Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis

Abstract

Viruses of the Flaviviridae family, including hepatitis C, dengue and bovine viral diarrhoea, are responsible for considerable morbidity and mortality worldwide. Recent advances in our understanding of virion assembly have uncovered commonalities among distantly related members of this family. We discuss the emerging hypothesis that physical virion components are not alone in forming the infectious particle, but that non-structural proteins are intimately involved in orchestrating morphogenesis. Pinpointing the roles of Flaviviridae proteins in virion production could reveal new avenues for antiviral therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life cycle of the Flaviviridae.
Figure 2: Processing and putative topologies of the Flaviviridae polyproteins.
Figure 3: Proposed pathways of Flaviviridae assembly and egress.
Figure 4: Required features of the p7-NS2-3-4A or NS2A-2B-3 polyprotein regions.
Figure 5: Required features of the NS5A-5B or NS5 regions.

Similar content being viewed by others

References

  1. Lindenbach, B. D., Thiel, H. J. & Rice, C. M. in Fields Virology (eds Knipe, D. M. & Howley, P. M.) 1101–1152 (Lippincott–Raven, Philadelphia,2007).

    Google Scholar 

  2. Westaway, E. G., Mackenzie, J. M., Kenney, M. T., Jones, M. K. & Khromykh, A. A. Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures. J. Virol. 71, 6650–6661 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gray, E. W. & Nettleton, P. F. The ultrastructure of cell cultures infected with border disease and bovine virus diarrhoea viruses. J. Gen. Virol. 68, 2339–2346 (1987).

    Article  PubMed  Google Scholar 

  4. Mottola, G. et al. Hepatitis C virus nonstructural proteins are localized in a modified endoplasmic reticulum of cells expressing viral subgenomic replicons. Virology 293, 31–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Meyers, G., Tautz, N., Becher, P., Thiel, H.-J. & Kümmerer, B. M. Recovery of cytopathogenic and noncytopathogenic bovine viral diarrhea viruses from cDNA constructs. J. Virol. 70, 8606–8613 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rice, C. M., Grakoui, A., Galler, R. & Chambers, T. J. Transcription of infectious yellow fever virus RNA from full-length cDNA templates produced by in vitro ligation. New Biol. 1, 285–296 (1989).

    CAS  PubMed  Google Scholar 

  7. Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Lindenbach, B. D. et al. Complete replication of hepatitis C virus in cell culture. Science 309, 623–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Wakita, T. et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med. 11, 791–796 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Zhong, J. et al. Robust hepatitis C virus infection in vitro. Proc. Natl Acad. Sci. USA 102, 9294–9299 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuhn, R. J. et al. Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108, 717–725 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mukhopadhyay, S., Kim, B. S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. Structure of West Nile virus. Science 302, 248 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, W. et al. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nature Struct. Biol. 10, 907–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Y. et al. Structures of immature flavivirus particles. EMBO J. 22, 2604–2613 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Y., Kostyuchenko, V. A. & Rossmann, M. G. Structural analysis of viral nucleocapsids by subtraction of partial projections. J. Struct. Biol. 157, 356–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Ma, L., Jones, C. T., Groesch, T. D., Kuhn, R. J. & Post, C. B. Solution structure of dengue virus capsid protein reveals another fold. Proc. Natl Acad. Sci. USA 101, 3414–3419 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dokland, T. et al. West Nile virus core protein; tetramer structure and ribbon formation. Structure 12, 1157–1163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ferlenghi, I. et al. Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol. Cell 7, 593–602 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Konishi, E. et al. Comparison of protective immunity elicited by recombinant vaccinia viruses that synthesize E or NS1 of Japanese encephalitis virus. Virology 185, 401–410 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y., Kaufmann, B., Chipman, P. R., Kuhn, R. J. & Rossmann, M. G. Structure of immature West Nile virus. J. Virol. 81, 6141–6145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, I. M. et al. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science 319, 1834–1837 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Stadler, K., Allison, S. L., Schalich, J. & Heinz, F. X. Proteolytic activation of tick-borne encephalitis virus by furin. J. Virol. 71, 8475–8481 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Heinz, F. X. et al. Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198, 109–117 1994).

    Article  CAS  PubMed  Google Scholar 

  25. Gastaminza, P., Kapadia, S. B. & Chisari, F. V. Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J. Virol. 80, 11074–11081 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Macovei, A., Zitzmann, N., Lazar, C., Dwek, R. A. & Branza-Nichita, N. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity. Biochem. Biophys. Res. Commun. 346, 1083–1090 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Krey, T., Thiel, H. J. & Rumenapf, T. Acid-resistant bovine pestivirus requires activation for pH-triggered fusion during entry. J. Virol. 79, 4191–4200 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tscherne, D. M. et al. Time- and temperature-dependent activation of hepatitis C virus for low-pH-triggered entry. J. Virol. 80, 1734–1741 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chang, K. S., Jiang, J., Cai, Z. & Luo, G. Human apolipoprotein E is required for infectivity and production of hepatitis C virus in cell culture. J. Virol. 81, 13783–13793 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gastaminza, P. et al. Cellular determinants of hepatitis C virus assembly, maturation, degradation and secretion. J. Virol. 82, 2120–2129 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, H. et al. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc. Natl Acad. Sci. USA 104, 5848–5853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Behrens, S. E., Grassmann, C. W., Thiel, H. J., Meyers, G. & Tautz, N. Characterization of an autonomous subgenomic pestivirus RNA replicon. J. Virol. 72, 2364–2372 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Khromykh, A. A., Kenney, M. T. & Westaway, E. G. trans-complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J. Virol. 72, 7270–7279 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Harada, T., Tautz, N. & Thiel, H. J. E2–p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J. Virol. 74, 9498–9506 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carrere-Kremer, S. et al. Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J. Virol. 76, 3720–3730 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Elbers, K. et al. Processing in the pestivirus E2–NS2 region: identification of proteins p7 and E2p7. J. Virol. 70, 4131–4135 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin, C., Lindenbach, B. D., Prágai, B., McCourt, D. W. & Rice, C. M. Processing of the hepatitis C virus E2–NS2 region: identification of p7 and two distinct E2-specific products with different C termini. J. Virol. 68, 5063–5073 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mizushima, H. et al. Two hepatitis C virus glycoprotein E2 products with different C termini. J. Virol. 68, 6215–6222 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, C. T., Murray, C. L., Eastman, D. K., Tassello, J. & Rice, C. M. Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J. Virol. 81, 8374–8383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Steinmann, E. et al. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog. 3, e103 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Carrere-Kremer, S. et al. Regulation of hepatitis C virus polyprotein processing by signal peptidase involves structural determinants at the p7 sequence junctions. J. Biol. Chem. 279, 41384–41392 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Isherwood, B. J. & Patel, A. H. Analysis of the processing and transmembrane topology of the E2p7 protein of hepatitis C virus. J. Gen. Virol. 86, 667–676 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Griffin, S. D. et al. The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett. 535, 34–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Griffin, S. D. et al. A conserved basic loop in hepatitis C virus p7 protein is required for amantadine-sensitive ion channel activity in mammalian cells but is dispensable for localization to mitochondria. J. Gen. Virol. 85, 451–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Pavlovic, D. et al. The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc. Natl Acad. Sci. USA 100, 6104–6108 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. StGelais, C. et al. Inhibition of hepatitis C virus p7 membrane channels in a liposome-based assay system. Antiviral Res. 76, 48–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Patargias, G., Zitzmann, N., Dwek, R. & Fischer, W. B. Protein–protein interactions: modeling the hepatitis C virus ion channel p7. J. Med. Chem. 49, 648–655 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Clarke, D. et al. Evidence for the formation of a heptameric ion channel complex by the hepatitis C virus p7 protein in vitro. J. Biol. Chem. 281, 37057–37068 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Premkumar, A., Wilson, L., Ewart, G. D. & Gage, P. W. Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett. 557, 99–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Sakai, A. et al. The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc. Natl Acad. Sci. USA 100, 11646–11651 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grakoui, A., McCourt, D. W., Wychowski, C., Feinstone, S. M. & Rice, C. M. A second hepatitis C virus-encoded proteinase. Proc. Natl Acad. Sci. USA 90, 10583–10587 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hijikata, M. et al. Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J. Virol. 67, 4665–4675 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lackner, T. et al. Temporal modulation of an autoprotease is crucial for replication and pathogenicity of an RNA virus. J. Virol. 78, 10765–10775 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lorenz, I. C., Marcotrigiano, J., Dentzer, T. G. & Rice, C. M. Structure of the catalytic domain of the hepatitis C virus NS2-3 protease. Nature 442, 831–835 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Santolini, E., Pacini, L., Fipaldini, C., Migliaccio, G. & Monica, N. The NS2 protein of hepatitis C virus is a transmembrane polypeptide. J. Virol. 69, 7461–7471 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kolykhalov, A. A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Agapov, E. V. et al. Uncleaved NS2-3 is required for production of infectious bovine viral diarrhea virus. J. Virol. 78, 2414–2425 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moulin, H. R. et al. Nonstructural proteins NS2-3 and NS4A of classical swine fever virus: essential features for infectious particle formation. Virology 365, 376–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Lackner, T., Muller, A., Konig, M., Thiel, H. J. & Tautz, N. Persistence of bovine viral diarrhea virus is determined by a cellular cofactor of a viral autoprotease. J. Virol. 79, 9746–9755 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rinck, G., Birghan, C., Harada, T., Meyers, G., Thiel, H. J. & Tautz, N. A cellular J-domain protein modulates polyprotein processing and cytopathogenicity of a pestivirus. J. Virol. 75, 9470–9482 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lackner, T., Thiel, H. J. & Tautz, N. Dissection of a viral autoprotease elucidates a function of a cellular chaperone in proteolysis. Proc. Natl Acad. Sci. USA 103, 1510–1515 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pietschmann, T. et al. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc. Natl Acad. Sci. USA 103, 7408–7413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yi, M., Ma, Y., Yates, J. & Lemon, S. M. Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. J. Virol. 81, 629–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Kiiver, K., Merits, A., Ustav, M. & Zusinaite, E. Complex formation between hepatitis C virus NS2 and NS3 proteins. Virus Res. 117, 264–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Khromykh, A. A., Sedlak, P. L. & Westaway, E. G. cis- and trans-acting elements in flavivirus RNA replication. J. Virol. 74, 3253–3263 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nestorowicz, A., Chambers, T. J. & Rice, C. M. Mutagenesis of the yellow fever virus NS2A/2B cleavage site: effects on proteolytic processing, viral replication and evidence for alternative processing of the NS2A protein. Virology 199, 114–123 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Kümmerer, B. & Rice, C. M. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious virus. J. Virol. 76, 4773–4784 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Liu, W. J., Chen, H. B. & Khromykh, A. A. Molecular and functional analyses of Kunjin virus infectious cDNA clones demonstrate the essential roles for NS2A in virus assembly and for a nonconservative residue in NS3 in RNA replication. J. Virol. 77, 7804–7813 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Leung, J. Y. et al. Role of nonstructural protein NS2A in flavivirus assembly. J. Virol. 82, 4731–4741 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mackenzie, J. M., Khromykh, A. A., Jones, M. K. & Westaway, E. G. Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245, 203–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Amberg, S. M., Nestorowicz, A., McCourt, D. W. & Rice, C. M. NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J. Virol. 68, 3794–3802 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lobigs, M. Flavivirus premembrane protein cleavage and spike heterodimer secretion requires the function of the viral proteinase NS3. Proc. Natl Acad. Sci. USA 90, 6218–6222 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lobigs, M. & Lee, E. Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes. J. Virol. 78, 178–186 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Santolini, E., Migliaccio, G. & La Monica, N. Biosynthesis and biochemical properties of the hepatitis C virus core protein. J. Virol. 68, 3631–3641 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Heimann, M., Roman-Sosa, G., Martoglio, B., Thiel, H. J. & Rumenapf, T. Core protein of pestiviruses is processed at the C terminus by signal peptide peptidase. J. Virol. 80, 1915–1921 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McLauchlan, J., Lemberg, M. K., Hope, G. & Martoglio, B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J. 21, 3980–3988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shavinskaya, A., Boulant, S., Penin, F., McLauchlan, J. & Bartenschlager, R. The lipid droplet binding domain of hepatitis C virus core protein is a major determinant for efficient virus assembly. J. Biol. Chem. 282, 37158–37169 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, W. J., Sedlak, P. L., Kondratieva, N. & Khromykh, A. A. Complementation analysis of the flavivirus Kunjin NS3 and NS5 proteins defines the minimal regions essential for formation of a replication complex and shows a requirement of NS3 in cis for virus assembly. J. Virol. 76, 10766–10775 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pijlman, G. P., Kondratieva, N. & Khromykh, A. A. Translation of the flavivirus kunjin NS3 gene in cis but not its RNA sequence or secondary structure is essential for efficient RNA packaging. J. Virol. 80, 11255–11264 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jones, C. T., Patkar, C. G. & Kuhn, R. J. Construction and applications of yellow fever virus replicons. Virology 331, 247–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Patkar, C. G. & Kuhn, R. J. Yellow fever virus NS3 plays an essential role in virus assembly independent of its known enzymatic functions. J. Virol. 82, 3342–3352 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murray, C. L., Jones, C. T., Tassello, J. & Rice, C. M. Alanine scanning of the hepatitis C virus core protein reveals numerous residues essential for production of infectious virus. J. Virol. 81, 10220–10231 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ma, Y., Yates, J., Liang, Y., Lemon, S. M. & Yi, M. NS3 helicase domains involved in infectious intracellular hepatitis C virus particle assembly. J. Virol. 28 May 2008 (doi:10.1128/JVI.00724-08).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tellinghuisen, T. L., Marcotrigiano, J., Gorbalenya, A. E. & Rice, C. M. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J. Biol. Chem. 279, 48576–48587 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Tellinghuisen, T. L., Paulson, M. S. & Rice, C. M. The NS5A protein of bovine viral diarrhea virus contains an essential zinc-binding site similar to that of the hepatitis C virus NS5A protein. J. Virol. 80, 7450–7458 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tanji, Y., Kaneko, T., Satoh, S. & Shimotohno, K. Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A. J. Virol. 69, 3980–3986 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Reed, K. E., Gorbalenya, A. E. & Rice, C. M. The NS5A/NS5 proteins of viruses from three genera of the family Flaviviridae are phosphorylated by associated serine/threonine kinases. J. Virol. 72, 6199–6206 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Quintavalle, M. et al. Hepatitis C virus NS5A is a direct substrate of casein kinase I-α, a cellular kinase identified by inhibitor affinity chromatography using specific NS5A hyperphosphorylation inhibitors. J. Biol. Chem. 282, 5536–5544 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Appel, N., Pietschmann, T. & Bartenschlager, R. Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J. Virol. 79, 3187–3194 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Neddermann, P. et al. Reduction of hepatitis C virus NS5A hyperphosphorylation by selective inhibition of cellular kinases activates viral RNA replication in cell culture. J. Virol. 78, 13306–13314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bukh, J. et al. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc. Natl Acad. Sci. USA 99, 14416–14421 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao, L., Aizaki, H., He, J. W. & Lai, M. M. Interactions between viral nonstructural proteins and host protein hVAP-33 mediate the formation of hepatitis C virus RNA replication complex on lipid raft. J. Virol. 78, 3480–3488 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Evans, M. J., Rice, C. M. & Goff, S. P. Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc. Natl Acad. Sci. USA 101, 13038–13043 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Miyanari, Y. et al. The lipid droplet is an important organelle for hepatitis C virus production. Nature Cell Biol. 9, 1089–1097 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Appel, N. et al. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog. 4, e1000035 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Tellinghuisen, T. L., Foss, K. L. & Treadaway, J. Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog. 4, e1000032 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Yap, T. L. et al. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J. Virol. 81, 4753–4765 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kapoor, M. et al. Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J. Biol. Chem. 270, 19100–19106 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Khromykh, A. A., Varnavski, A. N., Sedlak, P. L. & Westaway, E. G. Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. J. Virol. 75, 4633–4640 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ansari, I. H. et al. Involvement of a bovine viral diarrhea virus NS5B locus in virion assembly. J. Virol. 78, 9612–9623 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mackenzie, J. M. & Westaway, E. G. Assembly and maturation of the flavivirus Kunjin virus appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J. Virol. 75, 10787–10799 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Selby, M. J., Glazer, E., Masiarz, F. & Houghton, M. Complex processing and protein:protein interactions in the E2:NS2 region of HCV. Virology 204, 114–122 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Goh, P. Y. et al. The hepatitis C virus core protein interacts with NS5A and activates its caspase-mediated proteolytic cleavage. Virology 290, 224–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Gonzalez, M. E. & Carrasco, L. Viroporins. FEBS Lett. 552, 28–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Lamb, R. A. & Pinto, L. H. Do Vpu and Vpr of human immunodeficiency virus type 1 and NB of influenza B virus have ion channel activities in the viral life cycles? Virology 229, 1–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Kelly, M. L. et al. Demonstrating the intrinsic ion channel activity of virally encoded proteins. FEBS Lett. 552, 61–67 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Strebel, K. HIV accessory genes Vif and Vpu. Adv. Pharmacol. 55, 199–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, D. X., Yuan, Q. & Liao, Y. Coronavirus envelope protein: a small membrane protein with multiple functions. Cell. Mol. Life Sci. 64, 2043–2048 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tellinghuisen, T. L., Foss, K. L., Treadaway, J. C. & Rice, C. M. Identification of residues required for RNA replication in domains II and III of the hepatitis C virus NS5A protein. J. Virol. 82, 1073–1083 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Tellinghuisen, R. Kuhn, C. Patkar, S. Lemon and M. Yi for sharing pre-publication results. We also acknowledge T. Tellinghuisen for critical reading of the manuscript. Work on infectious virus assembly in the laboratory of C.M.R. is supported by Public Health Service grants (CA057973, AI072613 and AI075099), the Starr Foundation and the Greenberg Medical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine L. Murray or Charles M. Rice.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Charles M. Rice's homepage

Glossary

Fulminant hepatitis

Fulminant hepatic failure refers to the rapid development of severe acute liver injury, with impaired synthetic function and encephalopathy, in a person who previously had a normal liver or well-compensated liver disease.

Fusogenic

Promotes fusion of the viral envelope with the cellular plasma membrane.

Viroporin

A small (around 100 amino acid), hydrophobic viral protein that oligomerizes to form pores in vitro and promotes virus infectivity in vivo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, C., Jones, C. & Rice, C. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 6, 699–708 (2008). https://doi.org/10.1038/nrmicro1928

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing