, T. H. & Weiss, A. A. DsbA and DsbC are required for secretion of pertussis toxin by Bordetella pertussis. Infect. Immun. 70, 2297–2303 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jackson, M. W. & Plano, G. V. DsbA is required for stable expression of outer membrane protein YscC and for efficient Yop secretion in Yersinia pestis. J. Bacteriol. 181, 5126–5130 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dailey, F. E. & Berg, H. C. Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. Proc. Natl Acad. Sci. USA 90, 1043–1047 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ito, K. & Inaba, K. The disulfide bond formation (Dsb) system. Curr. Opin. Struct. Biol. 18, 450–458 (2008). This paper summarizes the disulphide catalytic pathways in E. coli K-12.

    Article  CAS  PubMed  Google Scholar 

  9. Hiniker, A. & Bardwell, J. C. A. In vivo substrate specificity of periplasmic disulfide oxidoreductases. J. Biol. Chem. 279, 12967–12973 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Bardwell, J. C., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Akiyama, Y., Kamitani, S., Kusukawa, N. & Ito, K. In vitro catalysis of oxidative folding of disulfide-bonded proteins by the Escherichia coli dsbA (ppfA) gene product. J. Biol. Chem. 267, 22440–22445 (1992).

    CAS  PubMed  Google Scholar 

  12. Martin, J. L. Thioredoxin — a fold for all reasons. Structure 3, 245–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Martin, J. L., Bardwell, J. C. & Kuriyan, J. Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365, 464–468 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Kadokura, H., Tian, H., Zander, T., Bardwell, J. C. & Beckwith, J. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303, 534–537 (2004). This elegant work describes the generation of DsbA active-site mutants, which allowed the detection of mixed disulphide complexes between DsbA and its substrates, a better understanding of how thiol oxidation occurs in vivo and the identification of new DsbA substrates.

    Article  CAS  PubMed  Google Scholar 

  15. Zapun, A., Bardwell, J. C. & Creighton, T. E. The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivo. Biochemistry 32, 5083–5092 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Philipps, B. & Glockshuber, R. Randomization of the entire active-site helix α1 of the thiol-disulfide oxidoreductase DsbA from Escherichia coli. J. Biol. Chem. 277, 43050–43057 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Darby, N. J. & Creighton, T. E. Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase. Biochemistry 34, 3576–3587 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Skorko-Glonek, J., Sobiecka-Szkatula, A. & Lipinska, B. Characterization of disulfide exchange between DsbA and HtrA proteins from Escherichia coli. Acta Biochim. Pol. 53, 585–589 (2006).

    CAS  PubMed  Google Scholar 

  19. Guddat, L. W., Bardwell, J. C., Zander, T. & Martin, J. L. The uncharged surface features surrounding the active site of Escherichia coli DsbA are conserved and are implicated in peptide binding. Protein Sci. 6, 1148–1156 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grimshaw, J. P. A. et al. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. J. Mol. Biol. 380, 667–680 (2008). This work meticulously describes the DSB machinery in UPEC strain CFT073, which contains an extended array of DSB catalysts.

    Article  CAS  PubMed  Google Scholar 

  21. Heras, B. et al. Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding. J. Biol. Chem. 283, 4261–4271 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Vivian, J. P. et al. Structural and biochemical characterisation of the oxidoreductase NmDsbA3 from Neisseria meningitidis. J. Biol. Chem. 283, 32452–32461 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Frech, C., Wunderlich, M., Glockshuber, R. & Schmid, F. X. Preferential binding of an unfolded protein to DsbA. EMBO J. 15, 392–398 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Berkmen, M., Boyd, D. & Beckwith, J. The non-consecutive disulfide bond of Echerichia coli phytase (AppA) renders it dependent on the protein disulfide isomerase, DsbC. J. Biol. Chem. 280, 11387–11394 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Inaba, K. et al. Crystal structure of the DsbB–DsbA complex reveals a mechanism of disulfide bond generation. Cell 127, 789–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, Y. et al. NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol. Cell 31, 896–908 (2008). Together with Reference 25, this paper describes the structure of the membrane protein DsbB, which presents a similar architecture to the eukaryotic soluble proteins Ero1p and Erv2p.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kadokura, H. & Beckwith, J. Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA. EMBO J. 21, 2354–2363 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bader, M., Muse, W., Ballou, D. P., Gassner, C. & Bardwell, J. C. Oxidative protein folding is driven by the electron transport system. Cell 98, 217–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Hiniker, A., Collet, J. F. & Bardwell, J. C. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J. Biol. Chem. 280, 33785–33791 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. McCarthy, A. A. et al. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nature Struct. Biol. 7, 196–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Heras, B., Edeling, M. A., Schirra, H. J., Raina, S. & Martin, J. L. Crystal structures of the DsbG disulfide isomerase reveal an unstable disulfide. Proc. Natl Acad. Sci. USA 101, 8876–8881 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rietsch, A., Bessette, P., Georgiou, G. & Beckwith, J. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin. J. Bacteriol. 179, 6602–6608 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cho, S. H., Porat, A., Ye, J. & Beckwith, J. Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility. EMBO J. 26, 3509–3520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rozhkova, A. & Glockshuber, R. Thermodynamic aspects of DsbD-mediated electron transport. J. Mol. Biol. 380, 783–788 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Haebel, P. W., Goldstone, D., Katzen, F., Beckwith, J. & Metcalf, P. The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC–DsbDα complex. EMBO J. 21, 4774–4784 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reid, E., Cole, J. & Eaves, D. J. The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly. Biochem. J. 355, 51–58 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goulding, C. W. et al. Gram-positive DsbE proteins function differently from Gram-negative DsbE homologs. A structure to function analysis of DsbE from Mycobacterium tuberculosis. J. Biol. Chem. 279, 3516–3524 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Kouwen, T. R. et al. Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Mol. Microbiol. 64, 984–999 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Kang, H. J., Coulibaly, F., Clow, F., Proft, T. & Baker, E. N. Stabilizing isopeptide bonds revealed in Gram-positive bacterial pilus structure. Science 318, 1625–1628 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Singh, A. K., Bhattacharyya-Pakrasi, M. & Pakrasi, H. B. Identification of an atypical membrane protein involved in the formation of protein disulfide bonds in oxygenic photosynthetic organisms. J. Biol. Chem. 283, 15762–15770 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sinha, S., Langford, P. R. & Kroll, J. S. Functional diversity of three different DsbA proteins from Neisseria meningitidis. Microbiology 150, 2993–3000 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Bouwman, C. W. et al. Characterization of SrgA, a Salmonella enterica serovar Typhimurium virulence plasmid-encoded paralogue of the disulfide oxidoreductase DsbA, essential for biogenesis of plasmid-encoded fimbriae. J. Bacteriol. 185, 991–1000 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miki, T., Okada, N. & Danbara, H. Two periplasmic disulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J. Biol. Chem. 279, 34631–34642 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Tinsley, C. R., Voulhoux, R., Beretti, J. L., Tommassen, J. & Nassif, X. Three homologues, including two membrane-bound proteins, of the disulfide oxidoreductase DsbA in Neisseria meningitidis: effects on bacterial growth and biogenesis of functional type IV pili. J. Biol. Chem. 279, 27078–27087 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Sinha, S., Ambur, O. H., Langford, P. R., Tonjum, T. & Kroll, J. S. Reduced DNA binding and uptake in the absence of DsbA1 and DsbA2 of Neisseria meningitidis due to inefficient folding of the outer-membrane secretin PilQ. Microbiology 154, 217–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Hiniker, A. et al. Laboratory evolution of one disulfide isomerase to resemble another. Proc. Natl Acad. Sci. USA 104, 11670–11675 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kurz, M. et al. Cloning, expression, purification and characterization of a DsbA-like protein from Wolbachia pipientis. Protein Expr. Purif. 59, 266–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, J. & Kroll, J. S. DsbA: a protein-folding catalyst contributing to bacterial virulence. Microbes Infect. 1, 1221–1228 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Lasica, A. M. & Jagusztyn-Krynicka, E. K. The role of Dsb proteins of Gram-negative bacteria in the process of pathogenesis. FEMS Microbiol. Rev. 31, 626–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, D., Rao, C. V. & Slauch, J. M. The Salmonella SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J. Bacteriol. 190, 87–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Ha, U. H., Wang, Y. & Jin, S. DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect. Immun. 71, 1590–1595 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Coulthurst, S. J. et al. DsbA plays a critical and multifaceted role in the production of secreted virulence factors by the phytopathogen Erwinia carotovora subsp. atroseptica. J. Biol. Chem. 283, 23739–23753 (2008). Together with Reference 51, this recent study revealed the broad-spectrum effects of a dsbA mutation on the virulence of the causative agent of soft rot disease in crop plants and the human pathogen P. aeruginosa .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meima, R. et al. The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development. J. Biol. Chem. 277, 6994–7001 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Peek, J. A. & Taylor, R. K. Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc. Natl Acad. Sci. USA 89, 6210–6214 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu, J. Inactivation of DsbA, but not DsbC and DsbD, affects the intracellular survival and virulence of Shigella flexneri. Infect. Immun. 66, 3909–3917 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Burall, L. S. et al. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922–2938 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bringer, M. A., Rolhion, N., Glasser, A. L. & Darfeuille-Michaud, A. The oxidoreductase DsbA plays a key role in the ability of the Crohn's disease-associated adherent-invasive Escherichia coli strain LF82 to resist macrophage killing. J. Bacteriol. 189, 4860–4871 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, S. H., Butler, S. M. & Camilli, A. Selection for in vivo regulators of bacterial virulence. Proc. Natl Acad. Sci. USA 98, 6889–6894 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tomb, J. F. A periplasmic protein disulfide oxidoreductase is required for transformation of Haemophilus influenzae Rd. Proc. Natl Acad. Sci. USA 89, 10252–10256 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fronzes, R., Remaut, H. & Waksman, G. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J. 27, 2271–2280 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lund, B., Lindberg, F., Marklund, B. I. & Normark, S. The PapG protein is the α-D-galactopyranosyl-(1→4)-β-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 84, 5898–5902 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bahrani, F. K., Johnson, D. E., Robbins, D. & Mobley, H. L. Proteus mirabilis flagella and MR/P fimbriae: isolation, purification, N-terminal analysis, and serum antibody response following experimental urinary tract infection. Infect. Immun. 59, 3574–3580 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Baumler, A. J. et al. The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect. Immun. 64, 61–68 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang, H. Z. & Donnenberg, M. S. DsbA is required for stability of the type IV pilin of enteropathogenic Escherichia coli. Mol. Microbiol. 21, 787–797 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Wülfing, C. & Rappuoli, R. Efficient production of heat-labile enterotoxin mutant proteins by overexpression of dsbA in a degP-deficient Escherichia coli strain. Arch. Microbiol. 167, 280–283 (1997).

    Article  PubMed  Google Scholar 

  66. Yu, J., Webb, H. & Hirst, T. R. A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol. Microbiol. 6, 1949–1958 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Stein, P. E. et al. The crystal structure of pertussis toxin. Structure 2, 45–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Braun, P. et al. Maturation of Pseudomonas aeruginosa elastase. Formation of the disulfide bonds. J. Biol. Chem. 276, 26030–26035 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Urban, A., Leipelt, M., Eggert, T. & Jaeger, K. E. DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. J. Bacteriol. 183, 587–596 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shevchik, V. E. et al. Differential effect of dsbA and dsbC mutations on extracellular enzyme secretion in Erwinia chrysanthemi. Mol. Microbiol. 16, 745–753 (1995).

    Article  CAS  PubMed  Google Scholar 

  71. Vincent-Sealy, L. V., Thomas, J. D., Commander, P. & Salmond, G. P. Erwinia carotovora DsbA mutants: evidence for a periplasmic-stress signal transduction system affecting transcription of genes encoding secreted proteins. Microbiology 145, 1945–1958 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Pugsley, A. P., Bayan, N. & Sauvonnet, N. Disulfide bond formation in secreton component PulK provides a possible explanation for the role of DsbA in pullulanase secretion. J. Bacteriol. 183, 1312–1319 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sauvonnet, N. & Pugsley, A. P. The requirement for DsbA in pullulanase secretion is independent of disulphide bond formation in the enzyme. Mol. Microbiol. 27, 661–667 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Cornelis, G. R. The type III secretion injectisome. Nature Rev. Microbiol. 4, 811–825 (2006).

    Article  CAS  Google Scholar 

  75. Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Miki, T., Okada, N., Kim, Y., Abe, A. & Danbara, H. DsbA directs efficient expression of outer membrane secretin EscC of the enteropathogenic Escherichia coli type III secretion apparatus. Microb. Pathog. 44, 151–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Watarai, M., Tobe, T., Yoshikawa, M. & Sasakawa, C. Disulfide oxidoreductase activity of Shigella flexneri is required for release of Ipa proteins and invasion of epithelial cells. Proc. Natl Acad. Sci. USA 92, 4927–4931 (1995). This work shows that DsbA catalyses the formation of a disulphide bond in the secretin protein (Spa32) of S. flexneri and that this bond is essential for its function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bitter, W. Secretins of Pseudomonas aeruginosa: large holes in the outer membrane. Arch. Microbiol. 179, 307–314 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Dacheux, D. et al. Activation of the Pseudomonas aeruginosa type III secretion system requires an intact pyruvate dehydrogenase aceAB operon. Infect. Immun. 70, 3973–3977 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Turcot, I., Ponnampalam, T. V., Bouwman, C. W. & Martin, N. L. Isolation and characterization of a chromosomally encoded disulphide oxidoreductase from Salmonella enterica serovar Typhimurium. Can. J. Microbiol. 47, 711–721 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Agudo, D., Mendoza, M. T., Castanares, C., Nombela, C. & Rotger, R. A proteomic approach to study Salmonella typhi periplasmic proteins altered by a lack of the DsbA thiol: disulfide isomerase. Proteomics 4, 355–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Hayashi, S., Abe, M., Kimoto, M., Furukawa, S. & Nakazawa, T. The dsbAdsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance. Microbiol. Immunol. 44, 41–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Menard, R., Sansonetti, P. J. & Parsot, C. Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J. Bacteriol. 175, 5899–5906 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, J., Edwards-Jones, B., Neyrolles, O. & Kroll, J. S. Key role for DsbA in cell-to-cell spread of Shigella flexneri, permitting secretion of Ipa proteins into interepithelial protrusions. Infect. Immun. 68, 6449–6456 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dorenbos, R. et al. Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J. Biol. Chem. 277, 16682–16688 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Park, S. Y., Heo, Y. J., Choi, Y. S., Deziel, E. & Cho, Y. H. Conserved virulence factors of Pseudomonas aeruginosa are required for killing Bacillus subtilis. J. Microbiol. 43, 443–450 (2005).

    CAS  PubMed  Google Scholar 

  87. Heymann, D. L. Resistance to anti-infective drugs and the threat to public health. Cell 124, 671–675 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Normark, B. H. & Normark, S. Evolution and spread of antibiotic resistance. J. Intern. Med. 252, 91–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Livermore, D. M. Bacterial resistance: origins, epidemiology, and impact. Clin. Infect. Dis. 36, S11–S23 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Cassell, G. H. & Mekalanos, J. Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. JAMA 285, 601–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Taubes, G. The bacteria fight back. Science 321, 356–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Berg, T. Small-molecule inhibitors of protein–protein interactions. Curr. Opin. Drug Discov. Devel. 11, 666–674 (2008).

    CAS  PubMed  Google Scholar 

  93. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Thanassi, D. G. & Hultgren, S. J. Multiple pathways allow protein secretion across the bacterial outer membrane. Curr. Opin. Cell Biol. 12, 420–430 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Foreman, D. T., Martinez, Y., Coombs, G., Torres, A. & Kupersztoch, Y. M. TolC and DsbA are needed for the secretion of STB, a heat-stable enterotoxin of Escherichia coli. Mol. Microbiol. 18, 237–245 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Rosadini, C. V., Wong, S. M. & Akerley, B. J. The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis. Infect. Immun. 76, 1498–1508 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fontaine, L. & Hols, P. The inhibitory spectrum of thermophilin 9 from Streptococcus thermophilus LMD-9 depends on the production of multiple peptides and the activity of BlpGSt, a thiol-disulfide oxidase. Appl. Environ. Microbiol. 74, 1102–1110 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Zav'yalov, V. P. et al. Influence of the conserved disulphide bond, exposed to the putative binding pocket, on the structure and function of the immunoglobulin-like molecular chaperone Caf1M of Yersinia pestis. Biochem. J. 324, 571–578 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rozhkova, A. et al. Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD. EMBO J. 23, 1709–1719 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (grants to B.H. M.J.S. M.A.S. and J.L.M.), the Australian National Health and Medical Research Council (grants to J.L.M., M.J.S. and B.H., M.A.S. and a fellowship to J.L.M.) and the University of Queensland (postdoctoral fellowship to S.R.S.). We also acknowledge the support of the Australian Research Council Special Research Centre for Functional and Applied Genomics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Begoña Heras or Jennifer L. Martin.

Supplementary information

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus cereus

Bacillus subtilis

Bordetella pertussis

Deinococcus radiodurans

Escherichia coli K-12

Klebsiella oxytoca

Listeria innocua

Listeria monocytogenes

Mycobacterium tuberculosis

Neisseria meningitidis

Proteus mirabilis

Pseudomonas aeruginosa

Salmonella enterica subsp. enterica serovar Typhimurium

Shewanella oneidensis

Shigella flexneri

Staphylococcus aureus

Streptococcus pyogenes

Vibrio cholerae

Wolbachia pipientis

Yersinia pestis

FURTHER INFORMATION

Jennifer L. Martin's homepage

iTOL

J. Craig Venter Institute

Glossary

Disulphide bond

A covalent S–S bond formed between two thiols; in this Review, the term disulphide bond refers to the bond between two cysteine residues.

Cysteine

An amino acid with a thiol side chain.

Fimbriae

Thin, thread-like organelles that are composed of multiple protein subunits, extend from the surface of the bacterial cell and mediate adhesion.

DsbA

A highly oxidizing protein in bacteria that catalyses disulphide bond formation in substrate proteins.

DsbB

The partner protein of DsbA that keeps DsbA in the active oxidized form.

Thiol

A chemical group that comprises a sulphur molecule bonded to a hydrogen molecule.

DsbC

A disulphide isomerase that proofreads and shuffles incorrectly formed disulphides.

Disulphide isomerization

The shuffling of non-native protein disulphide bonds to form native disulphide bonds.

DsbG

A protein that is thought to be a disulphide isomerase, similarly to DsbC, but for which no in vivo substrates have yet been identified.

DsbD

The partner protein of DsbC that keeps DsbC in the active reduced form.

DsbL

A protein that has a similar function to DsbA, but has a narrower substrate specificity.

DsbI

A protein that has a similar function to DsbB and is the partner protein for DsbL.

Chaperone–usher pathway

Mechanism by which multi-subunit fimbriae are produced in many Gram-negative bacteria.

Oxidative protein folding

The catalysed process by which disulphide bonds are incorporated into secreted and membrane proteins during folding to impart stability and activity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heras, B., Shouldice, S., Totsika, M. et al. DSB proteins and bacterial pathogenicity. Nat Rev Microbiol 7, 215–225 (2009). https://doi.org/10.1038/nrmicro2087

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing