Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The trypanosome flagellar pocket

Key Points

  • Trypanosomes are flagellated single cell pathogens that are responsible for several diseases. The African trypanosome causes sleeping sickness, a disease leading to fatal coma and organ failure if untreated.

  • Trypanosomes possess a specialized plasma membrane invagination, the flagellar pocket, where the flagellum emerges from the cytoplasm. The organelle is essential for viability and central to cellular structure and function, with roles encompassing trafficking, organelle positioning and cytoskeletal coordination.

  • The surface of the African trypanosome is dominated by the glycosylphosphatidylinositol-anchored variant surface glycoprotein (VSGs), which is the primary mechanism of immune evasion through antigenic variation. Extremely rapid endocytosis is associated with both mammalian infectivity and expression of VSGs.

  • The protein composition of the flagellar pocket is distinct from the bulk plasma membrane, and restriction of invariant receptors in the structure is thought to contribute to evading the host immune system.

  • All macromolecular exchange with the trypanosome endomembrane system and the environment is mediated through the flagellar pocket. A rapid recycling system, which begins and ends at the pocket membrane, is responsible for removing surface-bound immune effectors while maintaining homeostasis at the surface.

  • The flagellar pocket is physically connected to the flagellum, basal body and probably additional organelles; it is apparent that the pocket is essential for faithful positioning of multiple structures during cytokinesis.

Abstract

Trypanosomes are important disease agents and excellent models for the study of evolutionary cell biology. The trypanosome flagellar pocket is a small invagination of the plasma membrane where the flagellum exits the cytoplasm and participates in many cellular processes. It is the only site of exocytosis and endocytosis and part of a multiorganelle complex that is involved in cell polarity and cell division. Several flagellar pocket-associated proteins have been identified and found to contribute to trafficking and virulence. In this Review we discuss the contribution of the flagellar pocket to protein trafficking, immune evasion and other processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life cycles of trypanosomes.
Figure 2: Morphology and positioning of cytoskeletal structures during the cell cycle.
Figure 3: Architecture of the trypanosome, focusing on the flagellar pocket.
Figure 4: Life cycle repositioning of flagellar pocket in relation to other organelles.
Figure 5: Morphology and integration of the flagellar pocket with the trafficking system.
Figure 6: Trafficking during nutrient acquisition and immune evasion.

Similar content being viewed by others

References

  1. Barrett, M., Boykin, D., Brun, R. & Tidwell, R. Human African trypanosomiasis: pharmacological re-engagement with a neglected disease. Br. J. Pharmacol. 152, 1155–1171 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nikolskaia, O. et al. Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease. J. Clin. Invest. 116, 2739–2747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nikolskaia, O., Kim, Y., Kovbasnjuk, O., Kim, K. & Grab, D. Entry of Trypanosoma brucei gambiense into microvascular endothelial cells of the human blood-brain barrier. Int. J. Parasitol. 36, 513–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Grab, D. & Kennedy, P. Traversal of human and animal trypanosomes across the blood-brain barrier. J. Neurovirol. 14, 344–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Courtin, D. et al. Host genetics in African trypanosomiasis. Infect. Genet. Evol. 8, 229–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. O'Gorman, G. et al. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility. BMC Genomics 10, 207 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Naessens, J. Bovine trypanotolerance, a natural ability to prevent severe anaemia and haemophagocytic syndrome? Int. J. Parasitol. 36, 521–528 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. [No authors listed]. Human African trypanosomiasis (sleeping sickness): epidemiological update. Weekly Epidemiol. Rec. 81, 71–80 (2006).

  9. Picozzi, K. et al. Sleeping sickness in Uganda: a thin line between two fatal diseases. BMJ 331, 1238–1241 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thuita, J. et al. Efficacy of the diamidine DB75 and its prodrug DB289, against murine models of human African trypanosomiasis. Acta Trop. 108, 6–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Lai, D., Hashimi, H., Lun, Z., Ayala, F. & Lukes J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl Acad. Sci. USA 105, 1999–2004 (2008). Demonstration of the real range and impact of T. brucei , which is now recognised as an Asian parasite as well as an African one.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vickerman, K. On the surface coat and flagellar adhesion in trypanosomes. J. Cell Sci. 5, 163–193 (1969).

    CAS  PubMed  Google Scholar 

  13. Peacock, L., Ferris, V., Bailey, M. & Gibson, W. Dynamics of infection and competition between two strains of Trypanosoma brucei brucei in the tsetse fly observed using fluorescent markers. Kinetoplastid Biol. Dis. 6, 4 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Vickerman, K. & Barry, J. D. in Immunology of parasitic infections (eds Cohen, S. & Warren, K. S.) 204–260 (Oxford, Blackwell, 1982).

    Google Scholar 

  15. Fenn, K. & Matthews, K. The cell biology of Trypanosoma brucei differentiation. Curr. Opin. Microbiol. 10, 539–546 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Natesan, S., Peacock, L., Matthews, K., Gibson, W. & Field, M. Activation of endocytosis as an adaptation to the mammalian host by trypanosomes. Eukaryot Cell. 6, 2029–2037 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ogbadoyi, E. O., Robinson, D. R. & Gull, K. A high-order trans-membrane structural linkage is responsible for mitochondrial genome positioning and segregation by flagellar basal bodies in trypanosomes. Mol. Biol. Cell 14, 1769–1779 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson, D. & Gull, K. Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 352, 731–733 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Pays, E., Salmon, D., Morrison, L., Marcello, L. & Barry, J. D. in Trypanosomes: After the Genome (eds Barry, J. D., McCulloch, R., Mottram, J. & Acosta-Serrano, A.) 339–372 (Horizon Bioscience, Norwich 2007.

    Google Scholar 

  20. Barry, J. D. Capping of variable antigen on Trypanosoma brucei, and its immunological and biological significance. J. Cell Sci. 37, 287–302 (1979).

    CAS  PubMed  Google Scholar 

  21. Pal, A., Hall, B., Jeffries, T. & Field, M. Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochem. J. 374, 443–451 (2003). Demonstration that trypanosomes degrade immunoglobulins and recycle the fragments using the RAB11-mediated trafficking pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Engstler, M. et al. Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes. Cell 131, 505–515 (2007). Capping and internalization of antibodies by a specialized biophysical mechanism that exploits the structure of the trypanosome cell.

    Article  CAS  PubMed  Google Scholar 

  23. Mussmann, R. et al. Factors affecting the level and localization of the transferrin receptor in Trypanosoma brucei. J. Biol. Chem. 279, 40690–40698 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Pays, E. et al. The trypanolytic factor of human serum. Nature Rev. Microbiol. 4, 477–486 (2006). Accessible review of the mechanisms of innate immunity in humans.

    Article  CAS  Google Scholar 

  25. Vanhollebeke, B. et al. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans. Science 320, 677–681 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Robinson, D., Sherwin, T., Ploubidou, A., Byard, E. & Gull, K. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J. Cell Biol. 128, 1163–1172 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Sherwin, T. & Gull, K. The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 323, 573–588 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Matthews, K., Sherwin, T. & Gull, K. Mitochondrial genome repositioning during the differentiation of the African trypanosome between life cycle forms is microtubule mediated. J. Cell Sci. 108, 2231–2239 (1995).

    CAS  PubMed  Google Scholar 

  29. Sharma, R. et al. Asymmetric cell division as a route to reduction in cell length and change in cell morphology in trypanosomes. Protist 159, 137–151 (2007).

    Article  PubMed  Google Scholar 

  30. Dawe, H., Farr, H., Portman, N., Shaw, M. & Gull, K. The Parkin co-regulated gene product, PACRG, is an evolutionarily conserved axonemal protein that functions in outer-doublet microtubule morphogenesis. J. Cell Sci. 118, 5421–5430 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Absalon, S. et al. Basal body positioning is controlled by flagellum formation in Trypanosoma brucei. PLoS ONE 2, e437 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bastin, P., Pullen, T., Moreira-Leite, F. & Gull, K. Inside and outside of the trypanosome flagellum: a multifunctional organelle. Microbes Infect. 2, 1865–1874 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Moreira-Leite, F., Sherwin, T., Kohl, L. & Gull, K. A trypanosome structure involved in transmitting cytoplasmic information during cell division. Science 294, 610–612 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Briggs, L. et al. The flagella connector of Trypanosoma brucei: an unusual mobile transmembrane junction. J. Cell Sci. 117, 1641–1651 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Davidge, J. et al. Trypanosome IFT mutants provide insight into the motor location for mobility of the flagella connector and flagellar membrane formation. J. Cell Sci. 119, 3935–3943 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Kohl, L., Robinson, D. & Bastin, P. Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes. EMBO J. 22, 5336–5346 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hoare, C. & Wallace, F. Developmental stages of Trypanosomatid flagellates: a new terminology. Nature 212, 1385–1386 (1966).

    Article  Google Scholar 

  38. Lacomble, S. et al. Three-dimensional cellular architecture of the flagellar pocket and associated cytoskeleton in trypanosomes revealed by electron microscope tomography. J. Cell Sci. 122, 1081–1090 (2009). Electron tomographic reconstruction of the FP in exquisite detail.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gadelha, C., Wickstead, B., de Souza, W., Gull, K. & Cunha-e-Silva, N. Cryptic paraflagellar rod in endosymbiont-containing kinetoplastid protozoa. Eukaryot. Cell 4, 516–525 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taylor, A. & Godfrey, D. A new organelle of bloodstream salivarian trypanosomes. J. Protozool. 16, 466–470 (1969).

    Article  CAS  PubMed  Google Scholar 

  41. Bonhivers, M., Nowacki, S., Landrein, N. & Robinson, D. Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLoS Biol. 6, e105 (2008). Description of Bilbo1, the first molecular definition of the FP collar.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Absalon, S. et al. Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei. J. Cell Sci. 121, 3704–3716 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Field, H., Sherwin, T., Smith, A., Gull, K. & Field, M. Cell-cycle and developmental regulation of TbRAB31 localization, a GTP-locked Rab protein from Trypanosoma brucei. Mol. Biochem. Parasitol. 106, 21–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Field, H. et al. TbRab2p, a marker for the endoplasmic reticulum of Trypanosoma brucei, localises to the ERGIC in mammalian cells. J. Cell Sci. 112, 147–156 (1999).

    CAS  PubMed  Google Scholar 

  45. He, C., Pypaert, M. & Warren, G. Golgi duplication in Trypanosoma brucei requires Centrin2. Science 310, 1196–1198 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Kang, Q., Wang, T., Zhang, H., Mohandas, N. & An, X. A Golgi-associated protein 4.1B variant is required for assimilation of proteins in the membrane. J. Cell Sci. 122, 1091–1099 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hall, B. et al. TbVps34, the trypanosome orthologue of Vps34, is required for Golgi complex segregation. J. Biol. Chem. 281, 27600–27612 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. de Graffenried, C., Ho, H. & Warren, G. Polo-like kinase is required for Golgi and bilobe biogenesis in Trypanosoma brucei. J. Cell Biol. 181, 431–438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ho, H., He, C., de Graffenried, C., Murrells, L. & Warren, G. Ordered assembly of the duplicating Golgi in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 103, 7676–7681 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Grünfelder, C. G. et al. Accumulation of a GPI-anchored protein at the cell surface requires sorting at multiple intracellular levels. Traffic 3, 547–559 (2002).

    Article  PubMed  Google Scholar 

  51. Allen, C., Liao, D., Chung, W. & Field, M. Dileucine signal-dependent and AP-1-independent targeting of a lysosomal glycoprotein in Trypanosoma brucei. Mol. Biochem. Parasitol. 156, 175–190 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Grünfelder, C. et al. Endocytosis of a glycosylphosphatidylinositol-anchored protein via clathrin-coated vesicles, sorting by default in endosomes, and exocytosis via RAB11-positive carriers. Mol. Biol. Cell 14, 2029–2040 (2003). Ultrastructural documentation of the VSG endocytosis and recycling pathways.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dacks, J. Peden, A. & Field, M. Evolution of specificity in the eukaryotic endomembrane system. Int. J. Biochem. Cell Biol. 41, 330–340 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Field, M. & Dacks, J. First and last ancestors; reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins and nuclear pore complexes. Curr. Op. Cell Biol. 21, 4–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Ackers, J., Dhir, V. & Field, M. A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Mol. Biochem. Parasitol. 141, 89–97 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Berriman, M. et al. The genome of the African trypanosome Trypanosoma brucei. Science 309, 416–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Price, H., Panethymitaki, C., Goulding, D. & Smith, D. Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J. Cell Sci. 118, 831–841 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Price, H., Stark, M. & Smith, D. Trypanosoma brucei ARF1 plays a central role in endocytosis and Golgi-lysosome trafficking. Mol. Biol. Cell. 18, 864–873 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Besteiro, S., Coombs, G. & Mottram, J. The SNARE protein family of Leishmania major. J. Cell Sci. 121, 561–570 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Morgan, G., Hall, B., Denny, P., Carrington, M. & Field, M. The kinetoplastida endocytic apparatus. Part I: a dynamic system for nutrition and evasion of host defences. Trends Parasitol. 18, 491–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Besteiro, S., Tonn, D., Tetley, L., Coombs, G. & Mottram, J. The AP3 adaptor is involved in the transport of membrane proteins to acidocalcisomes of Leishmania. J. Cell Sci. 121, 561–570 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Maier, A. et al. The coatomer of Trypanosoma brucei. Mol. Biochem. Parasitol. 115, 55–61 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Casanova, M. et al. Inhibition of active nuclear transport is an intrinsic trigger of programmed cell death in trypanosomatids. Cell Death Differ. 15, 1910–1920 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Dhir, V., Goulding, D. & Field, M. TbRAB1 and TbRAB2 mediate trafficking through the early secretory pathway of Trypanosoma brucei. Mol. Biochem. Parasitol. 137, 253–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Koumandou, V., Dacks, J., Coulson, R. & Field, M. Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol. Biol. 7, 29 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Allen, C., Goulding, D. & Field, M. Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J. 22, 4991–5002 (2003). Demonstration of a single mechanism of endocytosis in trypanosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hung, C., Qiao, X., Lee, P. & Lee, M. Clathrin-dependent targeting of receptors to the flagellar pocket of procyclic-form Trypanosoma brucei. Eukaryot. Cell 3, 1004–1014 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Field, M., Gabernet-Castello, C. & Dacks, J. Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. Adv. Exp. Med. Biol. 607, 84–96 (2007).

    Article  PubMed  Google Scholar 

  69. Morgan, G., Goulding, D. & Field, M. The single dynamin-like protein of Trypanosoma brucei regulates mitochondrial division and is not required for endocytosis. J. Biol. Chem. 279, 10692–10701 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Chanez, A., Hehl, A., Engstler, M. & Schneider, A. Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J. Cell Sci. 119, 2968–2974 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. García-Salcedo, J. et al. A differential role for actin during the life cycle of Trypanosoma brucei. EMBO J. 23, 780–789 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Gabernet-Castello, C., Dacks, J. & Field, M. The single ENTH-domain protein of trypanosomes; endocytic functions and evolutionary relationship with epsin. Traffic 10, 894–911 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Kabiri, M. & Steverding, D. Studies on the recycling of the transferrin receptor in Trypanosoma brucei using an inducible gene expression system. Eur. J. Biochem. 267, 3309–3314 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Chung, W., Carrington, M. & Field, M. Cytoplasmic targeting signals in transmembrane invariant surface glycoproteins of trypanosomes. J. Biol. Chem. 279, 54887–54895 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Chung, W., Leung, K., Carrington, M. & Field, M. Ubiquitylation is required for degradation of transmembrane surface proteins in trypanosomes. Traffic 9, 1681–1697 (2008). Demonstration that ubiquitylation is a mechanism for the recognition and degradation of ISGs.

    Article  CAS  PubMed  Google Scholar 

  76. Leung, K., Dacks, J. & Field, M. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9, 1698–1716 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Tazeh, N. N. & Bangs, J. Multiple motifs regulate trafficking of the LAMP-like protein p67 in the ancient eukaryote Trypanosoma brucei. Traffic 8, 1007–1017 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Peck, R. et al. The LAMP-like protein p67 plays an essential role in the lysosome of African trypanosomes. Mol. Microbiol. 68, 933–946 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Qiao, X. et al. Sorting signals required for trafficking of the cysteine-rich acidic repetitive transmembrane protein in Trypanosoma brucei. Eukaryot. Cell 5, 1229–1242 (2005).

    Article  CAS  Google Scholar 

  80. Nolan, D., Geuskens, M. & Pays, E. N-linked glycans containing linear poly-N-acetyllactosamine as sorting signals in endocytosis in Trypanosoma brucei. Curr. Biol. 9, 1169–1172 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Pal, A., Hall, B., Nesbeth, D., Field, H. & Field, M. Differential endocytic functions of Trypanosoma brucei Rab5 isoforms reveal a glycosylphosphatidylinositol-specific endosomal pathway. J. Biol. Chem. 277, 9529–9539 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Atrih, A., Richardson, J., Prescott, A. & Ferguson, M. Trypanosoma brucei glycoproteins contain novel giant poly-N-acetyllactosamine carbohydrate chains. J. Biol. Chem. 280, 865–871 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Arvas, M. et al. Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics 7, 32 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Gurkan, C. et al. Large-scale profiling of Rab GTPase trafficking networks: the membrome. Mol. Biol. Cell 16, 3847–3864 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Koumandou, V., Natesan, S., Sergeenko, T. & Field, M. The trypanosome transcriptome is remodeled during differentiation but displays limited responsiveness in life stages. BMC Genomics 9, 298 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Hall, B., Pal, A., Goulding, D. & Field, M. Rab4 is an essential regulator of lysosomal trafficking in trypanosomes. J. Biol. Chem. 279, 45047–45056 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Nolan, D. et al. Characterization of a novel alanine-rich protein located in surface microdomains in Trypanosoma brucei. J. Biol. Chem. 275, 4072–4080 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Urwyler, S., Studer, E., Renggli, C. & Roditi, I. A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma brucei. Mol. Microbiol. 63, 218–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Steverding, D., Stierhof, Y. D., Fuchs, H., Tauber, R. & Overath, P. Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei. J. Cell Biol. 131, 1173–1182 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Vanhamme, L. et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Morone, N. et al. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J. Cell Biol. 174, 851–862 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rodgers, M., Albanesi, J. & Phillips, M. Phosphatidylinositol 4-kinase III-β is required for Golgi maintenance and cytokinesis in Trypanosoma brucei. Eukaryot. Cell 6, 1108–1118 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Barquilla, A., Crespo, J. & Navarro, M. Rapamycin inhibits trypanosome cell growth by preventing TOR complex 2 formation. Proc. Natl Acad. Sci. USA 105, 14579–14584 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Checchi, F., Filipe, J., Barrett, M. & Chandramohan, D. The natural progression of gambiense sleeping sickness: what is the evidence? PLoS Negl. Trop. Dis. 2, e303 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cross, G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71, 393–417 (1975).

    Article  CAS  PubMed  Google Scholar 

  96. Jackson, D. G., Owen, M. J. & Voorheis, H. P. A new method for the rapid purification of both the membrane-bound and released forms of the variant surface glycoprotein from Trypanosoma brucei. Biochem. J. 230, 195–202 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mehlert, A., Bond, C. S. & Ferguson, M. A. J. The glycoforms of a Trypanosoma brucei variant surface glycoprotein and molecular modeling of a glycosylated surface coat. Glycobiology 12, 607–612 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Van Meirvenne, N., Janssens, P. G. & Magnus, E. Antigenic variation in syringe passaged populations of Trypanosoma (Trypanozoon) brucei. 1. Rationalization of the experimental approach. Ann. Soc. Belg. Med. Trop. 55, 1–23 (1975).

    CAS  PubMed  Google Scholar 

  99. Ziegelbauer, K. & Overath, P. Organization of two invariant surface glycoproteins in the surface coat of Trypanosoma brucei. Infect. Immun. 61, 4540–4545 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Barry, J. D. & McCulloch, R. Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol. 49, 1–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Pays, E., Vanhamme, L. & Perez-Morga, D. Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries. Curr. Opin. Microbiol 7, 369–374 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Balber, A. E., Bangs, J. D., Jones, S. E. & Proia, R. L. Inactivation or elimination of potentially trypanolytic complement-activating immune complexes by pathogenic trypanosomes. Infect. Immun. 24, 617–627 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Trail, J. C. et al. Effect of trypanosome infection, control of parasitaemia and control of anaemia development on productivity of N'Dama cattle. Acta Trop. 48, 37–45 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Webster, P., Russo, D. C. & Black, S. J. The interaction of Trypanosoma brucei with antibodies to variant surface glycoproteins. J. Cell Sci. 96, 249–255 (1990).

    CAS  PubMed  Google Scholar 

  105. Engstler, M. et al. Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J. Cell Sci. 117, 1105–1115 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. O'Beirne, C., Lowry, C. M. & Voorheis, H. P. Both IgM and IgG anti-VSG antibodies initiate a cycle of aggregation-disaggregation of bloodstream forms of Trypanosoma brucei without damage to the parasite. Mol. Biochem. Parasitol. 91, 165–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Helms, M. J. et al. Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J. Cell Sci. 119, 1105–1117 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Shiflett, A., Bishop, J. R., Pahwa, A. & Hajduk, S. Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes. J. Biol. Chem. 280, 32578–32585 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Pérez-Morga, D. et al. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309, 469–472 (2005).

    Article  PubMed  CAS  Google Scholar 

  110. Xong, H. V. et al. A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95, 839–846 (1998). Identification of SRA , which helps to explain why some trypanosomes can infect humans and others cannot.

    Article  CAS  PubMed  Google Scholar 

  111. Welburn, S. C. et al. Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene. Lancet 358, 2017–2019 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Gibson, W., Backhouse, T. & Griffiths, A. The human serum resistance associated gene is ubiquitous and conserved in Trypanosoma brucei rhodesiense throughout East Africa. Infect. Genet. Evol. 1, 207–214 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. De Greef, C. & Hamers, R. The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. Mol. Biochem. Parasitol. 68, 277–284 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Campillo, N. & Carrington, M. The origin of the serum resistance associated (SRA) gene and a model of the structure of the SRA polypeptide from Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol. 127, 79–84 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported mainly by the Wellcome Trust, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark C. Field.

Related links

Related links

DATABASES

Entrez Genome Project

Trypanosoma brucei

Trypanosoma cruzi

FURTHER INFORMATION

Mark C. Field's homepage

Glossary

Flagellum

A tail-like structure emerging from the cell. In trypanosomes the flagellum consists of a 9+2 microtubule configuration axoneme and a paraflagellar rod. The whole structure is attached to the cell body and anchored through connections to the flagellar attachment zone, a specialization of a subset of microtubules subtending the plasma membrane.

Basal body

An organelle that is formed from the centriole and, in the case of many flagellates, that acts as the base of the flagellum from which the axoneme is built. There are two basal bodies per cell, only one of which gives rise to a flagellum. Duplication of basal bodies is a key step in early mitosis.

Variant surface glycoprotein

(VSG). A 60kDa glycosylphosphatidylinositol-anchored glycoprotein that is expressed on the surface of African trypanosomes at extreme density. By sequentially expressing distinct VSG genes, trypanosomes achieve antigenic variation.

Facile vaccination

Vaccination against bacterial infections using heat killed bacteria or surface proteins, which can be regarded as facile (that is, easy), at least conceptually. Such approaches have not been successful against many protozoan parasites.

Subpellicular array

A regularly spaced microtubule array that is located just beneath the plasma membrane in trypanosomes and is responsible for maintaining the shape of the cell.

Axoneme

The inner core of the flagellum and cilia in eukaryotes. Most possess nine outer ring microtubule doublets and an inner central pair of microtubules.

Orthologue

Homologous sequences that are separated only by a speciation event. If genes are orthologous they share common ancestry, and this allows inference of similar function when comparing two distinct lineages.

Acidocalcisome

An electron-dense acidic membrane-bound cytoplasmic organelle containing a matrix of pyrophosphate and polyphosphates with bound calcium and additional cations. Acidocalcisomes are found in a wide range of eukaryotes and prokaryotes.

Clathrin-coated bouton

(from the French for button). A small bud or button-like structure that extends from the central region of the sorting endosome and where clathrin is preferentially localized. It is thought that the differential morphology and protein composition allows the structure to selectively sort proteins.

Paracrystalline inclusion

An inclusion in membrane-bound structures found in the lumen of the flagellar pocket that have small lattice-like structures separated by regions of less clear order. Such structures frequently arise by high concentrations of proteins accumulating and forming partially ordered aggregates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, M., Carrington, M. The trypanosome flagellar pocket. Nat Rev Microbiol 7, 775–786 (2009). https://doi.org/10.1038/nrmicro2221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing