Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions

Key Points

  • Gram-positive bacteria lack regular outer membranes and instead have thickened peptidoglycan cell walls. Within the fabric of the cell wall, Gram-positive bacteria contain additional cell-wall glycopolymers (CWGs), including at least one membrane-attached (M-CWG) and one peptidoglycan-attached (P-CWG) type. CWG structures are highly diverse and their functions are only partially understood.

  • CWGs differ with regards to their sugar building blocks and non-glycosyl residues. According to net charge, CWGs can be classified into zwitterionic, anionic and uncharged polymers. The classical wall teichoic acids or lipoteichoic acids are zwitterionic because of their negatively charged phosphate and positively charged amino groups (positively charged amino groups are derived in most cases from D-alanine residues). Polyanionic CWGs include, for example, pyruvylated polysaccharides from S-layer-protein-displaying bacilli and their relatives, teichuronic acids and succinylated lipoglycans. Uncharged, often branched CWGs are found, for example, in the cell walls of Mycobacterium tuberculosis and other actinobacteria.

  • Most CWGs seem to have functions in protecting bacterial cell envelopes through the attachment of further protective surface structures, such as S-layer proteins or mycolic acids, or by directly impeding the passage of harmful molecules. Further roles in binding surface proteins and cations, directing the cell-division machinery and enabling biofilm formation by shaping physicochemical surface properties have been described.

  • In addition to bacterial physiology, CWGs can have a range of crucial functions in bacteria–host interactions. These can include: bacterial attachment to host cells, probably through scavenger-receptor-like molecules; induction of proinflammatory responses by Toll-like receptors; activation of complement; and binding of antibodies. Moreover, there is growing evidence that certain zwitterionic glycopolymers can induce major histocompatibility complex class II-dependent activation of T cells, followed by the induction of immunological memory.

  • The pivotal roles of CWGs for Gram-positive viability and/or virulence, together with their easy accessibility, make CWGs promising targets for diagnostics, vaccines and antibiotics. In fact, established diagnostic procedures, such as serological streptococcal differentiation, take advantage of species-specific differences in CWGs. Moreover, promising reports on the use of certain CWGs for active or passive vaccination or of CWG-biosynthetic enzymes as targets for novel antimicrobial compounds indicate the future potential of CWGs for use in new anti-infective strategies.

  • Many topics on CWGs that range from their structural diversity, functions in bacterial physiology and cell division, roles in specific host interactions and usefulness for preventing infections remain major challenges for future research. How CWGs can contribute to bacterial fitness, virulence and host cell tropism, how static or plastic CWG structures are during changing environmental conditions and how CWG biosynthesis is regulated should be investigated more thoroughly using sophisticated glycomics and systems-biology approaches.

Abstract

Abstract | Most Gram-positive bacteria incorporate membrane- or peptidoglycan-attached carbohydrate-based polymers into their cell envelopes. Such cell-wall glycopolymers (CWGs) often have highly variable structures and have crucial roles in protecting, connecting and controlling the major envelope constituents. Further important roles of CWGs in host-cell adhesion, inflammation and immune activation have also been described in recent years. Identifying and harnessing highly conserved or species-specific structural features of CWGs offers excellent opportunities for developing new antibiotics, vaccines and diagnostics for use in the fight against severe infectious diseases, such as sepsis, pneumonia, anthrax and tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-wall glycopolymers (CWGs) in the cell walls of major human pathogens.
Figure 2: Schematic structures of selected cell-wall glycopolymers (CWGs).
Figure 3: Roles of wall teichoic acid (WTA) and lipoteichoic acid (LTA) in the cell wall of Staphylococcus aureus.
Figure 4: Interaction of cell-wall glycopolymers (CWGs) with host molecules.

Similar content being viewed by others

References

  1. Archibald, A. R., Hancock, I. C. & Harwood, C. R. in Bacillus subtilis and other Gram-positive Bacteria: Physiology and Molecular Genetics (ed. Sonenshein, A. L.) 381–410 (ASM, Washington DC, 1993).

    Google Scholar 

  2. Ghuysen, J. M. & Hakenbeck, R. (eds) Bacterial Cell Wall 1–606 (Elsevier Science, Amsterdam, 1994).

    Google Scholar 

  3. Baddiley, J. Teichoic acids in cell walls and membranes of bacteria. Essays Biochem. 8, 35–77 (1972).

    CAS  PubMed  Google Scholar 

  4. Ward, J. B. Teichoic and teichuronic acids: biosynthesis, assembly and location. Microbiol. Rev. 45, 211–243 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sutcliffe, I. C. & Shaw, N. Atypical lipoteichoic acids of Gram-positive bacteria. J. Bacteriol. 173, 7065–7069 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fischer, W. in Bacterial Cell wall (eds Ghuysen, J. M. & Hakenbeck, R.) 199–215 (Elsevier Science, Amsterdam, 1994).

    Book  Google Scholar 

  7. Neuhaus, F. C. & Baddiley, J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol. Biol Rev. 67, 686–723 (2003). A recent comprehensive review on teichoic acids that had a particular emphasis on the role of alanylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brennan, P. J. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinb.) 83, 91–97 (2003).

    Article  CAS  Google Scholar 

  9. Schaffer, C. & Messner, P. The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151, 643–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Fischer, W. in The Handbook of Lipid Research: Glycolipids, Phosphoglycolipids and Sulfoglycolipids (ed. Kates, M.) 123–234 (Plenum, New York,1990).

    Book  Google Scholar 

  11. Naumova, I. B. & Shashkov, A. S. Anionic polymers in cell walls of Gram-positive bacteria. Biochemistry (Mosc.) 62, 809–840 (1997).

    CAS  Google Scholar 

  12. Fischer, W. Physiology of lipoteichoic acids in bacteria. Adv. Microb. Physiol. 29, 233–302 (1988). References 10 and 12 by Werner Fischer, the pioneer of LTA research, are the most comprehensive reviews on LTA.

    Article  CAS  PubMed  Google Scholar 

  13. Berg, S., Kaur, D., Jackson, M. & Brennan, P. J. The glycosyltransferases of Mycobacterium tuberculosis — roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17, 35R–56R (2007). A detailed overview of mycobacterial CWGs and CWG-biosynthetic enzymes.

    Article  CAS  Google Scholar 

  14. Armstrong, J. J. et al. Composition of teichoic acids from a number of bacterial walls. Nature 184, 247–248 (1959).

    Article  CAS  PubMed  Google Scholar 

  15. Weidenmaier, C. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nature Med. 10, 243–245 (2004). The first demonstration that WTAs are dispensable for the viability of S. aureus , but play an essential part in S. aureus nasal colonization.

    Article  CAS  PubMed  Google Scholar 

  16. D'Elia, M. A. et al. Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J. Bacteriol. 188, 4183–4189 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fedtke, I. et al. A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol. Microbiol. 65, 1078–1091 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bhavsar, A. P. & Brown, E. D. Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol. Microbiol. 60, 1077–1090 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Araki, Y. & Ito, E. Linkage units in cell walls of Gram-positive bacteria. Crit. Rev. Microbiol. 17, 121–135 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Fischer, W. in New Targets for New Antimicrobial Agents (ed. Hakenbeck, R.) 47–50 (Spektrum Akademischer Verlag, Heidelberg, 1997).

    Google Scholar 

  21. Endl, J., Seidl, H. P., Fiedler, F. & Schleifer, K. H. Chemical composition and structure of the cell wall teichoic acids of staphylococci. Arch. Microbiol. 135, 215–223 (1983).

    Article  CAS  PubMed  Google Scholar 

  22. Potekhina, N. V., Tul'skaya, E. M., Naumova, I. B., Shashkov, A. S. & Evtushenko, L. I. Erythritolteichoic acid in the cell wall of Glycomyces tenuis VKM Ac-1250. Eur. J. Biochem. 218, 371–375 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Fischer, W., Behr, T., Hartmann, R., Peter-Katalinic, J. & Egge, H. Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoid acid (C polysaccharide). Eur. J. Biochem. 215, 851–857 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Greenberg, J. W., Fischer, W. & Joiner, K. A. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect. Immun. 64, 3318–3325 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shashkov, A. S. et al. Cell wall teichoic acids of streptomycetes of the phenetic cluster 'Streptomyces fulvissimus'. Carbohydr. Res. 341, 796–802 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Soldo, B., Lazarevic, V., Pagni, M. & Karamata, D. Teichuronic acid operon of Bacillus subtilis 168. Mol. Microbiol. 31, 795–805 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Choudhury, B. et al. The structure of the major cell wall polysaccharide of Bacillus anthracis is species-specific. J. Biol. Chem. 281, 27932–27941 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Mesnage, S. et al. Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19, 4473–4484 (2000). Demonstration of CWG pyruvylation in B. anthracis and its crucial role in S-layer-protein attachment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Powell, D. A., Duckworth, M. & Baddiley, J. A membrane-associated lipomannan in micrococci. Biochem. J. 151, 387–397 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Delmas, C. et al. Comparative structural study of the mannosylated-lipoarabinomannans from Mycobacterium bovis BCG vaccine strains: characterization and localization of succinates. Glycobiology 7, 811–817 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Freymond, P. P., Lazarevic, V., Soldo, B. & Karamata, D. Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: its biosynthetic pathway and mode of attachment to peptidoglycan. Microbiology 152, 1709–1718 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Tatituri, R. V. et al. Structural characterization of a partially arabinosylated lipoarabinomannan variant isolated from a Corynebacterium glutamicum ubiA mutant. Microbiology 153, 2621–2629 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garton, N. J. et al. A novel lipoarabinomannan from the equine pathogen Rhodococcus equi. Structure and effect on macrophage cytokine production. J. Biol. Chem. 277, 31722–31733 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Takayama, K., Wang, C. & Besra, G. S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 18, 81–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sutcliffe, I. Lipoarabinomannans — structurally diverse and functionally enigmatic macroamphiphiles of mycobacteria and related actinomycetes. Tuberculosis (Edinb.) 85, 205–206 (2005).

    Article  Google Scholar 

  36. Briken, V., Porcelli, S. A., Besra, G. S. & Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol. 53, 391–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Lazarevic, V. & Karamata, D. The tagGH operon of Bacillus subtilis 168 encodes a two-component ABC transporter involved in the metabolism of two wall teichoic acids. Mol. Microbiol. 16, 345–355 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Damjanovic, M., Kharat, A. S., Eberhardt, A., Tomasz, A. & Vollmer, W. The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J. Bacteriol. 189, 7105–7111 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pooley, H. M. & Karamata, D. in Bacterial Cell Wall (eds Ghuysen, J. M. & Hakenbeck, R.) 187–197 (Elsevier Science, Amsterdam, 1994).

    Book  Google Scholar 

  40. Lazarevic, V., Abellan, F. X., Möller, S. B., Karamata, D. & Mauel, C. Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. Microbiology 148, 815–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Qian, Z. et al. Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication. BMC Genomics 7, 74 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grundling, A. & Schneewind, O. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc. Natl Acad. Sci. USA 104, 8478–8483 (2007). First description of the long sought LTA polymerase of S. aureus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Kristian, S. A. et al. D-alanylation of teichoic acid promotes group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J. Bacteriol. 187, 6719–6725 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D'Elia, M. A., Millar, K. E., Beveridge, T. J. & Brown, E. D. Wall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis. J. Bacteriol. 188, 8313–8316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O'Riordan, K. & Lee, J. C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17, 218–234 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peschel, A. & Sahl, H. G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nature Rev. Microbiol. 4, 529–536 (2006).

    Article  CAS  Google Scholar 

  48. Sieradzki, K. & Tomasz, A. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J. Bacteriol. 185, 7103–7110 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peschel, A., Vuong, C., Otto, M. & Götz, F. The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolysins. Antimicrob. Agents Chemother. 44, 2845–2847 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bera, A. et al. Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J. Bacteriol. 189, 280–283 (2007). Demonstrates that WTA contributes profoundly to lysozyme resistance.

    Article  CAS  PubMed  Google Scholar 

  51. Gross, M., Cramton, S., Götz, F. & Peschel, A. Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect. Immun. 69, 3423–3426 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kristian, S. A. et al. Alanylation of teichoic acids protects Staphylococcus aureus against Toll-like receptor 2-dependent host defense in a mouse tissue cage infection model. J. Infect. Dis. 188, 414–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Fabretti, F. et al. Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect. Immun. 74, 4164–4171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Heptinstall, S., Archibald, A. R. & Baddiley, J. Teichoic acids and membrane function in bacteria. Nature 225, 519–521 (1970).

    Article  CAS  PubMed  Google Scholar 

  55. Calamita, H. G., Ehringer, W. D., Koch, A. L. & Doyle, R. J. Evidence that the cell wall of Bacillus subtilis is protonated during respiration. Proc. Natl Acad. Sci. USA 98, 15260–15263 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weidenmaier, C., Kristian, S. A. & Peschel, A. Bacterial resistance to antimicrobial host defenses — an emerging target for novel antiinfective strategies? Curr. Drug Targets 4, 643–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Collins, L. V. et al. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J. Infect. Dis. 186, 214–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Koprivnjak, T., Peschel, A., Gelb, M. H., Liang, N. S. & Weiss, J. P. Role of charge properties of bacterial envelope in bactericidal action of human Group IIA phospholipase A2 against Staphylococcus aureus. J. Biol. Chem. 277, 47636–47644 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Neuhaus, F. C., Heaton, M. P., Debabov, D. V. & Zhang, Q. The dlt operon in the biosynthesis of D-alanyl-lipoteichoic acid in Lactobacillus casei. Microb. Drug Resist. 2, 77–84 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Li, M. et al. Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl Acad. Sci. USA 104, 9469–9474 (2007). First description of regulated teichoic acid modification in response to challenge by antimicrobial peptides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Herbert, S. et al. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog. 3, 981–994 (2007).

    Article  CAS  Google Scholar 

  62. Li, M. et al. The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol. Microbiol. 66, 1136–1147 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Jordan, S., Hutchings, M. I. & Mascher, T. Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol. Rev. 32, 107–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Koprivnjak, T. et al. Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus. J. Bacteriol. 188, 3622–3630 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bergmann, S. & Hammerschmidt, S. Versatility of pneumococcal surface proteins. Microbiology 152, 295–303 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Jonquieres, R., Bierne, H., Fiedler, F., Gounon, P. & Cossart, P. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol. Microbiol. 34, 902–914 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Bierbaum, G. & Sahl, H. G. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase. J. Bacteriol. 169, 5452–5458 (1987). Demonstration of binding and regulation of staphylococcal autolysins by teichoic acids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Giudicelli, S. & Tomasz, A. Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J. Bacteriol. 158, 1188–1190 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Park, J. T., Shaw, D. R., Chatterjee, A. N., Mirelman, D. & Wu, T. Mutants of staphylococci with altered cell walls. Ann. NY Acad. Sci. 236, 54–62 (1974).

    Article  CAS  PubMed  Google Scholar 

  70. Wendlinger, G., Loessner, M. J. & Scherer, S. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142, 985–992 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Lopez, R., Garcia, E., Garcia, P., Ronda, C. & Tomasz, A. Choline-containing bacteriophage receptors in Streptococcus pneumoniae. J. Bacteriol. 151, 1581–1590 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bentley, S. D. et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2, e31 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vinogradov, E., Sadovskaya, I., Li, J. & Jabbouri, S. Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus aureus MN8m, a biofilm forming strain. Carbohydr. Res. 341, 738–743 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Sadovskaya, I., Vinogradov, E., Li, J. & Jabbouri, S. Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr. Res. 339, 1467–1473 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Huebner, J. et al. Isolation and chemical characterization of a capsular polysaccharide antigen shared by clinical isolates of Enterococcus faecalis and vancomycin-resistant Enterococcus faecium. Infect. Immun. 67, 1213–1219 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Molinari, A. et al. Preservation of capsular material of streptococcal cells by specific lectins determined by immunoelectron microscopy. Histochem. J. 20, 526–530 (1988).

    Article  CAS  PubMed  Google Scholar 

  77. Wittkowski, M. et al. Capsular arabinomannans from Mycobacterium avium with morphotype-specific structural differences but identical biological activity. J. Biol. Chem. 282, 19103–19112 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Weidenmaier, C. et al. Differential roles of sortase-anchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization. Int. J. Med. Microbiol. 24 Jan 2008 (doi:10.1016/jijmm.2007. 11.006). First evidence for a role of scavenger receptor-like molecules in WTA-mediated binding of S. aureus to epithelial cells.

  79. Weidenmaier, C. et al. Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J. Infect. Dis. 191, 1771–1777 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Weidenmaier, C. et al. DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect. Immun. 73, 8033–8038 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abachin, E. et al. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol. Microbiol. 43, 1–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Doran, K. S. et al. Group B Streptococcus blood–brain barrier invasion depends upon proper cell surface anchoring of lipoteichoic acid. J. Clin. Invest. 115, 2499–2507 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Koppel, E. A. et al. Identification of the mycobacterial carbohydrate structure that binds the C-type lectins DC-SIGN, L-SIGN and SIGNR1. Immunobiology 209, 117–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Peiser, L., Mukhopadhyay, S. & Gordon, S. Scavenger receptors in innate immunity. Curr. Opin. Immunol. 14, 123–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Pluddemann, A., Mukhopadhyay, S. & Gordon, S. The interaction of macrophage receptors with bacterial ligands. Expert. Rev. Mol. Med. 8, 1–25 (2006). A comprehensive overview of scavenger receptors and lectins that bind CWGs or other bacterial glycopolymers.

    Article  PubMed  Google Scholar 

  86. Goldstein, J. L., Ho, Y. K., Brown, M. S., Innerarity, T. L. & Mahley, R. W. Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine β-very low density lipoproteins. J. Biol. Chem. 255, 1839–1848 (1980).

    CAS  PubMed  Google Scholar 

  87. Murphy, J. E., Tedbury, P. R., Homer-Vanniasinkam, S., Walker, J. H. & Ponnambalam, S. Biochemistry and cell biology of mammalian scavenger receptors. Atherosclerosis 182, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Dunne, D. W., Resnick, D., Greenberg, J., Krieger, M. & Joiner, K. A. The type I macrophage scavenger receptor binds to Gram-positive bacteria and recognizes lipoteichoic acid. Proc. Natl Acad. Sci. USA 91, 1863–1867 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thomas, C. A. et al. Protection from lethal Gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J. Exp. Med. 191, 147–156 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  91. van der Laan, L. J. et al. Regulation and functional involvement of macrophage scavenger receptor MARCO in clearance of bacteria in vivo. J. Immunol. 162, 939–947 (1999).

    CAS  PubMed  Google Scholar 

  92. Jiang, Y., Oliver, P., Davies, K. E. & Platt, N. Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J. Biol. Chem. 281, 11834–11845 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Nakamura, K., Funakoshi, H., Miyamoto, K., Tokunaga, F. & Nakamura, T. Molecular cloning and functional characterization of a human scavenger receptor with C-type lectin (SRCL), a novel member of a scavenger receptor family. Biochem. Biophys. Res. Commun. 280, 1028–1035 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Shimaoka, T. et al. LOX-1 supports adhesion of Gram-positive and Gram-negative bacteria. J. Immunol. 166, 5108–5114 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Shimaoka, T. et al. Cutting edge: SR-PSOX/CXC chemokine ligand 16 mediates bacterial phagocytosis by APCs through its chemokine domain. J. Immunol. 171, 1647–1651 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Adachi, H. & Tsujimoto, M. FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesis-modulating activities. J. Biol. Chem. 277, 34264–34270 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Cundell, D. R., Gerard, N. P., Gerard, C., Idanpaan-Heikkila, I. & Tuomanen, E. I. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377, 435–438 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  99. Akira, S. & Takeda, K. Toll-like receptor signalling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  100. Morath, S., Geyer, A. & Hartung, T. Structure–function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J. Exp. Med. 193, 393–398 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Han, S. H., Kim, J. H., Martin, M., Michalek, S. M. & Nahm, M. H. Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect. Immun. 71, 5541–5548 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Henneke, P. et al. Role of lipoteichoic acid in the phagocyte response to group B Streptococcus. J. Immunol. 174, 6449–6455 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Hermann, C. et al. Cytokine induction by purified lipoteichoic acids from various bacterial species — role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN-γ release. Eur. J. Immunol. 32, 541–551 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Hoebe, K. et al. CD36 is a sensor of diacylglycerides. Nature 433, 523–527 (2005).

    CAS  PubMed  Google Scholar 

  105. Deininger, S. et al. Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J. Immunol. 170, 4134–4138 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Deininger, S. et al. Definition of the cytokine inducing minimal structure of lipoteichoic acid using synthetic derivatives. Clin. Vaccine Immunol. 14, 1629–1633 (2007). Defined structural requirements for the proinflammatory activity of LTA using synthetic LTA variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hashimoto, M. et al. Not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J. Immunol. 177, 3162–3169 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Hashimoto, M. et al. Evidence of immunostimulating lipoprotein existing in the natural lipoteichoic acid fraction. Infect. Immun. 75, 1926–1932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sugawara, I. et al. Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47, 327–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Tapping, R. I. & Tobias, P. S. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J. Endotoxin Res. 9, 264–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Means, T. K. et al. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J. Immunol. 163, 6748–6755 (1999).

    CAS  PubMed  Google Scholar 

  112. Savedra, R. Jr, Delude, R. L., Ingalls, R. R., Fenton, M. J. & Golenbock, D. T. Mycobacterial lipoarabinomannan recognition requires a receptor that shares components of the endotoxin signaling system. J. Immunol. 157, 2549–2554 (1996).

    CAS  PubMed  Google Scholar 

  113. Quesniaux, V. J. et al. Toll-like receptor 2 (TLR2)-dependent-positive and TLR2-independent-negative regulation of proinflammatory cytokines by mycobacterial lipomannans. J. Immunol. 172, 4425–4434 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Wieland, C. W. et al. Non-mannose-capped lipoarabinomannan induces lung inflammation via toll-like receptor 2. Am. J. Respir. Crit. Care Med. 170, 1367–1374 (2004).

    Article  PubMed  Google Scholar 

  115. Nigou, J., Zelle-Rieser, C., Gilleron, M., Thurnher, M. & Puzo, G. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J. Immunol. 166, 7477–7485 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Geijtenbeek, T. B. et al. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197, 7–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Gringhuis, S. I. et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κβ. Immunity 26, 605–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. McGreal, E. P., Martinez-Pomares, L. & Gordon, S. Divergent roles for C-type lectins expressed by cells of the innate immune system. Mol. Immunol. 41, 1109–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Takahashi, M., Mori, S., Shigeta, S. & Fujita, T. Role of MBL-associated serine protease (MASP) on activation of the lectin complement pathway. Adv. Exp. Med. Biol. 598, 93–104 (2007).

    Article  PubMed  Google Scholar 

  120. Endo, Y., Matsushita, M. & Fujita, T. Role of ficolin in innate immunity and its molecular basis. Immunobiology 212, 371–379 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Polotsky, V. Y., Fischer, W., Ezekowitz, A. B. & Joiner, K. A. Interactions of human mannose-binding protein with lipoteichoic acids. Infect. Immun. 64, 380–383 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Polotsky, V. Y., Belisle, J. T., Mikusova, K., Ezekowitz, R. A. & Joiner, K. A. Interaction of human mannose-binding protein with Mycobacterium avium. J. Infect. Dis. 175, 1159–1168 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Lynch, N. J. et al. L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J. Immunol. 172, 1198–1202 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. van de Wetering, J. K. et al. Characteristics of surfactant protein A and D binding to lipoteichoic acid and peptidoglycan, 2 major cell wall components of Gram-positive bacteria. J. Infect. Dis. 184, 1143–1151 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Sidobre, S., Nigou, J., Puzo, G. & Riviere, M. Lipoglycans are putative ligands for the human pulmonary surfactant protein A attachment to mycobacteria. Critical role of the lipids for lectin-carbohydrate recognition. J. Biol. Chem. 275, 2415–2422 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Ferguson, J. S., Voelker, D. R., McCormack, F. X. & Schlesinger, L. S. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol. 163, 312–321 (1999).

    CAS  PubMed  Google Scholar 

  127. Koppel, E. A., Saeland, E., de Cooker, D. J. M., van, Kooyk, Y. & Geijtenbeek, T. B. H. DC-SIGN specifically recognizes Streptococcus pneumoniae serotypes 3 and 14. Immunobiology 210, 203–210 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Kumar, A., Ray, P., Kanwar, M., Sharma, M. & Varma, S. A comparative analysis of antibody repertoire against Staphylococcus aureus antigens in patients with deep-seated versus superficial staphylococcal infections. Int. J. Med. Sci. 2, 129–136 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Verbrugh, H. A., Peters, R., Rozenberg-Arska, M., Peterson, P. K. & Verhoef, J. Antibodies to cell wall peptidoglycan of Staphylococcus aureus in patients with serious staphylococcal infections. J. Infect. Dis. 144, 1–9 (1981).

    Article  CAS  PubMed  Google Scholar 

  130. Verhoef, J., Musher, D. M., Spika, J. S., Verbrugh, H. A. & Jaspers, F. C. The effect of staphylococcal peptidoglycan on polymorphonuclear leukocytes in vitro and in vivo. Scand. J. Infect. Dis. Suppl. 41, 79–86 (1983).

    CAS  PubMed  Google Scholar 

  131. Theilacker, C. et al. Opsonic antibodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect. Immun. 74, 5703–5712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Theilacker, C., Krueger, W. A., Kropec, A. & Huebner, J. Rationale for the development of immunotherapy regimens against enterococcal infections. Vaccine 22 (Suppl. 1), 31–38 (2004).

    Article  CAS  Google Scholar 

  133. Walsh, S., Kokai-Kun, J., Shah, A. & Mond, J. Extended nasal residence time of lysostaphin and an anti-staphylococcal monoclonal antibody by delivery in semisolid or polymeric carriers. Pharm. Res. 21, 1770–1775 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Barrett, D. J. Human immune responses to polysaccharide antigens: an analysis of bacterial polysaccharide vaccines in infants. Adv. Pediatr. 32, 139–158 (1985).

    CAS  PubMed  Google Scholar 

  135. Coutinho, A., Moller, G., Anderson, J. & Bullock, W. W. In vitro activation of mouse lymphocytes in serum-free medium: effect of T and B cell mitogens on proliferation and antibody synthesis. Eur. J. Immunol. 3, 299–306 (1973).

    Article  CAS  PubMed  Google Scholar 

  136. Oosterhuis-Kafeja, F., Beutels, P. & Van Damme, P. Immunogenicity, efficacy, safety and effectiveness of pneumococcal conjugate vaccines (1998–2006). Vaccine 25, 2194–2212 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Lee, J. C. Development of antistaphylococcal vaccines. Curr. Infect. Dis. Rep. 3, 517–524 (2001).

    Article  PubMed  Google Scholar 

  138. Lee, C. J., Lee, L. H., Lu, C. S. & Wu, A. Bacterial polysaccharides as vaccines — immunity and chemical characterization. Adv. Exp. Med. Biol. 491, 453–471 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Mazmanian, S. K. & Kasper, D. L. The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Rev. Immunol. 6, 849–858 (2006).

    Article  CAS  Google Scholar 

  140. Tzianabos, A. O., Onderdonk, A. B., Rosner, B., Cisneros, R. L. & Kasper, D. L. Structural features of polysaccharides that induce intra-abdominal abscesses. Science 262, 416–419 (1993).

    Article  CAS  PubMed  Google Scholar 

  141. Kalka-Moll, W. M. et al. Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. J. Immunol. 169, 6149–6153 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Tzianabos, A. O., Wang, J. Y. & Lee, J. C. Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. Proc. Natl Acad. Sci. USA 98, 9365–9370 (2001). First evidence that S. aureus WTA can activate T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. McLoughlin, R. M. et al. CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc. Natl Acad. Sci. USA 103, 10408–10413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Prigozy, T. I. et al. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6, 187–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Brigl, M. & Brenner, M. B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Lancefield, R. C. A serological differentiation of human and other groups of hemolytic streptococci. J. Exp. Med. 57, 571–595 (1933).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lancefield, R. C. & Freimer, E. H. Type-specific polysaccharide antigens of group B streptococci. J. Hyg. (Lond.) 64, 191–203 (1966).

    Article  CAS  Google Scholar 

  148. McCarty, M. & Lancefield, R. C. Variation in the group-specific carbohydrate of group A streptococci. I. Immunochemical studies on the carbohydrates of variant strains. J. Exp. Med. 102, 11–28 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pantucek, R. et al. Identification of bacteriophage types and their carriage in Staphylococcus aureus. Arch. Virol. 149, 1689–1703 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Leoff, C. et al. Cell wall carbohydrate compositions of strains from the B. cereus group of species correlate with phylogenetic relatedness. J. Bacteriol. 190, 112–121 (2008). Demonstrates that the P-CWG polymer of B. anthracis has a species-specific structure, which confirms its potential for diagnostic purposes.

    Article  CAS  PubMed  Google Scholar 

  151. Weisman, L. E. Antibody for the prevention of neonatal noscocomial staphylococcal infection: a review of the literature. Arch. Pediatr. 14 (Suppl 1), 31–34 (2007).

    Article  Google Scholar 

  152. Mikusova, K., Slayden, R. A., Besra, G. S. & Brennan, P. J. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 39, 2484–2489 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Soldo, B., Lazarevic, V. & Karamata, D. tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. Microbiology 148, 2079–2087 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Ginsberg, C., Zhang, Y. H., Yuan, Y. & Walker, S. In vitro reconstitution of two essential steps in wall teichoic acid biosynthesis. ACS Chem. Biol. 1, 25–28 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Bhavsar, A. P., Truant, R. & Brown, E. D. The TagB protein in Bacillus subtilis 168 is an intracellular peripheral membrane protein that can incorporate glycerol phosphate onto a membrane-bound acceptor in vitro. J. Biol. Chem. 280, 36691–36700 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Brown, S., Zhang, Y. H. & Walker, S. A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem. Biol. 15, 12–21 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. May, J. J. et al. Inhibition of the D-alanine:D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall. FEBS J. 272, 2993–3003 (2005). Describes the first inhibitor of the teichoic acid D -alanylation pathway and its potential for antimicrobial therapy.

    Article  CAS  PubMed  Google Scholar 

  158. Escaich, S. et al. Discovery of new Gram-positive antivirulence drugs: the first antivirulence molecule active in vivo. Abstr. Intersci. Conf. Antimicrob. Agents Chemother. F2–958 (2007).

  159. Fischetti, V. A., Nelson, D. & Schuch, R. Reinventing phage therapy: are the parts greater than the sum? Nature Biotechnol. 24, 1508–1511 (2006).

    Article  CAS  Google Scholar 

  160. Nagarajan, V. & Elasri, M. O. SAMMD: Staphylococcus aureus microarray meta-database. BMC Genomics 8, 351 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Schaffer, C. & Messner, P. Surface-layer glycoproteins: an example for the diversity of bacterial glycosylation with promising impacts on nanobiotechnology. Glycobiology 14, 31R–42R (2004).

    Article  CAS  PubMed  Google Scholar 

  162. Bensing, B. A., Takamatsu, D. & Sullam, P. M. Determinants of the streptococcal surface glycoprotein GspB that facilitate export by the accessory Sec system. Mol. Microbiol. 58, 1468–1481 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Hitchen, P. G. & Dell, A. Bacterial glycoproteomics. Microbiology 152, 1575–1580 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Mehta, A. S. et al. Synthesis and antigenic analysis of the BclA glycoprotein oligosaccharide from the Bacillus anthracis exosporium. Chemistry 12, 9136–9149 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Ratledge, C. & Wilkinson, S. G. Microbial Lipids 1–963 (Academic, London, 1988).

    Google Scholar 

  166. Karakousis, P. C., Bishai, W. R. & Dorman, S. E. Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell. Microbiol. 6, 105–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  167. Dmitriev, B. A., Toukach, F. V., Holst, O., Rietschel, E. T. & Ehlers, S. Tertiary structure of Staphylococcus aureus cell wall murein. J. Bacteriol. 186, 7141–7148 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol Rev. 8 Jan 2008 (doi: 10.1111/j.1574-6976.2007.00094.x).

    Article  CAS  PubMed  Google Scholar 

  169. Paulson, J. C., Blixt, O. & Collins, B. E. Sweet spots in functional glycomics. Nature Chem. Biol. 2, 238–248 (2006).

    Article  CAS  Google Scholar 

  170. Comstock, L. E. & Kasper, D. L. Bacterial glycans: key mediators of diverse host immune responses. Cell 126, 847–850 (2006).

    Article  CAS  PubMed  Google Scholar 

  171. Cobb, B. A., Wang, Q., Tzianabos, A. O. & Kasper, D. L. Polysaccharide processing and presentation by the MHCII pathway. Cell 117, 677–687 (2004). Describes how zwitterionic B. fragilis capsular polysaccharides are processed and presented by MHC class II molecules to T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ruiz-Perez, B. et al. Modulation of surgical fibrosis by microbial zwitterionic polysaccharides. Proc. Natl Acad. Sci. USA 102, 16753–16758 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tzianabos, A. O., Kasper, D. L. & Onderdonk, A. B. Structure and function of Bacteroides fragilis capsular polysaccharides: relationship to induction and prevention of abscesses. Clin. Infect. Dis. 20 (Suppl. 2), 132–140 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Lee, E. Kannenberg and J. Kokai-Kun for helpful discussions and H. Hölscher for critically reading the manuscript. A.P. is supported by grants from the German Research Foundation (TR-SFB34, FOR449, GRK685, SFB766 and SFB685), the European Union (LSHM-CT-2004-512093), the German Ministry of Education and Research (NGFN2 and SKINSTAPH) and the IZKF programme of the Medical Faculty, University of Tübingen. C.W. is supported by grants from the German Research Foundation (WE 4291/1-1 and SPP1130).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus anthracis

Bacillus subtilis

Bacteroides fragilis

Clostridium difficile

Enterococcus faecalis

Lactococcus garvieae

Listeria monocytogenes

Micrococcus luteus

Mycobacterium avium

Mycobacterium bovis

Mycobacterium tuberculosis

Staphylococcus aureus

Staphylococcus epidermidis

Streptococcus agalactiae

Streptococcus gordonii

Streptococcus pneumoniae

Streptococcus pyogenes

FURTHER INFORMATION

Andreas Peschel's homepage

Glossary

Capsular polysaccharide

A glycopolymer, usually of variable composition and structure, that forms capsule-like protective layers around microbial cells.

S-layer protein

Forms a crystalline two-dimensional lattice on microbial-cell surfaces.

Mycolic acid

Very-long-chain fatty acid that contains up to 60 carbon atoms and unusual modifications that form an outer-membrane-like layer on the surface of mycobacteria and their relatives. Mycolic acids are responsible for mycobacterial surface hydrophobicity and resistance to most conventional antibiotics.

Teichoic acid

A cell-envelope glycopolymer that is composed of many identical sugar-phosphate repeating units, which are usually modified with d-alanine and additional sugars.

Lipoteichoic acid (LTA)

A teichoic acid species that is connected to membrane glycolipids. The stereochemistry of LTAs and the biosynthetic origin of the glycerolphosphates are different from those of wall teichoic acids, which have glycerol-phosphate backbones.

Teichuronic acid

A teichoic acid-like polymer that lacks phosphate groups and possesses polyanionic properties because of the presence of uronic acid-containing repeating units.

Uronic acid

A sugar-derived acid, such as glucuronic acid or galacturonic acid.

Zwitterionic

The occurrence of both negatively and positively charged groups in a molecule.

Bacteriocin

A bacterially produced, small, heat-stable peptide that is active against other bacteria and to which the producer has a specific immunity mechanism. Bacteriocins can have a narrow or broad target spectrum.

Defensin

A cationic peptide that is produced by the innate immune system, and kills bacteria, for example, by disrupting the phospholipid bilayer.

Pathogen-associated molecular pattern

A small molecular motif that is conserved across microbial species and engages innate immune receptors (for example, Toll-like receptors).

Pattern-recognition receptor

A host receptor (such as a Toll-like receptor) that can sense pathogen-associated molecular patterns and initiate signalling cascades that lead to an innate immune response.

Type I transmembrane protein

A protein which contains a single membrane-spanning domain that has its carboxyl terminus orientated towards the cytoplasm and its amino terminus orientated towards the lumen of membrane compartments or in an extracellular direction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidenmaier, C., Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6, 276–287 (2008). https://doi.org/10.1038/nrmicro1861

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing