Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs

Key Points

  • Latent HIV-1 reservoirs are established early during primary infection in CD4+ T cells and constitute a major barrier to HIV-1 eradication, even in the presence of highly active antiretroviral therapy.

  • Resting CD4+ T cells represent an extremely restrictive environment for HIV-1 replication. By contrast, immune activation in CD4+ T cells provides an optimal environment for robust HIV-1 replication.

  • Most factors involved in the maintenance of HIV-1 latency operate at the transcriptional level; examples include the chromosome environment at the site of integration and the availability of viral and host transcription factors.

  • HIV-1 integration and expression can be restrained or enhanced by different host cell factors, such as inhibitor of nuclear factor-κB α-subunit (IκBα), COMMD1 (copper metabolism (Murr1) domain-containing protein 1), APOBEC3G (apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G), lens epithelium-derived growth factor (LEDGF) and emerin.

  • Both cellular and viral microRNAs could be involved in maintaining HIV-1 latency or in controlling low ongoing viral replication. HIV-1 modifies the miRNA expression profile of the host cell and, in addition, has developed strategies to overcome the cellular miRNA restriction machinery.

  • The existence of cellular elements that restrict retroviral replication and actively inhibit the viral transcriptional machinery provides a new paradigm for HIV-1 latency. As a result, latency should not be considered a merely passive process but rather an active process that is tightly regulated by cellular and viral factors.

  • New insights into the molecular mechanisms of HIV-1 latency have led to the characterization of targets that are useful for designing new drugs. In particular, attractive possibilities for specific drug development include the modification of chromatin conformation through histone deacetylase inhibitors and the activation of kinase pathways that lead to the activation of transcription factors.

Abstract

HIV-1 can infect both activated and resting, non-dividing cells, following which the viral genome can be permanently integrated into a host cell chromosome. Latent HIV-1 reservoirs are established early during primary infection and constitute a major barrier to eradication, even in the presence of highly active antiretroviral therapy. This Review analyses the molecular mechanisms that are necessary for the establishment of HIV-1 latency and their relationships with different cellular and anatomical reservoirs, and discusses the current treatment strategies for targeting viral persistence in reservoirs, their main limitations and future perspectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV-1 life cycle and viral latency.
Figure 2: HIV-1 replication in different cellular environments.
Figure 3: Influence of provirus integration site and orientation into the host cell genome on HIV-1 replication efficiency.
Figure 4: Epigenetic modifications that regulate chromatin accessibility and influence HIV-1 latency.
Figure 5: The microRNA pathway can modulate both cellular and viral gene expression.
Figure 6: Sources of viral replication in patients infected with HIV-1 and strategies to control residual viraemia.

Similar content being viewed by others

References

  1. Barré-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868–871 (1983).

    Article  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention. Pneumocystis pneumonia — Los Angeles. MMWR Morb. Mortal Wkly Rep. 30, 250–252 (1981).

  3. Pomerantz, R. J. & Horn, D. L. Twenty years of therapy for HIV-1 infection. Nature Med. 9, 867–874 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Pomerantz, R. J. Reservoirs of human immunodeficiency virus type 1: the main obstacles to viral eradication. Clin. Inf. Dis. 34, 91–97 (2002).

    Article  CAS  Google Scholar 

  5. Shen, L. & Siliciano, R. F. Viral reservoirs, residual viremia, and the potential of highly active antiretroviral therapy to eradicate HIV infection. J. Allergy Clin. Immunol. 122, 22–28 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goff, S. P. in Fields' Virology (eds Knipe D. M. & Howley P. M.) 1871–1939 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  7. Loetscher, P., Moser, B. & Baggiolini, M. Chemokines and their receptors in lymphocyte traffic and HIV infection. Adv. Immunol. 74, 127–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Stevenson, M. HIV-1 pathogenesis. Nature Med. 9, 853–860 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Huthoff, H. & Towers, G. J. Restriction of retroviral replication by APOBEC3G/F and TRIM5α. Trends Microbiol. 16, 612–619 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, G., Ylisastigui, L. & Margolis, D. M. The regulation of HIV-1 gene expression: the emerging role of chromatin. DNA Cell Biol. 21, 697–705 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Du, T. & Zamore, P. D. Beginning to understand microRNA function. Cell Res. 17, 661–663 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Han, Y., Wind-Rotolo, M., Yang, H. C., Siliciano, J. D. & Siliciano, R. F. Experimental approaches to the study of HIV-1 latency. Nature Rev. Microbiol. 5, 95–106 (2007).

    Article  CAS  Google Scholar 

  13. Lassen, K., Han, Y., Zhou, Y., Siliciano, J. & Siliciano, R. F. The multifactorial nature of HIV-1 latency. Trends Mol. Med. 10, 525–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Bukrinsky, M. I., Stanwick, T. L., Dempsey, M. P. & Stevenson, M. Quiescent T lymphocytes as an inducible virus reservoir in HIV-1 infection. Science 254, 423–427 (1991). The identification of quiescent T cells as a source of extrachromosomal HIV-1 DNA that retains the ability to integrate on T cell activation in vitro.

    Article  CAS  PubMed  Google Scholar 

  15. Piller, S. C., Caly, L. & Jans, D. A. Nuclear import of the pre-integration complex (PIC): the Achilles heel of HIV? Curr. Drug Targets 4, 409–429 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Arhel, N. J. et al. HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J. 26, 3025–3037 (2007). The first observation, by scanning electron microscopy, that the uncoating of HIV-1 is not an immediate post-fusion event but, instead, intact intracellular capsids can reach the nuclear pore.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Farnet, C. & Bushman, F. D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88, 1–20 (1997).

    Article  Google Scholar 

  18. Shun, M. C. et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21, 1767–1778 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Llano, M. An essential role for LEDGF/p75 in HIV integration. Science 314, 461–464 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Jacque, J. M. & Stevenson, M. The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity. Nature 441, 641–645 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Shun, M. C., Daigle, J. E., Vandegraaff, N. & Engelman, A. Wild-type levels of human immunodeficiency virus type 1 infectivity in the absence of cellular emerin protein. J. Virol. 81, 166–172 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Guntaka, R. V. Transcription termination and polyadenylation in retroviruses. Microbiol. Rev. 57, 511–521 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nabel, G. & Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326, 711–713 (1987). The first description of the binding consensus sites for NF-κB in the HIV-1 LTR promoter and of the synergic interaction of this factor with the viral protein Tat to enhance HIV-1 transcription in T cells.

    Article  CAS  PubMed  Google Scholar 

  25. Corthésy, B. & Kao, P. N. Purification by DNA affinity chromatography of two polypeptides that contact the NF-AT DNA binding site in the interleukin 2 promoter. J. Biol. Chem. 269, 20682–20690 (1994).

    PubMed  Google Scholar 

  26. Jones, K. A., Kadonaga, J. T., Luciw, P. A. & Tjian, R. Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 232, 755–759 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Dingwall, C. et al. HIV-1 Tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO J. 9, 4145–4153 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garber, M. E., Wei, P. & Jones, K. A. HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harb. Symp. Quant. Biol. 63, 371–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Zhou, M. et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 20, 5077–5086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pollard, V. W. & Malim, M. H. The HIV-1 Rev protein. Annu. Rev. Microbiol. 52, 491–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Ganser-Pornillos, B. K., Yeager. M. & Sundquist, W. I. The structural biology of HIV assembly. Curr. Opin. Struct. Biol. 18, 203–217 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bleul, C. C., Wu, L., Hoxie, J. A. & Springer, T. A., Mackay, C. R. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl Acad. Sci. USA 94, 1925–1930 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zack, J. A. et al. HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61, 213–222 (1990). The first description of pre-integration latency by an incomplete retrotranscription of the HIV-1 genome in infected quiescent T cells that, despite its frailty, persists as a latent form.

    Article  CAS  PubMed  Google Scholar 

  34. Meyerhans, A. et al. Restriction and enhancement of human immunodeficiency virus type 1 replication by modulation of intracellular deoxynucleoside triphosphate pools. J. Virol. 68, 535–540 (1994). This work shows that resting blood CD4+ T cells are highly resistant to infection with HIV-1 and that viral retrotranscrition results in incomplete, labile transcripts, thereby proving that successful HIV-1 infection requires T cell activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bukrinsky, M. I. et al. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. Natl Acad. Sci. USA 89, 6580–6584 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chiu, Y. L. et al. Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435, 108–114 (2005). This study finds that low-molecular-mass APOBEC3G functions as a potent post-entry restriction factor for HIV-1 in resting CD4+ T cells, whereas high-molecular-mass APOBEC3G is permissive for HIV-1 infection in activated CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  37. Pierson, T. C. et al. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J. Virol. 76, 8518–8531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, Y. et al. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J. Virol. 79, 2199–2210 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakai, H. et al. Integration is essential for efficient gene expression of human immunodeficiency virus type 1. J. Virol. 67, 1169–11174 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu, Y. & Marsh, J. W. Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 293, 1503–1506 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Kelly, J. et al. Human macrophages support persistent transcription from unintegrated HIV-1 DNA. Virology 3672, 300–312 (2008).

    Article  CAS  Google Scholar 

  42. Swingler, S. et al. HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 424, 213–219 (2003).

    CAS  PubMed  Google Scholar 

  43. Chun, T. W. et al. In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nature Med. 1, 1284–1290 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295–1300 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Persaud, D. et al. A stable latent reservoir for HIV-1 in resting CD4+ T lymphocytes in infected children. J. Clin. Invest. 105, 995–1003 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blankson, J. N. et al. Isolation and characterization of replication-competent human immunodeficiency virus type 1 from a subset of elite suppressors. J. Virol. 81, 2508–2518 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Chun, T. W. et al. Early establishment of a pool of latently infected resting CD4+ T cells during primary HIV-1 infection. Proc. Natl Acad. Sci. USA 95, 8869–8873 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chun, T. W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–188 (1997). In this investigation, the whole pool of latently infected resting CD4+ T cells containing a replication-competent integrated provirus was quantified as 107 cells.

    Article  CAS  PubMed  Google Scholar 

  49. Jung, A. et al. Multiply infected spleen cells in HIV patients. Nature 418, 144 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Lassen, K. G., Bailey, J. R. & Siliciano, R. F. Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J. Virol. 78, 9105–9114 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Finzi, D. et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Med. 5, 512–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Siliciano, J. D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nature Med. 9, 727–728 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Haase, A. T. Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu. Rev. Immunol. 17, 625–656 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Spina, C. A., Prince, H, E. & Richman, D. D. Preferential replication of HIV-1 in the CD45RO memory cell subset of primary CD4 lymphocytes in vitro. J. Clin. Invest. 99, 1774–1785 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blaak, H. et al. In vivo HIV-1 infection of CD45RA+CD4+ T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4+ T cell decline. Proc. Natl Acad. Sci. USA 97, 1269–1274 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chomont, N. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nature Med. 15, 893–900 (2009).

  57. Ostrowski, M. A. et al. Both memory and CD45RA+/CD62L+ naive CD4+ T cells are infected in human immunodeficiency virus type 1-infected individuals. J. Virol. 73, 6430–6435 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Brooks, D. G., Kitchen, S. G. & Kitchen, C. M. Scripture-Adams, D. D., Zack, J. A. Generation of HIV latency during thymopoiesis. Nature Med. 7, 459–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Williams, S. A. & Greene, W. C. Regulation of HIV-1 latency by T-cell activation. Cytokine 39, 63–74 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Med. 2, 1365–1371 (2006).

    Article  CAS  Google Scholar 

  61. Douek, D. C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Guadalupe, M. et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 77, 11708–11717 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mehandru, S. et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 200, 761–770 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Brenchley, J. M., Price, D. A. & Douek, D. C. HIV disease: fallout from a mucosal catastrophe?. Nature Immunol. 7, 235–239 (2006).

    Article  CAS  Google Scholar 

  65. Mattapallil, J. J. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, Z. et al. Sexual transmission and propagation of SIV and HIV in resting and activated CD4+ T cells. Science 286, 1353–1357 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Eckstein, D. A. et al. HIV-1 actively replicates in naive CD4+ T cells residing within human lymphoid tissues. Immunity 15, 671–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Chou, C. S., Ramilo, O. & Vitetta, E. S. Highly purified CD25 resting T cells cannot be infected de novo with HIV-1. Proc. Natl Acad. Sci. USA 94, 1361–1365 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Unutmaz, D., KewalRamani, V. N., Marmon, S. & Littman, D. R. Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J. Exp. Med. 189, 1735–1746 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chun, T. W., Engel, D., Mizell, S. B., Ehler, L. A. & Fauci, A. S. Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J. Exp. Med. 188, 83–91 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang, F. X. et al. IL-7 is a potent and proviral strain-specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART. J. Clin. Invest. 115, 128–137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kreisberg, J. F., Yonemoto, W. & Greene, W. C. Endogenous factors enhance HIV-1 infection of tissue naive CD4 T cells by stimulating high molecular mass APOBEC3G complex formation. J. Exp. Med. 203, 865–870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koenig, S. et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233, 1089–1093 (1986).

    Article  CAS  PubMed  Google Scholar 

  74. Sharkey, M. E. et al. Persistence of episomal HIV-1 infection intermediates in patients on highly active antiretroviral therapy. Nature Med. 6, 76–81 (2006).

    Article  CAS  Google Scholar 

  75. Swingler, S. et al. HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nature Med. 5, 997–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Sharova, N., Swingler, C., Sharkey, M. & Stevenson, M. Macrophages archive HIV-1 virions for dissemination in trans. EMBO J. 24, 2481–2489 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Deneka, M., Pelchen-Matthews, A., Byland, R., Ruiz-Mateos, E. & Marsh, M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J. Cell Biol. 177, 329–341 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Welsch, S. et al. HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 3, e36 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Joshi, A., Ablan, S. D., Soheilian, F., Nagashima, K. & Freed, E. O. Evidence that productive human immunodeficiency virus type 1 assembly can occur in an intracellular compartment. J. Virol. 83, 5375–5387 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, L. & KewalRamani, V. N. Dendritic-cell interactions with HIV: infection and viral dissemination. Nature Rev. Immunol. 6, 859–868 (2006).

    Article  CAS  Google Scholar 

  81. Smith-Franklin, B. A. et al. Follicular dendritic cells and the persistence of HIV infectivity: the role of antibodies and Fcγ receptors. J. Immunol. 166, 690–696 (2002).

    Article  Google Scholar 

  82. Keele, B. F. et al. Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1. J. Virol. 82, 5548–5561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mitchell, R. S. et al. Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol. 2, E234 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Schröder, A. R. et al. HIV-1 integration in the human genome favours active genes and local hotspots. Cell 110, 521–529 (2002). This work shows that HIV-1 provirus integration is strongly favoured in active genes and preferentially those that are activated after viral infection.

    Article  PubMed  Google Scholar 

  85. Wang, G. P., Ciuffi, A., Leipzig, J., Berry, C. C., Bushman, F. D. HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res. 17, 1186–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Han, Y. et al. Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J. Virol. 78, 6122–6133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lewinski, M. K. et al. Genome wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J. Virol. 79, 6610–6619 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han, Y. et al. Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 4, 134–146 (2008). This study describes how read-through transcription of actively transcribed host genes may interfere with the gene expression of a nearby integrated HIV-1 provirus, inducing viral latency depending on the site and orientation of the provirus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Callen, B. P., Shearwin, K. E. & Egan J. B. Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol. Cell. 14, 647–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Crampton, N., Bonass, W. A., Kirkham, J., Rivetti, C. & Thomson, N. H. Collision events between RNA polymerases in convergent transcription studied by atomic force microscopy. Nucleic Acids Res. 34, 5416–5425 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hu, W. Y., Bushman, F. D. & Siva, A. C. RNA interference against retroviruses. Virus Res. 102, 59–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Morris, K. V., Chan, S. W., Jacobsen, S. E. & Looney D. J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Scherer, L. J. & Rossi, J. J. Approaches for the sequence-specific knockdown of mRNA. Nature Biotech. 21, 1457–1465 (2003).

    Article  CAS  Google Scholar 

  94. Martens, J. A., Laprade, L. & Winston, F. Intergenic transcription is required to repress the Saccharomyes cerevisiae SER3 gene. Nature 429, 571–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Lenasi, T., Contreras, X. & Peterlin, B. M. Transcriptional interference antagonizes proviral gene expression to promote HIV-1 latency. Cell Host Microbe 4, 123–133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Perkins, K. J. & Proudfoot, N. J. An ungracious host for an unwelcome guest. Cell Host Microbe 4, 89–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Mazo, A., Hodgson, J. W., Petruk, S., Sedkov, Y. & Brock, H. W. Transcriptional interference: an unexpected layer of complexity in gene regulation. J. Cell Sci. 120, 2755–2761 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Carteau, S., Hoffmann, C. & Bushman, F. D. Chromosome structure and HIV-1 cDNA integration: centromeric alphoid repeats are a disfavored target. J. Virol. 72, 4005–4014 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Jordan, A., Bisgrove, D. & Verdin, E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J. 22, 1868–1877 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zamborlini, A. et al. Centrosomal pre-integration latency of HIV-1 in quiescent cells. Retrovirology 4, 63 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. He, G. & Margolis, D. M. Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol. Cell Biol. 22, 2965–2273 (2002). This paper shows that recruitment of HDAC1 at nucleosome 1 of an integrated HIV-1 LTR counteracts Tat activation and represses viral gene expression, whereas decreased HDAC1 occupancy by HDAC inhibitors results in LTR-dependent transcription activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gordon, S., Akopyan, G., Garban, H. & Bonavida, B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene 25, 1125–1142 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Ylisastigui, L. et al. Polyamides reveal a role for repression in latency within resting T cells of HIV-infected donors. J. Infect. Dis. 190, 1429–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Williams, S. A. et al. NF-κB p50 promotes HIV-1 latency through HDAC recruitment and repression of transcriptional initiation. EMBO J. 25, 139–149 (2006). This study finds that NF-κB subunit p50 can form a complex (with HDAC1) that binds constitutively to the HIV-1 LTR and induces repressive changes in chromatin structure that impair transcription initiation.

    Article  CAS  PubMed  Google Scholar 

  106. Tyagi, M. & Karn, J. CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J. 26, 4985–4995 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. du Chene, I. et al. Suv39H1 and HP1γ are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J. 26, 424–435 (2007). This work shows that the SUV39H1-mediated trimethylation of histone H3 at lysine 9 — which is necessary to form heterochromatin, as it recruits HP1γ — leads to HIV-1 transcriptional silencing and post-integration latency that can be overcome by RNAi of HP1γ.

    Article  CAS  PubMed  Google Scholar 

  108. Lusic, M., Marcello, A., Cereseto, A. & Giacca, M. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J. 22, 6550–6561 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang, G., Espeseth, A., Hazuda, D. J. & Margolis, D. M. c-Myc and Sp1 contribute to proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus type 1 promoter. J. Virol. 81, 10914–10923 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen, L. F., Fischle, W., Verdin, E. & Greene, W. C. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 293, 1653–1657 (2001).

    Article  CAS  Google Scholar 

  111. Doetzlhofer, A. et al. Histone deacetylase 1 can repress transcription by binding to Sp1. Mol. Cell. Biol. 19, 5504–5511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ansari, K. I., Mishra, B. P. & Mandal, S. S. MLL histone methylases in gene expression, hormone signalling and cell cycle. Front. Biosci. 14, 3483–3495 (2009).

    Article  CAS  Google Scholar 

  113. Grewal, S. I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 301, 798–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Marban, C. et al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J. 26, 412–423 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Pearson, R. et al. Epigenetic silencing of HIV-1 transcription by formation of restrictive chromatin structures at the viral LTR drives the progressive entry of HIV-1 into latency. J. Virol. 82, 12291–12303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weil, R. & Israel, A. T-cell-receptor- and B-cell-receptor-mediated activation of NF-κB in lymphocytes. Curr. Opin. Immunol. 16, 374–381 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Bachelerie, F. et al. Nuclear export signal of IκBα interferes with the Rev-dependent posttranscriptional regulation of human immunodeficiency virus type I. J. Cell Sci. 110, 2883–2893 (1997).

    CAS  PubMed  Google Scholar 

  118. Coiras, M., López-Huertas, M. R., Rullas, J., Mittelbrunn, M. & Alcamí, J. Basal shuttle of NF-κB/IκBα in resting T lymphocytes regulates HIV-1 LTR dependent expression. Retrovirology 4, 56 (2007). This study shows that the low-level HIV-1 replication in resting CD25 CD4+ T cells is due to the basal NF-κB activity that is necessary for cell survival.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Amini, S., Saunders, M., Kelley, K., Khalili, K. & Sawaya, B. E. Interplay between HIV-1 Vpr and Sp1 modulates p21WAF1 gene expression in human astrocytes. J. Biol. Chem. 279, 46046–46056 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, J., Scadden, D. T. & Crumpacker, C. S. Primitive hematopoietic cells resist HIV-1 infection via p21. J. Clin. Invest. 117, 473–481 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dorr, A. et al. Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. EMBO J. 21, 2715–2723 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Col, E. et al. The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J. Biol. Chem. 276, 28179–28184 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Ott, M. et al. Tat acetylation: a regulatory switch between early and late phases in HIV transcription elongation. Novartis Found. Symp. 259, 182–196 (2004).

    CAS  PubMed  Google Scholar 

  124. Amini, S. et al. p73 interacts with human immunodeficiency virus type 1 Tat in astrocytic cells and prevents its acetylation on lysine 28. Mol. Cell. Biol. 25, 8126–8138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pagans, S. et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 3, e41 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Sabò, A., Lusic, M., Cereseto, A. & Giacca, M. Acetylation of conserved lysines in the catalytic core of cyclin-dependent kinase 9 inhibits kinase activity and regulates transcription. Mol. Cell Biol. 28, 2201–2212 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Boulanger, M. C. et al. Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J. Virol. 79, 124–131 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xie, B., Invernizzi, C. F., Richard, S. & Wainberg, M. A. Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat interactions with both cyclin T1 and the Tat transactivation region. J. Virol. 81, 4226–4234 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ganesh, L. et al. The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426, 853–857 (2003). This is the first demonstration that COMMD1 (formerly known as Murr1)inhibits HIV-1 replication in resting CD4+ T cells by blocking NF-κB activity, thereby contributing to viral latency.

    Article  CAS  PubMed  Google Scholar 

  130. Burstein, E. et al. COMMD proteins: a novel family of structural and functional homologs of MURR1. J. Biol. Chem. 280, 22222–22232 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Maine, G. N., Mao, X., Komarck, C. M. & Burstein, E. COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase. EMBO J. 26, 436–447 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2004).

    Article  CAS  Google Scholar 

  133. Shirakawa, K. et al. Phosphorylation of APOBEC3G by protein kinase A regulates its interaction with HIV-1 Vif. Nature Struct. Mol. Biol. 15, 1184–1191 (2008).

    Article  CAS  Google Scholar 

  134. Xu, H. et al. Stoichiometry of the antiviral protein APOBEC3G in HIV-1 virions. Virology 360, 247–256 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Corbeau, P. Interfering RNA and HIV: reciprocal interferences. PLoS Pathog. 4, e1000162 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Kim, D. H. & Rossi, J. J. Strategies for silencing human disease using RNA interference. Nature Rev. Genet. 8, 173–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Huang, J. et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nature Med. 13, 1241–1247 (2007). This paper shows that cellular miRNAs miR-28, miR-125b, miR-150, miR-223 and miR-382 potently inhibit HIV-1 production in resting primary CD4+ T cells and are essential for the establishment and maintenance of viral latency.

    Article  CAS  PubMed  Google Scholar 

  138. Han, Y. & Siliciano, R. F. Keeping quiet: microRNAs in HIV-1 latency. Nature Med. 13, 1138–1140 (2007).

    Article  CAS  PubMed  Google Scholar 

  139. Omoto, S. et al. HIV-1 nef suppression by virally encoded microRNA. Retrovirology 1, 44 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Omoto, S. & Fujii, Y. R. Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J. Gen. Virol. 86, 751–755 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Bennasser, Y., Le, S. Y., Yeung, M. L. & Jeang, K. T. MicroRNAs in human immunodeficiency virus-1 infection. Methods Mol. Biol. 342, 241–225 (2006).

    CAS  PubMed  Google Scholar 

  142. Bennasser, Y., Le, S. Y., Yeung, M. L. & Jeang, K. T. HIV-1 encoded candidate micro-RNAs and their cellular targets. Retrovirology 1, 43 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Couturier, J. P. & Root-Bernstein, R. S. HIV may produce inhibitory microRNAs (miRNAs) that block production of CD28, CD4 and some interleukins. J. Theor. Biol. 235, 169–184 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Cook, J. A., Albacker, L., August, A. & Henderson, A. J. CD28-dependent HIV-1 transcription is associated with Vav, Rac, and NF-κB activation. J. Biol. Chem. 278, 35812–35818 (2003).

    Article  CAS  PubMed  Google Scholar 

  145. Asjö, B., Cefai, D., Debré, P., Dudoit, Y. & Autran, B. A novel mode of human immunodeficiency virus type 1 (HIV-1) activation: ligation of CD28 alone induces HIV-1 replication in naturally infected lymphocytes. J. Virol. 67, 4395–4398 (1993).

    PubMed  PubMed Central  Google Scholar 

  146. Lin, J. & Cullen, B. R. Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J. Virol. 81, 12218–12226 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bennasser, Y., Le, S. Y., Benkirane, M. & Jeang, K. T. Evidence that HIV-1 encodes an siRNA and a Suppressor of RNA Silencing. Immunity 22, 607–619 (2005). This is the first evidence that HIV-1 encodes siRNA precursors in its genome and that Tat hijacks Dicer to avoid the processing of pre-miRNAs.

    Article  CAS  PubMed  Google Scholar 

  148. Bennasser, Y. & Jeang, K. T. HIV-1 Tat interaction with Dicer: requirement for RNA. Retrovirology 3, 95 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Gatignol, A., Lainé, S. & Clerzius, G. Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity? Retrovirology 2, 65 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Christensen, H. S. et al. Small interfering RNA against the TAR RNA binding protein TRBP, a Dicer cofactor, inhibit human immunodeficiency virus type 1 long terminal repeat expression and viral production. J. Virol. 81, 5121–5131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Triboulet, R. et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315, 1579–1582 (2007). This article shows that the cellular endonucleases Dicer and Drosha inhibit HIV-1 replication in latently infected cells, whereas HIV-1 suppresses the expression of miRNAs. This suppression is necessary for the efficient viral replication that is mediated by the interaction between Tat and PCAF.

    Article  CAS  PubMed  Google Scholar 

  152. Yeung, M. L. et al. Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology 2, 81 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Ouellet, D. L. et al. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucleic Acids Res. 36, 2353–2365 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kumar, A. & Jeang, K. T. Insights into cellular microRNAs and human immunodeficiency virus type 1 (HIV-1). J. Cell Physiol. 216, 327–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Perelson, A. S., Neumann, A. U., Markowitz. M., Leonard, J. M. & Ho, D. D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation. Science 271, 1582–1586 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Strain, M. C. et al. Heterogeneous clearance rates of long lived lymphocytes infected with HIV-1: intrinsic stability predicts lifelong persistence. Proc. Natl Acad. Sci. USA 100, 4819–4824 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Palmer, S. et al. Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc. Natl Acad. Sci. USA 105, 3879–3884 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Chun, T. W. et al. HIV-infected individuals receiving effective antiviral therapy for extended periods of time continually replenish their viral reservoir. J. Clin. Invest. 11, 3250–3255 (2005).

    Article  CAS  Google Scholar 

  159. Lambotte, O. et al. The lymphocyte HIV reservoir in patients on long-term HAART is a memory of virus evolution. AIDS 18, 1147–1158 (2004).

    Article  CAS  PubMed  Google Scholar 

  160. Bailey, J. R. et al. Residual human immunodeficiency virus type 1 viremia in some patients on antiretroviral therapy is dominated by a small number of invariant clones rarely found in circulating CD4+ T cells. J. Virol. 80, 6441–6457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tobin, N. H. et al. Evidence that low-level viremias during effective highly active antiretroviral therapy result from two processes: expression of archival virus and replication of virus. J. Virol. 79, 9625–9634 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Havlir, D. V. et al. Productive infection maintains a dynamic steady state of residual viremia in human immunodeficiency virus type 1-infected persons treated with suppressive antiretroviral therapy for five years. J. Virol. 77, 11212–11219 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Frenkel, L. M. et al. Multiple viral genetic analyses detect low-level human immunodeficiency virus type 1 replication during effective highly active antiretroviral therapy. J. Virol. 77, 5721–5730 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dinoso, J. B. et al. Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 106, 9403–9408 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shen, L. et al. Dose-response curve slope sets class-specific limits on inhibitory potencial of anti-HIV drugs. Nature Med. 14, 762–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  166. Ruiz, L. et al. Protease inhibitor-containing regimens compared with nucleoside analogues alone in the suppression of persistent HIV-1 replication in lymphoid tissue. AIDS 13, F1–F8 (1999).

    Article  CAS  PubMed  Google Scholar 

  167. Guadalupe, M. et al. Viral suppression and immune restoration in the gastrointestinal mucosa of human immunodeficiency virus type 1-infected patients initiating therapy during primary or chronic infection. J. Virol. 80, 8236–8247 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chun, T. W. et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J. Infect. Dis. 197, 714–720 (2008).

    Article  CAS  PubMed  Google Scholar 

  169. Poles, M. A. et al. Lack of decay of HIV-1 in gut-associated lymphoid tissue reservoirs in maximally suppressed individuals. J. Acquir. Immune. Defic. Syndr. 43, 65–68 (2006).

    Article  PubMed  Google Scholar 

  170. Koelsch, K. K. et al. Dynamics of total, linear nonintegrated, and integrated HIV-1 DNA in vivo and in vitro. J. Infect. Dis. 197, 411–419 (2008).

    Article  PubMed  Google Scholar 

  171. Yerly, S., Perneger, T. V., Vora, S., Hirschel, B. & Perrin, L. Decay of cell-associated HIV-1 DNA correlates with residual replication in patients treated during acute HIV-1 infection. AIDS 14, 2805–2812 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Ramratnam, B. et al. The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nature Med. 6, 82–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Chun, T. W. et al. Decay of the HIV reservoir in patients receiving antiretroviral therapy for extended periods: implications for eradication of virus. J. Infect. Dis. 195, 1762–1764 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Brennan, T. P. et al. Analysis of human immunodeficiency virus type-1 viremia and provirus in resting CD4+ T cells reveals a novel source of residual viremia in patients on antiretroviral therapy. J. Virol. 83, 8470-8481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gulick, R. M. et al. Maraviroc for previously treated patients with R5 HIV-1 infection. N. Engl. J. Med. 359, 429–441 (2008).

    Article  Google Scholar 

  176. Steigbigel, R. T. et al. Raltegravir with optimized background therapy for resistant HIV-1 infection. N. Engl. J. Med. 359, 339–354 (2008).

    Article  PubMed  Google Scholar 

  177. Abrams, D. I. et al. Dehydroepiandrosterone (DHEA) effects on HIV replication and host immunity: a randomized placebo-controlled study. AIDS Res. Hum. Retroviruses 23, 77–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Chapuis, A. G. et al. Effects of mycophenolic acid on human immunodeficiency virus infection in vitro and in vivo. Nature Med. 6, 762–768 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. García, F. et al. Effect of mycophenolate mofetil on immune response and plasma and lymphatic tissue viral load during and after interruption of highly active antiretroviral therapy for patients with chronic HIV infection: a randomized pilot study. J. Acquir. Immune Defic. Syndr. 36, 823–830 (2004).

    Article  PubMed  Google Scholar 

  180. Rizzardi, G. P. et al. Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy. J. Clin. Invest. 109, 681–688 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. García, F. et al. A cytostatic drug improves control of HIV-1 replication during structured treatment interruptions: a randomized study. AIDS 17, 43–51 (2003).

    Article  PubMed  Google Scholar 

  182. Barreiro, P. et al. Hydroxyurea plus didanosine as maintenance therapy for HIV-infected patients on long-term successful highly active antiretroviral therapy. HIV Clin. Trials 4, 361–371 (2003).

    Article  PubMed  Google Scholar 

  183. Makonkawkeyoon, S., Limson-Pobre, R. N., Moreira, A. L., Schauf, V. & Kaplan, G. Thalidomide inhibits the replication of human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA 90, 5974–5978 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Chun, T. W. et al. Effect of interleukin-2 on the pool of latently infected, resting CD4+ T cells in HIV-1-infected patients receiving highly active anti-retroviral therapy. Nature Med. 5, 651–655 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. Stellbrink, H. J. et al. Effects of interleukin-2 plus highly active antiretroviral therapy on HIV-1 replication and proviral DNA (COSMIC trial). AIDS 16, 1479–1487 (2002).

    Article  CAS  PubMed  Google Scholar 

  186. Van Praag, R. M. et al. OKT3 and IL-2 treatment for purging of the latent HIV-1 reservoir in vivo results in selective long-lasting CD4+ T cell depletion. J. Clin. Immunol. 21, 218–226 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Esportès, C. et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J. Exp. Med. 205, 1701–1714 (2008).

    Article  CAS  Google Scholar 

  188. Rullas, J. et al. Prostratin induces HIV activation and downregulates HIV receptors in peripheral blood lymphocytes. Antivir. Ther. 9, 545–554 (2004).

    CAS  PubMed  Google Scholar 

  189. Wender, P. A., Kee, J. M. & Warrington, J. M. Practical synthesis of prostratin, DPP, and their analogs, adjuvant leads against latent HIV-1. Science 320, 649–652 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Marquez, N. et al. Differential effects of phorbol-13-monoesters on human immunodeficiency virus reactivation. Biochem. Pharmacol. 75, 1370–1380 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Bedoya, L. M. et al. SJ23B, a jatrophane diterpene activates classical PKCs and displays strong activity against HIV in vitro. Biochem. Pharmacol. 77, 965–978 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Choudhary, S. K., Archin, N. M. & Margolis, D. M. Hexamethylbisacetamide and disruption of human immunodeficiency virus type 1 latency in CD4+ T cells. J. Infect. Dis. 197, 1162–1170 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Martín-Serrano, J. et al. In vitro selective elimination of HIV-infected cells from peripheral blood in AIDS patients by the immunotoxin DAB389CD4. AIDS 12, 859–863. (1998)

    Article  PubMed  Google Scholar 

  194. Brooks, D. G. et al. Molecular characterization, reactivation, and depletion of latent HIV. Immunity 19, 413–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  195. Ramachandran, R. V., Katzenstein, D. A., Wood, R., Batts, D. H. & Merigan, T. C. Failure of short-term CD4-PE40 infusions to reduce virus load in human immunodeficiency virus-infected persons. J. Infect. Dis. 170, 1009–1013 (1994).

    Article  CAS  PubMed  Google Scholar 

  196. Lehrman, G. et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366, 549–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sagot-Lerolle, N. et al. Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS 22, 1125–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  198. Siliciano, J. D. et al. Stability of the latent reservoir for HIV-1 in patients receiving valproic acid. J. Infect. Dis. 195, 833–836 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Perez-Romero, M. J. McConnell, S. Moreno and A. Alcamí for helpful suggestions. The research of our laboratory is supported by grants from the European Union (EUROPRISE), the Instituto de Salud Carlos III (RETIC RD06/0006 and the Intrasalud programme), the Comunidad de Madrid (VIRHOST Network) and FIPSE (Fundación para la investigación y prevención del SIDA en España).

Author information

Authors and Affiliations

Authors

Related links

FURTHER INFORMATION

José Alcamí's homepage

Glossary

Highly active antiretroviral therapy

A combination of three or more potent anti-HIV-1 drugs that reduces viral load below detection limits by standard techniques.

Reservoir

A cell type or anatomical site in which a replication-competent virus persists for much longer than it does in the main pool of productive infected cells, thereby sustaining the infection. Integrated proviral genomes and cells that persistently replicate HIV-1 in the presence of highly active antiretroviral therapy can be considered viral reservoirs.

Provirus

Viral genomic double-stranded cDNA that has permanently integrated into the host cell genome and that acts as a template for the synthesis of viral RNAs.

Direct repeats

Two or more identical or nearly identical repeats of specific nucleotide sequences that are in the same direction in the DNA molecule.

Blunt end

The end of a double-stranded DNA molecule that terminates in paired bases, rather than with uneven ends, such that one strand overhangs.

Enhancer element

A DNA consensus site, usually located 5′ from the basal gene promoter, that is bound to by specific transcription factors to increase the rate of transcription of the gene that it controls. An enhancer element may be placed thousands of bases upstream or downstream of the transcription initiation site of this gene.

Tat

A regulatory HIV-1 protein that is essential for viral transcript elongation through its interaction with the Tat response element and several host factors, such as the positive transcription elongation factor b.

Rev

A regulatory HIV-1 protein that controls the nuclear export of viral mRNA species through its interaction with the Rev response element that is found in unspliced or incompletly spliced HIV-1 RNAs.

Naive T cell

A mature T cell from the acquired immune system that has not yet made contact with its cognate antigen and that therefore lacks both activation and memory markers on the cell surface.

Memory T cell

A T cell that persists for a long time after its exposure to a specific foreign antigen and that can be promptly expanded to effector T cells after contact with the same antigen to initiate a faster and stronger immune response.

Retroviral restriction factor

A component of the innate immune system that aids the survival of a host cell after retroviral infection by interfering with viral replication at different steps of the viral life cycle.

Elite controller

A patient infected with HIV whose immune system can limit viral RNA to below 50 copies per ml for at least 12 months in the absence of highly active antiretroviral therapy.

Gut-associated lymphoid tissue

The intestinal mucosa-associated lymphoid tissue that constitutes 70% of the whole immune system and may be the main site of HIV-1 activity, despite the use of highly active antiretrovial therapy.

Transcriptional interference

Interruption of RNA transcription that is caused by adjacent active promoters owing to the competition for transcription factors or the collision of RNA polymerase II elongation complexes.

Basal transcription machinery

The complex that regulates the initiation and elongation of transcription by binding to a core promoter that is located 50 bp upstream of the transcription initiation site and contains the highly conserved TATA box. The complex consists of RNA polymerase II and several transcription factors and co-activators.

Predominant plasma clone

The main plasma clone of infected cells that is responsible for most of the residual viraemia in patients on highly active antiretroviral therapy. This clone is replication competent and shows a specific sequence for each patient that cannot be easily found in the patient's activated or resting CD4+ T cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coiras, M., López-Huertas, M., Pérez-Olmeda, M. et al. Understanding HIV-1 latency provides clues for the eradication of long-term reservoirs. Nat Rev Microbiol 7, 798–812 (2009). https://doi.org/10.1038/nrmicro2223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing