Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Metabolism, cell growth and the bacterial cell cycle

Abstract

Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the 'wild'. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The bacterial cell cycle.
Figure 2: Nutrient availability, DNA replication and chromosome segregation.
Figure 3: Spatial and temporal regulation of cell division is achieved through multiple layers of control.

Similar content being viewed by others

References

  1. Fantes, P. & Nurse, P. Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp. Cell Res. 107, 377–386 (1977).

    Article  CAS  Google Scholar 

  2. Schaechter, M., Maaloe, O. & Kjeldgaard, N. O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606 (1958).

    Article  CAS  Google Scholar 

  3. Johnson, A. & O'Donnell, M. Cellular DNA replicases: components and dynamics at the replication fork. Annu. Rev. Biochem. 74, 283–315 (2005).

    Article  CAS  Google Scholar 

  4. Harry, E., Monahan, L. & Thompson, L. Bacterial cell division: the mechanism and its precison. Int. Rev. Cytol. 253, 27–94 (2006).

    Article  CAS  Google Scholar 

  5. Cooper, S. & Helmstetter, C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 31, 519–540 (1968).

    Article  CAS  Google Scholar 

  6. Yoshikawa, H., O'Sullivan, A. & Sueoka, N. Sequential replication of the Bacillus subtilis chromosome, III. Regulation of initiation. Proc. Natl Acad. Sci. USA 52, 973–980 (1964).

    Article  CAS  Google Scholar 

  7. Nordstrom, K., Bernander, R. & Dasgupta, S. The Escherichia coli cell cycle: one cycle or multiple independent processes that are co-ordinated? Mol. Microbiol. 5, 769–774 (1991).

    Article  CAS  Google Scholar 

  8. Boye, E. & Nordstrom, K. Coupling the cell cycle to cell growth. EMBO Rep. 4, 757–760 (2003).

    Article  CAS  Google Scholar 

  9. Laub, M. T., Shapiro, L. & McAdams, H. H. Systems biology of Caulobacter. Annu. Rev. Genet. 41, 429–441 (2007).

    Article  CAS  Google Scholar 

  10. Zyskind, J. W. & Smith, D. W. DNA replication, the bacterial cell cycle, and cell growth. Cell 69, 5–8 (1992).

    Article  CAS  Google Scholar 

  11. Kaguni, J. M. DnaA: controlling the initiation of bacterial DNA replication and more. Annu. Rev. Microbiol. 60, 351–375 (2006).

    Article  CAS  Google Scholar 

  12. Mott, M. L. & Berger, J. M. DNA replication initiation: mechanisms and regulation in bacteria. Nature Rev. Microbiol. 5, 343–354 (2007).

    Article  CAS  Google Scholar 

  13. Xu, Y. C. & Bremer, H. Chromosome replication in Escherichia coli induced by oversupply of DnaA. Mol. Gen. Genet. 211, 138–142 (1988).

    Article  CAS  Google Scholar 

  14. Skarstad, K., Lobner-Olesen, A., Atlung, T., von Meyenburg, K. & Boye, E. Initiation of DNA replication in Escherichia coli after overproduction of the DnaA protein. Mol. Gen. Genet. 218, 50–56 (1989).

    Article  CAS  Google Scholar 

  15. Ogura, Y., Imai, Y., Ogasawara, N. & Moriya, S. Autoregulation of the dnaA-dnaN operon and effects of DnaA protein levels on replication initiation in Bacillus subtilis. J. Bacteriol. 183, 3833–3841 (2001).

    Article  CAS  Google Scholar 

  16. Schaus, N., O'Day, K., Peters, W. & Wright, A. Isolation and characterization of amber mutations in gene dnaA of Escherichia coli K-12. J. Bacteriol. 145, 904–913 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Goranov, A. I., Katz, L., Breier, A. M., Burge, C. B. & Grossman, A. D. A transcriptional response to replication status mediated by the conserved bacterial replication protein DnaA. Proc. Natl Acad. Sci. USA 102, 12932–12937 (2005).

    Article  CAS  Google Scholar 

  18. Gon, S. et al. A novel regulatory mechanism couples deoxyribonucleotide synthesis and DNA replication in Escherichia coli. EMBO J. 25, 1137–1147 (2006).

    Article  CAS  Google Scholar 

  19. Chiaramello, A. E. & Zyskind, J. W. Expression of Escherichia coli dnaA and mioC genes as a function of growth rate. J. Bacteriol. 171, 4272–4280 (1989).

    Article  CAS  Google Scholar 

  20. Hanawalt, P. C., Maaloe, O., Cummings, D. J. & Schaechter, M. The normal DNA replication cycle. II. J. Mol. Biol. 3, 156–165 (1961).

    Article  CAS  Google Scholar 

  21. Cashel, M., Gentry, D. R., Hernandez, V. H. & Vinella, D. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) (ASM, Washington DC, 1996).

    Google Scholar 

  22. Barker, M. M., Gaal, T., Josaitis, C. A. & Gourse, R. L. Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. J. Mol. Biol. 305, 673–688 (2001).

    Article  CAS  Google Scholar 

  23. Chiaramello, A. E. & Zyskind, J. W. Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J. Bacteriol. 172, 2013–2019 (1990).

    Article  CAS  Google Scholar 

  24. Schreiber, G., Ron, E. Z. & Glaser, G. ppGpp-mediated regulation of DNA replication and cell division in Escherichia coli. Curr. Microbiol. 30, 27–32 (1995).

    Article  CAS  Google Scholar 

  25. Levine, A., Vannier, F., Dehbi, M., Henckes, G. & Seror, S. J. The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli. J. Mol. Biol. 219, 605–613 (1991).

    Article  CAS  Google Scholar 

  26. Ferullo, D. J. & Lovett, S. T. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet. 4, e1000300 (2008).

    Article  Google Scholar 

  27. Lesley, J. A. & Shapiro, L. SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J. Bacteriol. 190, 6867–6880 (2008).

    Article  CAS  Google Scholar 

  28. Gorbatyuk, B. & Marczynski, G. T. Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol. Microbiol. 55, 1233–1245 (2005).

    Article  CAS  Google Scholar 

  29. Atlung, T., Clausen, E. S. & Hansen, F. G. Autoregulation of the dnaA gene of Escherichia coli K12. Mol. Gen. Genet. 200, 442–450 (1985).

    Article  CAS  Google Scholar 

  30. Braun, R. E., O'Day, K. & Wright, A. Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 40, 159–169 (1985).

    Article  CAS  Google Scholar 

  31. Lu, M., Campbell, J. L., Boye, E. & Kleckner, N. SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413–426 (1994).

    Article  CAS  Google Scholar 

  32. Hansen, F. G., Christensen, B. B. & Atlung, T. The initiator titration model: computer simulation of chromosome and minichromosome control. Res. Microbiol. 142, 161–167 (1991).

    Article  CAS  Google Scholar 

  33. Nozaki, S., Yamada, Y. & Ogawa, T. Initiator titration complex formed at datA with the aid of IHF regulates replication timing in Escherichia coli. Genes Cells 14, 329–341 (2009).

    Article  CAS  Google Scholar 

  34. Keyamura, K. et al. The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP DnaA-specific initiation complexes. Genes Dev. 21, 2083–2099 (2007).

    Article  CAS  Google Scholar 

  35. Murray, H. & Errington, J. Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135, 74–84 (2008).

    Article  CAS  Google Scholar 

  36. Riber, L. et al. Hda-mediated inactivation of the DnaA protein and dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the Escherichia coli chromosome. Genes Dev. 20, 2121–2134 (2006).

    Article  CAS  Google Scholar 

  37. Kato, J. & Katayama, T. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli. Embo J. 20, 4253–4262 (2001).

    Article  CAS  Google Scholar 

  38. Noirot-Gros, M. F. et al. Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 103, 2368–2373 (2006).

    Article  CAS  Google Scholar 

  39. Cho, E., Ogasawara, N. & Ishikawa, S. The functional analysis of YabA, which interacts with DnaA and regulates initiation of chromosome replication in Bacillus subtils. Genes Genet. Syst. 83, 111–125 (2008).

    Article  CAS  Google Scholar 

  40. Soufo, C. D. et al. Cell-cycle-dependent spatial sequestration of the DnaA replication initiator protein in Bacillus subtilis. Dev. Cell 15, 935–941 (2008).

    Article  Google Scholar 

  41. Hayashi, M., Ogura, Y., Harry, E. J., Ogasawara, N. & Moriya, S. Bacillus subtilis YabA is involved in determining the timing and synchrony of replication initiation. FEMS Microbiol. Lett. 247, 73–79 (2005).

    Article  CAS  Google Scholar 

  42. Noirot-Gros, M. F. et al. An expanded view of bacterial DNA replication. Proc. Natl Acad. Sci. USA 99, 8342–8347 (2002).

    Article  CAS  Google Scholar 

  43. Donachie, W. D. Relationship between cell size and time of initiation of DNA replication. Nature 219, 1077–1079 (1968).

    Article  CAS  Google Scholar 

  44. Weart, R. B. et al. A metabolic sensor governing cell size in bacteria. Cell 130, 335–347 (2007).

    Article  CAS  Google Scholar 

  45. Wold, S., Skarstad, K., Steen, H. B., Stokke, T. & Boye, E. The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J. 13, 2097–2102 (1994).

    Article  CAS  Google Scholar 

  46. Bipatnath, M., Dennis, P. P. & Bremer, H. Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12. J. Bacteriol. 180, 265–273 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Churchward, G., Estiva, E. & Bremer, H. Growth rate-dependent control of chromosome replication initiation in Escherichia coli. J. Bacteriol. 145, 1232–1238 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bates, D. & Kleckner, N. Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 121, 899–911 (2005).

    Article  CAS  Google Scholar 

  49. Donachie, W. D. Co-ordinate regulation of the Escherichia coli cell cycle or The cloud of unknowing. Mol. Microbiol. 40, 779–785 (2001).

    Article  CAS  Google Scholar 

  50. Michelsen, O., Teixeira de Mattos, M. J., Jensen, P. R. & Hansen, F. G. Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r. Microbiology 149, 1001–1010 (2003).

    Article  CAS  Google Scholar 

  51. Churchward, G. & Bremer, H. Determination of deoxyribonucleic acid replication time in exponentially growing Escherichia coli B/r. J. Bacteriol. 130, 1206–1213 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Herrick, J. & Sclavi, B. Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol. Microbiol. 63, 22–34 (2007).

    Article  CAS  Google Scholar 

  53. Wang, J. D., Sanders, G. M. & Grossman, A. D. Nutritional control of elongation of DNA replication by (p)ppGpp. Cell 128, 865–875 (2007).

    Article  CAS  Google Scholar 

  54. Janniere, L. et al. Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2, e447 (2007).

    Article  Google Scholar 

  55. Waldminghaus, T. & Skarstad, K. The Escherichia coli SeqA protein. Plasmid 61, 141–150 (2009).

    Article  CAS  Google Scholar 

  56. Sharpe, M. E., Hauser, P. M., Sharpe, R. G. & Errington, J. Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J. Bacteriol. 180, 547–555 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sargent, M. G. Control of cell length in Bacillus subtilis. J. Bacteriol. 123, 7–19 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Weart, R. B. & Levin, P. A. Growth rate-dependent regulation of medial FtsZ ring formation. J. Bacteriol. 185, 2826–2834 (2003).

    Article  CAS  Google Scholar 

  59. Rueda, S., Vicente, M. & Mingorance, J. Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J. Bacteriol. 185, 3344–3351 (2003).

    Article  CAS  Google Scholar 

  60. Rowland, S. L., Katis, V. L., Partridge, S. R. & Wake, R. G. DivIB, FtsZ and cell division in Bacillus subtilis. Mol. Microbiol. 23, 295–302 (1997).

    Article  CAS  Google Scholar 

  61. Harry, E. J., Rodwell, J. & Wake, R. G. Co-ordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Mol. Microbiol. 33, 33–40 (1999).

    Article  CAS  Google Scholar 

  62. Bramkamp, M., Weston, L., Daniel, R. A. & Errington, J. Regulated intramembrane proteolysis of FtsL protein and the control of cell division in Bacillus subtilis. Mol. Microbiol. 62, 580–591 (2006).

    Article  CAS  Google Scholar 

  63. Regamey, A., Harry, E. J. & Wake, R. G. Mid-cell Z ring assembly in the absence of entry into the elongation phase of the round of replication in bacteria: co-ordinating chromosome replication with cell division. Mol. Microbiol. 38, 423–434 (2000).

    Article  CAS  Google Scholar 

  64. Jaffe, A., D'Ari, R. & Norris, V. SOS-independent coupling between DNA replication and cell division in Escherichia coli. J. Bacteriol. 165, 66–71 (1986).

    Article  CAS  Google Scholar 

  65. Sun, Q., Yu, X. C. & Margolin, W. Assembly of the FtsZ ring at the central division site in the absence of the chromosome. Mol. Microbiol. 29, 491–503 (1998).

    Article  CAS  Google Scholar 

  66. Bernhardt, T. G. & de Boer, P. A. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18, 555–564 (2005).

    Article  CAS  Google Scholar 

  67. Wu, L. J. & Errington, J. Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915–925 (2004).

    Article  CAS  Google Scholar 

  68. Donachie, W. D. & Begg, K. J. Cell length, nucleoid separation, and cell division of rod-shaped and spherical cells of Escherichia coli. J. Bacteriol. 171, 4633–4639 (1989).

    Article  CAS  Google Scholar 

  69. Cooper, S. Cell division and DNA replication following a shift to a richer medium. J. Mol. Biol. 43, 1–11 (1969).

    Article  CAS  Google Scholar 

  70. Lu, M. & Kleckner, N. Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli. J. Bacteriol. 176, 5847–5851 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Bates, A. Goranov and B. Hill for comments. Work in the Wang laboratory is supported by the Welch Foundation (Q-1698) and Public Health Service grants (GM084003 and DP2OD004433) from the US National Institutes of Health. Work in the Levin laboratory is supported by Public Health Services grant (GM64671) from the US National Institutes of Health and a National Science Foundation CAREER award (MCB-0448186).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Caulobacter crescentus

Escherichia coli

Salmonella enterica subsp. enterica serovar Typhimurium

FURTHER INFORMATION

Jue D. Wang's homepage

Petra A. Levin's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Levin, P. Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7, 822–827 (2009). https://doi.org/10.1038/nrmicro2202

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing