Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coordinating assembly of a bacterial macromolecular machine

Key Points

  • The bacterial flagellum is a complex organelle that is required for the motility that is driven by an ion-powered rotary motor.

  • The assembly of multiple flagellar organelles in a single cell is coupled to a sophisticated regulatory hierarchy of over 60 genes that are required for the assembly and proper function of these organelles, which allows the bacterium to direct its movement in response to chemical stimuli.

  • Multiple checkpoints occur during flagellum biogenesis to ensure that optimum size of individual parts is achieved, that specific genes are expressed at appropriate times and that a minimum of substrates are produced to maximize the efficiency of the assembly process.

  • This Review summarizes the current level of understanding of the regulation of flagellar biosynthesis and how gene regulation is coupled to this process.

Abstract

The assembly of large and complex organelles, such as the bacterial flagellum, poses the formidable problem of coupling temporal gene expression to specific stages of the organelle-assembly process. The discovery that levels of the bacterial flagellar regulatory protein FlgM are controlled by its secretion from the cell in response to the completion of an intermediate flagellar structure (the hook–basal body) was only the first of several discoveries of unique mechanisms that coordinate flagellar gene expression with assembly. In this Review, we discuss this mechanism, together with others that also coordinate gene regulation and flagellar assembly in Gram-negative bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrograph images illustrating the different types of flagellar arrangement in bacteria.
Figure 2: Flagellar components of Salmonella enterica serovar Typhimurium.
Figure 3: Coupling of flagellar gene regulation to flagellum assembly.

Similar content being viewed by others

References

  1. Bardy, S. L., Ng, S. Y. & Jarrell, K. F. Recent advances in the structure and assembly of the archaeal flagellum. J. Mol. Microbiol. Biotechnol. 7, 41–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Mignot, T., Shaevitz, J. W., Hartzell, P. L. & Zusman, D. R. Evidence that focal adhesion complexes power bacterial gliding motility. Science 315, 853–856 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seto, S., Uenoyama, A. & Miyata, M. Identification of a 521-kilodalton protein (Gli521) involved in force generation or force transmission for Mycoplasma mobile gliding. J. Bacteriol. 187, 3502–3510 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hiratsuka, Y., Miyata, M., Tada, T. & Uyeda, T. Q. A microrotary motor powered by bacteria. Proc. Natl Acad. Sci. USA 103, 13618–13623 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minamino, T. et al. Crystallization and preliminary X-ray analysis of Salmonella FliI, the ATPase component of the type III flagellar protein-export apparatus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62, 973–975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Saijo-Hamano, Y., Minamino, T., Macnab, R. M. & Namba, K. Structural and functional analysis of the C-terminal cytoplasmic domain of FlhA, an integral membrane component of the type III flagellar protein export apparatus in Salmonella. J. Mol. Biol. 343, 457–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Samatey, F. A. et al. Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 431, 1062–1068 (2004). The three-dimensional structure of the bacterial flagellar hook provides key insights into the nature of a biological universal joint structure.

    Article  CAS  PubMed  Google Scholar 

  9. Yonekura, K., Maki-Yonekura, S. & Namba, K. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Yonekura, K. et al. Electron cryomicroscopic visualization of PomA/B stator units of the sodium-driven flagellar motor in liposomes. J. Mol. Biol. 357, 73–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Chevance, F. F. et al. The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution. Genes Dev. 21, 2326–2335 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moriya, N., Minamino, T., Hughes, K. T., Macnab, R. M. & Namba, K. The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. J. Mol. Biol. 359, 466–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Shibata, S. et al. FliK regulates flagellar hook length as an internal ruler. Mol. Microbiol. 64, 1404–1415 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Aldridge, P. & Hughes, K. T. Regulation of flagellar assembly. Curr. Opin. Microbiol. 5, 160–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Parsot, C., Hamiaux, C. & Page, A. L. The various and varying roles of specific chaperones in type III secretion systems. Curr. Opin. Microbiol. 6, 7–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Macnab, R. M. in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (ed. Ingraham, J. L. & Neidhardt, F. C.) 123–145 (ASM, Washington DC, 1996).

    Google Scholar 

  17. Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973). Showed that bacterial motility is achieved by the rotation of rigid flagella.

    Article  CAS  PubMed  Google Scholar 

  18. Blocker, A., Komoriya, K. & Aizawa, S. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl Acad. Sci. USA 100, 3027–3030 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Galan, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Namba, K. Roles of partly unfolded conformations in macromolecular self-assembly. Genes Cells 6, 1–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Akeda, Y. & Galan, J. E. Chaperone release and unfolding of substrates in type III secretion. Nature 437, 911–915 (2005). Demonstrated that the T3SS ATPase has another role in addition to its direct role in substrate secretion.

    Article  CAS  PubMed  Google Scholar 

  22. Paul, K., Erhardt, M., Hirano, T., Blair, D. F. & Hughes, K. T. Energy source of flagellar type III secretion. Nature 451, 489–492 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Minamino, T. & Namba, K. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451, 485–488 (2008). Together with Reference 22, confirmed a predominant role for the PMF in T3S.

    Article  CAS  PubMed  Google Scholar 

  24. Cornelis, G. R. The type III secretion injectisome. Nature Rev. Microbiol. 4, 811–825 (2006).

    Article  CAS  Google Scholar 

  25. Kubori, T. et al. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280, 602–605 (1998). Visualization of the T3SS needle, which showed that it resembles a flagellar hook–basal body.

    Article  CAS  PubMed  Google Scholar 

  26. Michiels, T. & Cornelis, G. R. Secretion of hybrid proteins by the Yersinia Yop export system. J. Bacteriol. 173, 1677–1685 (1991). First report that the virulence-associated T3S signal is structural.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vonderviszt, F., Aizawa, S. & Namba, K. Role of the disordered terminal regions of flagellin in filament formation and stability. J. Mol. Biol. 221, 1461–1474 (1991). First report that the flagellar T3S signal is structural.

    Article  CAS  PubMed  Google Scholar 

  28. Fan, F., Ohnishi, K., Francis, N. R. & Macnab, R. M. The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body. Mol. Microbiol. 26, 1035–1046 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Minamino, T. & Macnab, R. M. Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 181, 1388–1394 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Evans, L. D., Stafford, G. P., Ahmed, S., Fraser, G. M. & Hughes, C. An escort mechanism for cycling of export chaperones during flagellum assembly. Proc. Natl Acad. Sci. USA 103, 17474–17479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stafford, G. P. et al. Sorting of early and late flagellar subunits after docking at the membrane ATPase of the type III export pathway. J. Mol. Biol. 374, 877–882 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fraser, G. M., Gonzalez-Pedrajo, B., Tame, J. R. & Macnab, R. M. Interactions of FliJ with the Salmonella type III flagellar export apparatus. J. Bacteriol. 185, 5546–5554 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gonzalez-Pedrajo, B., Minamino, T., Kihara, M. & Namba, K. Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Mol. Microbiol. 60, 984–998 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. McMurry, J. L., Murphy, J. W. & Gonzalez-Pedrajo, B. The FliN–FliH interaction mediates localization of flagellar export ATPase FliI to the C ring complex. Biochemistry 45, 11790–11798 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Paul, K., Harmon, J. G. & Blair, D. F. Mutational analysis of the flagellar rotor protein FliN: identification of surfaces important for flagellar assembly and switching. J. Bacteriol. 188, 5240–5248 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thomas, J., Stafford, G. P. & Hughes, C. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc. Natl Acad. Sci. USA 101, 3945–3950 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iino, T. Polarity of flagellar growth in Salmonella. J. Gen. Microbiol. 56, 227–239 (1969).

    Article  CAS  PubMed  Google Scholar 

  38. Schlumberger, M. C. et al. Real-time imaging of type III secretion: Salmonella SipA injection into host cells. Proc. Natl Acad. Sci. USA 102, 12548–12553 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kutsukake, K. Hook-length control of the export-switching machinery involves a double-locked gate in Salmonella typhimurium flagellar morphogenesis. J. Bacteriol. 179, 1268–1273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aldridge, P., Karlinsey, J. E., Becker, E., Chevance, F. F. & Hughes, K. T. Flk prevents premature secretion of the anti-sigma factor FlgM into the periplasm. Mol. Microbiol. 60, 630–643 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferris, H. U. & Minamino, T. Flipping the switch: bringing order to flagellar assembly. Trends Microbiol. 14, 519–526 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Waters, R. C., O'Toole, P. W. & Ryan, K. A. The FliK protein and flagellar hook-length control. Protein Sci. 16, 769–780 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patterson-Delafield, J., Martinez, R. J., Stocker, B. A. & Yamaguchi, S. A new fla gene in Salmonella typhimuriumflaR — and its mutant phenotype-superhooks. Arch. Mikrobiol. 90, 107–120 (1973).

    Article  CAS  PubMed  Google Scholar 

  44. Hirano, T., Yamaguchi, S., Oosawa, K. & Aizawa, S. Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J. Bacteriol. 176, 5439–5449 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kutsukake, K., Minamino, T. & Yokoseki, T. Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium. J. Bacteriol. 176, 7625–7629 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Minamino, T. et al. Domain organization and function of Salmonella FliK, a flagellar hook-length control protein. J. Mol. Biol. 341, 491–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Minamino, T., Gonzalez-Pedrajo, B., Yamaguchi, K., Aizawa, S. I. & Macnab, R. M. FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol. Microbiol. 34, 295–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Minamino, T., Ferris, H. U., Moriya, N., Kihara, M. & Namba, K. Two parts of the T3S4 domain of the hook-length control protein FliK are essential for the substrate specificity switching of the flagellar type III export apparatus. J. Mol. Biol. 362, 1148–1158 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Journet, L., Agrain, C., Broz, P. & Cornelis, G. R. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302, 1757–1760 (2003). Demonstrated that a secretable molecular ruler is used to control the length of external structures in T3SSs.

    Article  CAS  PubMed  Google Scholar 

  50. Agrain, C. et al. Characterization of a type III secretion substrate specificity switch (T3S4) domain in YscP from Yersinia enterocolitica. Mol. Microbiol. 56, 54–67 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Khan, I. H., Reese, T. S. & Khan, S. The cytoplasmic component of the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 89, 5956–5960 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kojima, S. & Blair, D. F. The bacterial flagellar motor: structure and function of a complex molecular machine. Int. Rev. Cytol. 233, 93–134 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Makishima, S., Komoriya, K., Yamaguchi, S. & Aizawa, S. I. Length of the flagellar hook and the capacity of the type III export apparatus. Science 291, 2411–2413 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Koroyasu, S., Yamazato, M., Hirano, T. & Aizawa, S. I. Kinetic analysis of the growth rate of the flagellar hook in Salmonella typhimurium by the population balance method. Biophys. J. 74, 436–443 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ferris, H. U. et al. FlhB regulates ordered export of flagellar components via autocleavage mechanism. J. Biol. Chem. 280, 41236–41242 (2005). Showed that an innate timing device (autocleavage) is required for the flagellar T3SS substrate-specificity switch.

    Article  CAS  PubMed  Google Scholar 

  56. Hirano, T., Shibata, S., Ohnishi, K., Tani, T. & Aizawa, S. N-terminal signal region of FliK is dispensable for length control of the flagellar hook. Mol. Microbiol. 56, 346–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Gillen, K. L. & Hughes, K. T. Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium. J. Bacteriol. 173, 2301–2310 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Karlinsey, J. E., Pease, A. J., Winkler, M. E., Bailey, J. L. & Hughes, K. T. The flk gene of Salmonella typhimurium couples flagellar P- and L-ring assembly to flagellar morphogenesis. J. Bacteriol. 179, 2389–2400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Samatey, F. A. et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410, 331–337 (2001). The three-dimensional structure of the bacterial flagellar filament provided key structure–function insights into the mechanism of flagellar structure and motility.

    Article  CAS  PubMed  Google Scholar 

  60. Imada, K., Vonderviszt, F., Furukawa, Y., Oosawa, K. & Namba, K. Assembly characteristics of flagellar cap protein HAP2 of Salmonella: decamer and pentamer in the pH-sensitive equilibrium. J. Mol. Biol. 277, 883–891 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Jones, C. J., Macnab, R. M., Okino, H. & Aizawa, S. Stoichiometric analysis of the flagellar hook– (basal-body) complex of Salmonella typhimurium. J. Mol. Biol. 212, 377–387 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Thomas, D. R., Francis, N. R., Xu, C. & DeRosier, D. J. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J. Bacteriol. 188, 7039–7048 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blair, D. F. Fine structure of a fine machine. J. Bacteriol. 188, 7033–7035 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Homma, M. & Iino, T. Locations of hook-associated proteins in flagellar structures of Salmonella typhimurium. J. Bacteriol. 162, 183–189 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Jones, C. J. & Macnab, R. M. Flagellar assembly in Salmonella typhimurium: analysis with temperature-sensitive mutants. J. Bacteriol. 172, 1327–1339 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kato, S., Aizawa, S. & Asakura, S. Reconstruction in vitro of the flagellar polyhook from Salmonella. J. Mol. Biol. 161, 551–560 (1982).

    Article  CAS  PubMed  Google Scholar 

  67. Asakura, S., Eguchi, G. & Iino, T. Reconstitution of bacterial flagella in vitro. J. Mol. Biol. 10, 42–56 (1964).

    Article  CAS  PubMed  Google Scholar 

  68. Muramoto, K., Makishima, S., Aizawa, S. & Macnab, R. M. Effect of hook subunit concentration on assembly and control of length of the flagellar hook of Salmonella. J. Bacteriol. 181, 5808–5813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Frye, J. et al. Identification of new flagellar genes of Salmonella enterica serovar Typhimurium. J. Bacteriol. 188, 2233–2243 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kutsukake, K., Ohya, Y. & Iino, T. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172, 741–747 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Karlinsey, J. E. et al. Completion of the hook–basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol. Microbiol. 37, 1220–1231 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. England, J. C. & Gober, J. W. Cell cycle control of cell morphogenesis in Caulobacter. Curr. Opin. Microbiol. 4, 674–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. McCarter, L. L. Regulation of flagella. Curr. Opin. Microbiol. 9, 180–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Charon, N. W. & Goldstein, S. F. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu. Rev. Genet. 36, 47–73 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, S., Fleming, R. T., Westbrook, E. M., Matsumura, P. & McKay, D. B. Structure of the Escherichia coli FlhDC complex, a prokaryotic heteromeric regulator of transcription. J. Mol. Biol. 355, 798–808 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Ohnishi, K., Kutsukake, K., Suzuki, H. & Iino, T. Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium. Mol. Gen. Genet. 221, 139–147 (1990).

    Article  CAS  PubMed  Google Scholar 

  77. Chadsey, M. S., Karlinsey, J. E. & Hughes, K. T. The flagellar anti-σ factor FlgM actively dissociates Salmonella typhimurium σ28 RNA polymerase holoenzyme. Genes Dev. 12, 3123–3136 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chadsey, M. S. & Hughes, K. T. A multipartite interaction between Salmonella transcription factor σ28 and its anti-σ factor FlgM: implications for σ28 holoenzyme destabilization through stepwise binding. J. Mol. Biol. 306, 915–929 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Ohnishi, K., Kutsukake, K., Suzuki, H. & Lino, T. A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an antisigma factor inhibits the activity of the flagellum-specific sigma factor, σF. Mol. Microbiol. 6, 3149–3157 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Hughes, K. T., Gillen, K. L., Semon, M. J. & Karlinsey, J. E. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262, 1277–1280 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Kutsukake, K. Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol. Gen. Genet. 243, 605–612 (1994). Together with Reference 80, demonstrated that flagellar gene expression is coupled to flagellum assembly by the secretion of an inhibitory protein.

    CAS  PubMed  Google Scholar 

  82. Barembruch, C. & Hengge, R. Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis. Mol. Microbiol. 65, 76–89 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Kutsukake, K. Autogenous and global control of the flagellar master operon, flhD, in Salmonella typhimurium. Mol. Gen. Genet. 254, 440–448 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Yamamoto, S. & Kutsukake, K. FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar Typhimurium. J. Bacteriol. 188, 6703–6708 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bennett, J. C., Thomas, J., Fraser, G. M. & Hughes, C. Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol. Microbiol. 39, 781–791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fraser, G. M. et al. Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB. Mol. Microbiol. 48, 1043–1057 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, S. H. & Galan, J. E. Salmonella type III secretion-associated chaperones confer secretion-pathway specificity. Mol. Microbiol. 51, 483–495 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Letzelter, M. et al. The discovery of SycO highlights a new function for type III secretion effector chaperones. EMBO J. 25, 3223–3233 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wattiau, P. & Cornelis, G. R. SycE, a chaperone-like protein of Yersinia enterocolitica involved in Ohe secretion of YopE. Mol. Microbiol. 8, 123–131 (1993). First demonstration of a dual role for the T3SS chaperone in the regulation of gene expression.

    Article  CAS  PubMed  Google Scholar 

  90. Karlinsey, J. E., Lonner, J., Brown, K. L. & Hughes, K. T. Translation/secretion coupling by type III secretion systems. Cell 102, 487–497 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Auvray, F., Thomas, J., Fraser, G. M. & Hughes, C. Flagellin polymerisation control by a cytosolic export chaperone. J. Mol. Biol. 308, 221–229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Aldridge, P. D. et al. The flagellar-specific transcription factor, σ28, is the type III secretion chaperone for the flagellar-specific anti-σ28 factor FlgM. Genes Dev. 20, 2315–2326 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Park, S. Y., Lowder, B., Bilwes, A. M., Blair, D. F. & Crane, B. R. Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc. Natl Acad. Sci. USA 103, 11886–11891 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Macnab, R. M. How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Homma, M., Kutsukake, K., Hasebe, M., Iino, T. & Macnab, R. M. FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 211, 465–477 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Hirano, T., Minamino, T. & Macnab, R. M. The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J. Mol. Biol. 312, 359–369 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, H. J. & Hughes, K. T. Posttranscriptional control of the Salmonella enterica flagellar hook protein FlgE. J. Bacteriol. 188, 3308–3316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stafford, G. P. & Hughes, C. Salmonella typhimurium flhE, a conserved flagellar regulon gene required for swarming. Microbiology 153, 541–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Attmannspacher, U., Scharf, B. E. & Harshey, R. M. FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica. Mol. Microbiol. 68, 328–341 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Blair, D. F. & Berg, H. C. The MotA protein of E. coli is a proton-conducting component of the flagellar motor. Cell 60, 439–449 (1990).

    Article  CAS  PubMed  Google Scholar 

  102. Zhao, R., Pathak, N., Jaffe, H., Reese, T. S. & Khan, S. FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J. Mol. Biol. 261, 195–208 (1996).

    Article  CAS  Google Scholar 

  103. Zhao, R., Amsler, C. D., Matsumura, P. & Khan, S. FliG and FliM distribution in the Salmonella typhimurium cell and flagellar basal bodies. J. Bacteriol. 178, 258–265 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Irikura, V. M., Kihara, M., Yamaguchi, S., Sockett, H. & Macnab, R. M. Salmonella typhimurium fliG and fliN mutations causing defects in assembly, rotation, and switching of the flagellar motor. J. Bacteriol. 175, 802–810 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lloyd, S. A., Tang, H., Wang, X., Billings, S. & Blair, D. F. Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J. Bacteriol. 178, 223–231 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grunenfelder, B., Gehrig, S. & Jenal, U. Role of the cytoplasmic C terminus of the FliF motor protein in flagellar assembly and rotation. J. Bacteriol. 185, 1624–1633 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kihara, M., Miller, G. U. & Macnab, R. M. Deletion analysis of the flagellar switch protein FliG of Salmonella. J. Bacteriol. 182, 3022–3028 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kubori, T., Yamaguchi, S. & Aizawa, S. Assembly of the switch complex onto the MS ring complex of Salmonella typhimurium does not require any other flagellar proteins. J. Bacteriol. 179, 813–817 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Toker, A. S. & Macnab, R. M. Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J. Mol. Biol. 273, 623–634 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Bren, A. & Eisenbach, M. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J. Mol. Biol. 278, 507–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W. W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249, 74–77 (1974). Showed that clockwise–anticlockwise rotational changes are the basis for flagellar chemotaxis.

    Article  CAS  PubMed  Google Scholar 

  112. Macnab, R. M. & Ornston, M. K. Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J. Mol. Biol. 112, 1–30 (1977).

    Article  CAS  PubMed  Google Scholar 

  113. Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shaikh, T. R. et al. A partial atomic structure for the flagellar hook of Salmonella typhimurium. Proc. Natl Acad. Sci. USA 102, 1023–1028 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ikeda, T., Asakura, S. & Kamiya, R. “Cap” on the tip of Salmonella flagella. J. Mol. Biol. 184, 735–737 (1985).

    Article  CAS  PubMed  Google Scholar 

  116. Ikeda, T., Asakura, S. & Kamiya, R. Total reconstitution of Salmonella flagellar filaments from hook and purified flagellin and hook-associated proteins in vitro. J. Mol. Biol. 209, 109–114 (1989).

    Article  CAS  PubMed  Google Scholar 

  117. Homma, M., Kutsukake, K., Iino, T. & Yamaguchi, S. Hook-associated proteins essential for flagellar filament formation in Salmonella typhimurium. J. Bacteriol. 157, 100–108 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Homma, M., Kutsukake, K. & Iino, T. Structural genes for flagellar hook-associated proteins in Salmonella typhimurium. J. Bacteriol. 163, 464–471 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Homma, M., DeRosier, D. J. & Macnab, R. M. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213, 819–832 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Namba for providing the data presented in Box 2, and acknowledge funding to K.T.H. by PHS service grants GM056141 and GM062206 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly T. Hughes.

Related links

Related links

DATABASES

Entrez Genome Project

Caulobacter crescentus

Escherichia coli

Helicobacter pylori

Idiomarina loihiensis

Mycoplasma mobile

Neisseria gonorrhoeae

Pseudomonas aeruginosa

S. typhimurium

Vibrio cholerae

Vibrio fischeri

Entrez Protein

FlgB

FlgC

FlgD

FlgE

FlgF

FlgG

FlgJ

FlgK

FlgM

FlhA

FlhB

FliA

FliC

FliD

FliE

FliF

FliH

FliI

FliJ

FliK

FliO

FliP

FliQ

FliR

Flk

SopE

SptP

FURTHER INFORMATION

Kelly T. Hughes's homepage

Glossary

Proton motive force

(PMF). The energy source of the cell. The PMF is a combination of the membrane electrical potential and the pH gradient that is produced from the breakdown of carbohydrates by cellular catabolic pathways.

Chaperone

A type III secretion chaperone binds a secretion substrate to prevent its degradation before secretion and pilots the substrate to the secretion apparatus to facilitate export.

Sigma factor

The subunit of RNA polymerase that recognizes promoter sequences.

Bypass mutant

A mutant that works in the presence of an antagonist protein, whereas the wild-type protein is normally inhibited.

Periplasm

The region between the inner and outer membranes of Gram-negative bacteria.

Regulon

A group of genes that are coordinately regulated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevance, F., Hughes, K. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6, 455–465 (2008). https://doi.org/10.1038/nrmicro1887

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing