Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organophosphorus-degrading bacteria: ecology and industrial applications

Key Points

  • Organophosphorus (OP) compounds are widely used as pesticides, petroleum additives and plasticizers. A large amount of chemical warfare agents (CWAs) also belong to the OP group. As a result of extensive and excessive use, environmental contamination with OP pesticides has been reported in several parts of the world.

  • Owing to high mammalian toxicity, OP waste and residues are excellent candidates for bioremediation. An effective therapy for intentional and unintentional OP poisoning is also needed.

  • Several bacteria, a few fungi and cyanobacteria with the capability to degrade OP compounds, using OP as a source of energy or co-metabolically, have been isolated from different corners of the globe. Some have been successfully used for bioremediation.

  • Most of the enzymes isolated from various phylogenetically different bacteria fall in three main types: OPH (OP hydrolase), MPH (methyl parathion hydrolase) and OP acid anhydrolase). These enzymes belong to three separate superfamilies.

  • The origin and evolution of OP-degrading enzymes are still a matter of debate. Recent findings suggest that at least OPH may have originated from the promiscuous activity of lactonase (an enzyme that hydrolyses lactones).

  • OP-degrading bacteria and their enzymes could form the basis of multiple biotechnological applications across several disciplines (such as bioremediation, and medical and genetic marker industries). However, to convert this promise into practice, emerging technologies, such as metagenomics and nanotechnology, together with conventional biochemical and molecular approaches, need to be adopted.

Abstract

The first organophosphorus (OP) compound-degrading bacterial strain was isolated from a paddy field in the Philippines in 1973. Since then, several phylogenetically distinct bacteria that can degrade OP by co-metabolism, or use OPs as a source of carbon, phosphorus or nitrogen, have been isolated from different parts of the world. There is huge potential for industrial applications of OP-degrading bacteria. Important advances in our understanding of the microbiology, genomics and evolution of OP-degrading bacteria have been made over the past four decades, and are discussed in this Review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic tree constructed from organophosphorus-degrading gene sequences.
Figure 2: Genomic organizations of three known organophosphorus-degrading genes.

Similar content being viewed by others

References

  1. Dragun, J., Kuffner, A. C. & Schneiter, R. W. Groundwater contamination.1. Transport and transformations of organic chemicals. Chem. Engineer. 91, 65–70 (1984).

    CAS  Google Scholar 

  2. Organophosphate (Post note 12). Parliamentary Office of Science and Technology [online], (1998).

  3. Ballantyne, B. & Marrs, T. C. Clinical and Experimental Toxicology of Organophosphates and Carbamates (Butterworth Heinemann, Oxford, 1992).

    Google Scholar 

  4. EPA. Review of chlorpyrifos poisoning data. US EPA 1–46 (1995).

  5. Cisar, J. L. & Snyder, G. H. Fate and management of turfgrass chemicals. ACS Symp. Ser. 743, 106–126 (2000).

    Article  CAS  Google Scholar 

  6. Boucard, T. K., Parry, J., Jones, K. & Semple, K. T. Effects of organophosphates and synthetic pyrethroid sheep dip formulations on protozoan survival and bacterial survival and growth. FEMS Microbiol. Ecol. 47, 121–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Galloway, T. & Handy, R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12, 345–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Bird, S. et al. OpdA, a bacterial organophosphorus hydrolase, prevents lethality in rats after poisoning with highly toxic organophosphorus pesticides. Toxicology 247, 88–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Ragnarsdottir, K. V. Environmental fate and toxicology of organophosphate pesticides. J. Geol. Soc. London 157, 859–876 (2000).

    Article  CAS  Google Scholar 

  10. Eddleston, M. et al. Management of acute organophosphorus pesticide poisoning. Lancet 371, 597–607 (2008). This article highlights the difficulties in medical management and inadequacies of current therapies for OP poisoning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lotti, M. Promotion of organophosphate induced delayed polyneuropathy by certain esterase inhibitors. Toxicology 181, 245–248 (2002).

    Article  PubMed  Google Scholar 

  12. Singh, B. K. & Walker, A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev. 30, 428–471 (2006). This article describes known and possible mechanisms of OP degradation by microorganisms in the environment.

    Article  CAS  PubMed  Google Scholar 

  13. Singh, B. K., Walker, A., Morgan, J. A. W. & Wright, D. J. Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl. Environ. Microbiol. 69, 5198–5206 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh, B. K., Walker, A., Morgan, J. A. W. & Wright, D. J. Role of soil pH in the development of enhanced biodegradation of fenamiphos. Appl. Environ. Microbiol. 69, 7035–7043 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Price, O. R., Walker, A., Wood, M. & Oliver, M. A. in Proc. XII Symp. Pest. Chem. 73–82 (La Goliardica Pavese, Pavia, 2003).

  16. Singh, B. K., Walker, A. & Wright, D. J. Cross-enhancement of accelerated biodegradation of organophosphorus compounds in soils: dependence on structural similarity of compounds. Soil Biol. Biochem. 37, 1675–1682 (2005).

    Article  CAS  Google Scholar 

  17. Watanabe, K. & Hamamura, N. Molecular and physiological approaches to understanding the ecology of pollutant degradation. Curr. Opin. Biotechnol. 14, 289–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Sethunathan, N. & Yoshida, T. Flavobacterium sp. that degrades diazinon and parathion. Can. J. Microbiol. 19, 873–875 (1973). This is the first report of the isolation of OP-degrading bacteria from the environment. A number of other microorganisms with similar degrading capabilities have since been isolated.

    Article  CAS  PubMed  Google Scholar 

  19. Serdar, C. M., Gibson, D. T., Munnecke, D. M. & Lancaster, J. H. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl. Environ. Microbiol. 44, 246–249 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Siddavattam, D., Khajamohiddin, S., Manavathi, B., Pakala, S. B. & Merrick, M. Transposon-like organization of the plasmid-borne organophosphate degradation (opd) gene cluster found in Flavobacterium sp. Appl. Environ. Microbiol. 69, 2533–2539 (2003). This study describes the genetic structure of the opd operon in Flavobacterium sp. ATCC 27551, which was shown to contain a transposon gene.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Horne, I., Sutherland, T. D., Harcourt, R. L., Russell, R. J. & Oakeshott, J. G. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68, 3371–3376 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mulbry, W. W. & Karns, J. S. Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. J. Bacteriol. 171, 6740–6746 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raushel, F. M. Bacterial detoxification of organophosphate nerve agents. Curr. Opin. Microbiol. 5, 288–295 (2002). This review describes the origin and mode of action of OPH enzymes and highlights possible mechanisms to improve the efficacy of the enzymes against poor substrates.

    Article  CAS  PubMed  Google Scholar 

  24. Horne, I., Qiu, X. H., Russell, R. J. & Oakeshott, J. G. The phosphotriesterase gene opdA in Agrobacterium radiobacter p230 is transposable. FEMS Microbiol. Lett. 222, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, H. et al. Evolution of an organophosphate-degrading enzyme: a comparison of natural and directed evolution. Protein Eng. 16, 135–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Gressel, J. & Levy, A. A. Agriculture: the selector of improbable mutations. Proc. Natl Acad. Sci. USA 103, 12215–12216 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lynch, M. Simple evolutionary pathways to complex proteins. Protein Sci. 14, 2217–2225 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Afriat, L., Roodveldt, C., Manco, G. & Tawfik, D. S. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45, 13677–13686 (2006). This study postulates that phosphotriesterase evolved from lactonase and provides experimental evidence to support this hypothesis.

    Article  CAS  PubMed  Google Scholar 

  29. Elias, M. et al. Crystallization and preliminary X-ray diffraction analysis of the hyperthermophilic Sulfolobus solfataricus phosphotriesterase. Acta Crystallogr. 63, 553–555 (2007).

    Article  CAS  Google Scholar 

  30. Elias, M. et al. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J. Mol. Biol. 379, 1017–1028 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Aharoni, A. et al. The 'evolvability' of promiscuous protein functions. Nature Genet. 37, 73–76 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, L. M. et al. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187, 4992–4999 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Porzio, E., Merone, L., Mandrich, L., Rossi, M. & Manco, G. A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfataricus. Biochimie 89, 625–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Dong, Y. J. et al. Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J. Mol. Biol. 353, 655–663 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Cheng, T.-C., Harvey, S. P. & Stroup, A. N. Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl. Environ. Microbiol. 59, 3138–3140 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng, T.-C., DeFrank, J. J. & Rastogi, V. K. Alteromonas prolidase for organophosphorus G-agent decontamination. Chem. Biol. Interact. 120, 455–462 (1999).

    Article  Google Scholar 

  37. Mulbry, W. W., Kearney, P. C., Nelson, J. O. & Karns, J. S. Physical comparison of parathion hydrolase plasmids from Pseudomonas diminuta and Flavobacterium sp. Plasmid 18, 173–177 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, R. F. et al. Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17, 465–472 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Liebert, C. A., Hall, R. M. & Summers, A. O. Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63, 507–522 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nature Rev. Microbiol. 3, 722–732 (2005).

    Article  CAS  Google Scholar 

  41. Mulbry, W., Ahrens, E. & Karns, J. Use of a field-scale biofilter for the degradation of the organophosphate insecticide coumaphos in cattle dip wastes. Pestic. Sci. 52, 268–274 (1998). This is the first report of the successful use of bioremediation for the removal of OP waste on a large scale.

    Article  CAS  Google Scholar 

  42. Karns, J. S., Hapeman, C. J., Mulbry, W. W., Ahrens, E. H. & Shelton, D. R. Biotechnology for the elimination of agrochemical wastes. HortScience 33, 626–631 (1998).

    CAS  Google Scholar 

  43. Walker, A. W. & Keasling, J. D. Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnol. Bioeng. 78, 715–721 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, Y. Z., Lan, W. S., Qiao, C. L., Mulchandani, A. & Chen, W. Decontamination of vegetables sprayed with organophosphate pesticides by organophosphorus hydrolase and carboxylesterase (B1). Appl. Biochem. Biotechnol. 136, 233–241 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, X. X. et al. Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase. Biochem. Biophys. Res. Commun. 365, 453–458 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, J. H. et al. Stable and continuous long-term enzymatic reaction using an enzyme–nanofiber composite. Appl. Microbiol. Biotechnol. 75, 1301–1307 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Kim, J. & Grate, J. W. Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 3, 1219–1222 (2003).

    Article  CAS  Google Scholar 

  48. Jia, H. F., Zhu, G. Y. & Wang, P. Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol. Bioeng. 84, 406–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Mulchandani, A., Mulchandani, P., Kanifar, H. & Chen, W. Direct monitoring of organophosphorus nerve agents by amperometric enzyme biosensor. Abstr. Amer. Chem. Soc. 217, U789–U790 (1999).

    Google Scholar 

  50. Wang, J., Chen, L., Mulchandani, A., Mulchandani, P. & Chen, W. Remote biosensor for in-situ monitoring of organophosphate nerve agents. Electroanalysis 11, 866–869 (1999).

    Article  CAS  Google Scholar 

  51. Wang, J. et al. Dual amperometric–potentiometric biosensor detection system for monitoring organophosphorus neurotoxins. Anal. Chim. Acta 469, 197–203 (2002).

    Article  CAS  Google Scholar 

  52. Liu, N. Y. et al. Single-walled carbon nanotube based real-time organophosphate detector. Electroanalysis 19, 616–619 (2007).

    Article  CAS  Google Scholar 

  53. Yang, W. et al. Application of methyl parathion hydrolase (MPH) as a labeling enzyme. Anal. Bioanal. Chem. 390, 2133–2140 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Pinkerton, T. S., Howard, J. A. & Wild, J. R. Genetically engineered resistance to organophosphate herbicides provides a new scoreable and selectable marker system for transgenic plants. Mol. Breed. 21, 27–36 (2008).

    Article  CAS  Google Scholar 

  55. Sogorb, M. A., Vilanova, E. & Carrera, V. Future applications of phosphotriesterases in the prophylaxis and treatment of organophosporus insecticide and nerve agent poisonings. Toxicol. Lett. 151, 219–233 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Sogorb, M. A. & Vilanova, E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. Lett. 128, 215–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Eyer, P. The role of oximes in management of organophosphorus pesticide poisoning. Toxicol. Rev. 22, 165–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Petrikovics, I. et al. Antagonism of paraoxon intoxication by recombinant phosphotriesterase encapsulated within sterically stabilized liposomes. Toxicol. Appl. Pharmacol. 156, 56–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Mann, J. F. S. et al. Optimisation of a lipid based oral delivery system containing A/Panama influenza haemagglutinin. Vaccine 22, 2425–2429 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl Acad. Sci. USA 100, 13549–13554 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schloss, P. D. & Handelsman, J. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14, 303–310 (2003). This article provides a good overview of the capability of metagenomics to isolate industrial enzymes from unculturable bacteria.

    Article  CAS  PubMed  Google Scholar 

  62. Singh, B. K., Millard, P., Whiteley, A. S. & Murrell, J. C. Unravelling rhizosphere–microbial interactions: opportunities and limitations. Trends Microbiol. 12, 386–393 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Lee, N. et al. Combination of fluorescent in situ hybridization and microautoradiography — a new tool for structure–function analyses in microbial ecology. Appl. Environ. Microbiol. 65, 1289–1297 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Gray, N. D. & Head, I. M. Linking genetic identity and function in communities of uncultured bacteria. Environ. Microbiol. 3, 481–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Radajewski, S., Ineson, P., Parekh, N. R. & Murrell, J. C. Stable-isotope probing as a tool in microbial ecology. Nature 403, 646–649 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Neufeld, J. D., Wagner, M. & Murrell, J. C. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 1, 103–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Manefield, M. & Whiteley, A. S. Acylated homoserine lactones in the environment: chameleons of bioactivity. Philos. Trans. R. Soc. Lond. B 362, 1235–1240 (2007).

    Article  CAS  Google Scholar 

  68. Roche, D. et al. Communications blackout? Do N-acylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 150, 2023–2028 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank A. Taylor (Macaulay Institute), G. Elliott (Macaulay Institute), I. Anderson (University of Western Sydney) and G. Bending (Warwick HRI) for their comments on the manuscript, and P. Millard (Macaulay Institute) and C. Macdonald (Rothamsted Research) for detailed discussions. Work in my laboratory is funded by the Scottish Government.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Agrobacterium radiobacter

Bacillus thuringiensis

Chromobacterium violaceum

Deinococcus radiodurans

Desulfatibacillum alkenivorans

Escherichia coli

Leptothrix cholodnii

Methylibium petroleiphilum

Mycobacterium bovis

Mycobacterium tuberculosis

Alteromonas haloplanktis

Sinorhizobium meliloti 1021

Sulfolobus acidocaldarius

FURTHER INFORMATION

Brajesh K. Singh's homepage

Landguard

Glossary

Bioremediation

A biological process that uses living organisms or their products (enzymes) to convert a harmful substance to a non-toxic substance or to return the contaminated environment to its original condition.

Biosensor

A detector device made from a biological component combined with a physico–chemical detector that is used for detection of a substance or chemical.

Biodegradation

A process by which an indigenous bacterial population acquires genes that encode enzymes to allow the use of xenobiotics as an energy source.

Xenobiotic

A chemical that is usually man-made and is not found naturally in the environment.

Bioreactor

A device or system that supports a biologically active environment.

Nanoparticle

A small particle (one or more dimensions of 100 nM or less) that behaves as a whole unit; for example, in terms of transportation.

Quantum dot

A type of nanoparticle that can be used for optical, electrical, biological and medical purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B. Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7, 156–164 (2009). https://doi.org/10.1038/nrmicro2050

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing