Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157

Key Points

  • Escherichia coli O157 is one of the most important causes of bloody diarrhoea and haemolytic uraemic syndrome (HUS), especially in children and the elderly, and is therefore a zoonosis of substantial public health concern.

  • The incidence of E. coli O157 infection in Scotland is consistently one of the highest in the world.

  • The epidemiology of E. coli O157 could be largely driven by a small number of colonized cattle — its main reservoir — that for a period shed large numbers of bacteria (>104 CFU per gram of faeces), and are therefore called super-shedders.

  • We currently have only a limited understanding of both the nature and the determinants of super-shedding. However, super-shedding has been observed to be associated with colonization at the terminal rectum and it may be also more probable with certain pathogen phage types.

  • Super-shedding has important consequences for the epidemiology of E. coli O157 in cattle and for the risk of human infection, particularly through environmental exposure.

  • Super-shedding may be important in other bacterial and viral infections. If so, this will have profound implications for our understanding of the epidemiology and control of many infectious diseases. For E. coli O157 in cattle, this could potentially lead to a reduction in the risk of human infections.

Abstract

Cattle that excrete more Escherichia coli O157 than others are known as super-shedders. Super-shedding has important consequences for the epidemiology of E. coli O157 in cattle — its main reservoir — and for the risk of human infection, particularly owing to environmental exposure. Ultimately, control measures targeted at super-shedders may prove to be highly effective. We currently have only a limited understanding of both the nature and the determinants of super-shedding. However, super-shedding has been observed to be associated with colonization at the terminal rectum and might also occur more often with certain pathogen phage types. More generally, epidemiological evidence suggests that super-shedding might be important in other bacterial and viral infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The worldwide burden of Escherichia coli O157.
Figure 2: The chain of events that link super-shedding cattle and the risk of human infection with Escherichia coli O157.
Figure 3: Mixture-distribution analysis of Escherichia coli counts in bovine faecal samples.
Figure 4: Colonization of the terminal rectum of cattle by Escherichia coli O157.

Similar content being viewed by others

References

  1. Karmali, M. A. Infection by shiga toxin-producing Escherichia coli. An overview. Mol. Biotechnol. 26, 117–122 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Griffin, P. M. & Tauxe, R. V. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli and the associated haemolytic uremic syndrome. Epidemiol. Rev. 30, 60–98 (1991).

    Article  Google Scholar 

  3. Caprioli, A., Morabito, S., Brugère, H. & Oswald, E. Enterohaemorragic Escherichia coli: emerging issues on virulence and modes of transmission. Vet. Res. 36, 289–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. [No authors listed]. Centers for Disease Control and Prevention. Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach — United States, September 2006. MMWR 55, 1045–1046 (2006).

  5. Mead, P. S. & Griffin, P. M. Escherichia coli O157:H7. Lancet 352, 1207–1212 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Sakuma, M., Urashima, M. & Okabe, N. Verocytotoxin producing Escherichia coli, Japan, 1999–2004. Emerg. Infect. Dis. 12, 323–325 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pollock, K. G. J., Beattie, T. J., Reynolds, B. & Stewart, A. Clinical management of children with suspected or confirmed E. coli O157 infection. Scott. Med. J. 52, 5–7 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong, G. L., Hollingsworth, J. & Morris, J. G. Emerging food pathogens: Escherichia coli O157:H7 as a model entry of a new pathogen into the food supply of the developed world. Epidemiol. Rev. 18, 29–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Michel, P. et al. Temporal and geographic distributions of reported cases of Escherichia coli O157:H7 infection in Ontario. Epidemiol. Infect. 122, 193–200 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valcour, J. E., Michel, P., McEwen, S. A. & Wilson, J. B. Associations between indicators of livestock farming intensity and incidence of human shiga toxin-producing Escherichia coli infection. Emerg. Infect. Dis. 8, 252–257 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Innocent, G. T. et al. Spatial and temporal epidemiology of sporadic human cases of Escherichia coli O157 in Scotland 1996–1999. Epidemiol. Infect. 153, 1033–1041 (2005).

    Article  Google Scholar 

  12. Gunn, G. J. et al. An investigation of factors associated with the prevalence of verocytotoxin producing Escherichia coli O157 shedding Scottish beef cattle. Vet. J. 174, 554–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Chase-Topping, M. E. et al. Risk factors for the presence of high-level shedders of Escherichia coli O157 on Scottish farms. J. Clin. Microbiol. 45, 1594–1603 (2007). The first study to examine risk factors for super-shedders on farms. The authors highlighted an association between PT 21/28 and super-shedders.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Matthews, L. et al. Heterogeneous shedding of Escherichia coli O157 in cattle and its implications for control. Proc. Natl Acad. Sci. USA 103, 547–552 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Omisakin, F., MacRae, M., Ogden, I. D. & Strachan N. J. C. Concentration and prevalence of Escherichia coli O157 in cattle faeces at slaughter. Appl. Environ. Microbiol. 69, 2444–2447 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naylor, S. W. et al. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonisation of enterohaemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 71, 1505–1512 (2003). The first study to report the terminal rectum as the site of colonization of E. coli O157 in the gut.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Low, J. C. et al. Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Appl. Environ. Microbiol. 71, 98–107 (2005). This study found an association between rectal carriage and a high number of E. coli O157-shedding bacteria.

    Article  CAS  Google Scholar 

  18. Lim, J. Y. et al. Escherichia coli O157:H7 colonization at the rectoanal junction of long duration culture positive cattle. Appl. Environ. Microbiol. 73, 1380–1382 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Cobbold, R. N. et al. Rectoanal junction colonization of feedlot cattle by Escherichia coli O157:H7 and its association with supershedders and excretion dynamics. Appl. Environ. Microbiol. 73, 1563–1568 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Davis, M. A. et al. Comparison of cultures from rectoanal-junction mucosal swabs and feces for detection of Escherichia coli O157 in dairy herds. Appl. Environ. Microbiol. 72, 3766–3770 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fox, J. T., Shi, X. & Nagaraja, T. G. Escherichia coli O157 in the rectoanal mucosal region of cattle. Foodborne Pathog. Dis. 5, 69–77 (2008).

    Article  PubMed  Google Scholar 

  22. Ziebell, K. et al. Genotypic characterization and prevalence of virulence factors among Canadian Escherichia coli O157:H7 strains. Appl. Environ. Microbiol. 74, 4314–4323 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hancock, D. D. et al. Multiple sources of Escherichia coli O157 in feedlots and dairy farms in the northwestern United States. Prev. Vet. Med. 35, 11–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Ogden, I. D., MacRae, M. & Strachan, N. J. C. Concentration and prevalence of Escherichia coli O157 in sheep faeces at pasture in Scotland. J. Appl. Microbiol. 98, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Berg, J. et al. Escherichia coli O157:H7 excretion by commercial feedlot cattle fed either barley- or corn-based finishing diets. J. Food Protect. 67, 666–671 (2004).

    Article  Google Scholar 

  26. Matthews, L. et al. Super-shedding cattle and the transmission dynamics of Escherichia coli O157. Epidemiol. Infect. 134, 131–142 (2006). Together with Reference 14, this study provides mathematical evidence for super-shedders that could explain the prevalence of E. coli on Scottish farms. These references also highlight how targeting super-shedders could reduce the incidence of E. coli O157 on farms.

    Article  CAS  PubMed  Google Scholar 

  27. Vali, L. et al. Comparison of diversities of Escherichia coli O157 shed from a cohort of spring-born beef calves at pasture and in housing. Appl. Environ. Microbiol. 71, 1648–1652 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Halliday, J. E. B. et al. Herd-level factors associated with the presence of Phage type 21/28 E. coli O157 on Scottish farms. BMC Microbiol. 6, 99 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Besser, T. E., Richards, B. L., Rice, D. H. & Hancock, D. D. Escherichia coli O157:H7 infection of calves: infectious dose and direct contact transmission. Epidemiol. Infect. 127, 555–560 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wetzel, A. N. & LeJeune, J. T. Clonal dissemination of Escherichia coli O157:H7 subtypes among dairy farms in northeast Ohio. Appl. Environ. Microbiol. 72, 2621–2626 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vali, L. et al. High-level genotypic variation and antibiotic sensitivity among Escherichia coli O157 strains isolated from two Scottish beef cattle farms. Appl. Environ. Microbiol. 70, 5947–5954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Renter, D. G., Sargeant, J. M. & Hungerford, L. L. Distribution of Escherichia coli O157:H7 within and among cattle operations in pasture-based agricultural areas. Am. J. Vet. Res. 65, 1367–1376 (2004).

    Article  PubMed  Google Scholar 

  33. Davis, M. A. et al. Correlation between geographic distance and genetic similarity in an international collection of bovine faecal Escherichia coli O157:H7 isolates. Epidemiol. Infect. 131, 923–930 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sargeant, J. M., Shi, X., Sanderson, M. W., Renter, D. G. & Nagaraja, T. G. Pulsed-field gel electrophoresis patterns of Escherichia coli O157 isolates from Kansas feedlots. Foodborne Pathog. Dis. 3, 251–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Hancock, D. D. et al. The prevalence of Escherichia coli O157:H7 in dairy and beef cattle in Washington State. Epidemiol. Infect. 113, 199–207 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson, J. B. et al. Risk factors for bovine infection with verocytotoxigenic Escherichia coli in Ontario. Prev. Vet. Med. 16, 159–170 (1993).

    Article  Google Scholar 

  37. Nielsen, E. M., Tegtmeier, C., Andersen, H. J., Gronbaek, C. & Andersen, J. S. Influence of age, sex and herd characteristics on the occurrence of verocytotoxin-producing Escherichia coli O157 in Danish farms. Vet. Microbiol. 88, 245–257 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Schouten, J. M. et al. Risk factor analysis of verocytotoxin producing Escherichia coli O157 on Dutch dairy farms. Prev. Vet. Med. 64, 49–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Lui, W.-C. et al. Metapopulation dynamics of Escherichia coli O157 in cattle: an explanatory model. J. R. Soc. Interface 4, 917–924 (2007).

    Article  Google Scholar 

  40. Strachan, N. J. C., Dunn, G. M., Locking, M. E., Reid, T. M. S. & Ogden, I. D. Escherichia coli O157: burger bug or environmental pathogen. Int. J. Food Microbiol. 112, 129–137 (2006).

    Article  PubMed  Google Scholar 

  41. Locking, M. E. et al. Risk factors for sporadic cases of Escherichia coli O157 infection: the importance of contact with animal excreta. Epidemiol. Infect. 127, 215–220 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. O'Brien, S. J., Adak, G. K. & Gilham, C. Contact with farming environment as a major risk factor for shiga toxin (verocytotoxin)-producing Escherichia coli O157 infection in humans. Emerg. Infect. Dis. 7, 1049–1051 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Willshaw, G. A., Evans, J., Cheasty, T., Cummins, A. & Pritchard, G. C. Verocytotoxin-producing Escherichia coli infection and private farm visits. Vet. Rec. 153, 365–366 (2003).

    Article  Google Scholar 

  44. Ogden, I. D. et al. Long term survival of Escherichia coli O157 on pasture following an outbreak associated with sheep at a scout camp. Lett. Appl. Microbiol. 34, 100–104 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Cassin, M. H., Lammerding, A. M., Ross, W. & McColl, R. S. Quantitative risk assessment of Escherichia coli O157:H7 in ground beef hamburgers. Int. J. Food Microbiol. 41, 21–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Strachan, N. J. C., Fenlon, D. R. & Ogden, I. D. Modelling the vector pathway and infection of humans in an environmental outbreak of Escherichia coli O157. FEMS Microbiol. Lett. 203, 69–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Haus-Cheymol, R. et al. Association between indicators of cattle density and incidence of paediatric haemolytic–uraemic syndrome (HUS) in children under 15 years of age in France between 1996 and 2001: an ecological study. Epidemiol. Infect. 134, 712–718 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mora, A. et al. Phage types and genotypes of shiga toxin-producing Escherichia coli O157:H7 isolates from humans and animals in Spain: identification and characterization of two predominating phage types (PT2 and PT8). J. Clin. Microbiol. 42, 4007–4015 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lahti, E. et al. Use of phenotyping and genotyping to verify transmission of Escherichia coli O157:H7 from dairy farms. Eur. J. Clin. Microbiol. Infect. Dis. 21, 189–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Lynn, R. M. et al. Childhood haemolytic uremic syndrome, United Kingdom and Ireland. Emerg. Infect. Dis. 11, 590–596 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Callaway, T. R. et al. What are we doing about Escherichia coli O157 in cattle? J. Anim. Sci. 82, E93–E99 (2004).

    Article  PubMed  Google Scholar 

  52. Naylor, S. W. et al. Impact of the direct application of therapeutic agents to the terminal recta of experimentally colonised calves on Escherichia coli O157:H7 shedding. Appl. Environ. Microbiol. 73, 1493–1500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Potter, A. A. et al. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 22, 362–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Mitchell, R. M. et al. Simulation modelling to evaluate the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) on commercial dairy farms in the United States. Prev. Vet. Med. 83, 360–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Lawley, T. D. et al. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigeneous intestinal microbiota. Infect. Immun. 76, 403–416 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fox, J. T. et al. Associations between the presence and magnitude of Escherichia coli O157 in faeces at harvest and contamination of preintervention beef carcasses. J. Food Prot. 71, 1761–1767 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Woolhouse, M. E. J. et al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc. Natl Acad. Sci. USA 94, 338–342 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Robinson, S. E., Wright, E. J., Hart, C. A., Bennett, M. & French, N. P. Intermittent and persistent shedding of Escherchia coli O157 in cohorts of naturally infected calves. J. Appl. Microbiol. 94, 1045–1053 (2004).

    Article  Google Scholar 

  60. Ogden, I. D., MacRae, M. & Strachan, N. J. C. Is the prevalence and shedding concentrations of E. coli O157 in beef cattle in Scotland seasonal? FEMS Microbiol. Lett. 233, 297–300 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Bach, S. J., Selinger, L. J., Stanford, K. & McAllister, T. A. Effect of supplementing corn- or barley-based feedlot diets with canola oil on faecal shedding of Escherichia coli O157:H7 by steers. J. Appl. Microbiol. 98, 464–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Roe, A. J. et al. Co-ordinate single-cell expression of LEE4- and LEE5-encoded proteins of Escherichia coli O157:H7. Mol. Microbiol. 54, 337–352 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Dziva, F., van Diemen, P. M., Stevens, M. P., Smith, A. J. & Wallis, T. S. Identification of Escherichia coli O157:H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiology 150, 3631–3645 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Naylor, S. W. et al. E. coli O157:H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonizationrequires the LEE4 operon. Microbiology 151, 2773–2781 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Kaper, J. B., Nataro, J. P. & Mobley, H. L. T. Pathogenic Escherichia coli. Nature Rev. Microbiol. 2, 123–140 (2004).

    Article  CAS  Google Scholar 

  66. Ohnishi, M. et al. Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc. Natl Acad. Sci. USA 99, 17043–17048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kudva, I. T. et al. Strains of Escherichia coli O157:H7 differ primarily by insertions or deletions, not single-nucleotide polymorphisms J. Bacteriol. 184, 1873–1879 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Steele, M. et al. Identification of Escherichia coli O157:H7 genomic regions conserved in strains with a genotype associated with human infection. Appl. Environ. Microbiol. 73, 22–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Besser, T. E. et al. Greater diversity of shiga toxin-encoding bacteriophage insertion sites among Escherichia coli O157:H7 isolates from cattle than in those from humans. Appl. Environ. Microbiol. 73, 671–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Tobe, T. et al. An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc. Natl Acad. Sci. USA 103, 14941–14946 (2006).

    Article  CAS  Google Scholar 

  71. Abe, H. et al. Global regulation by horizontally transferred regulators establishes the pathogenicity of Escherichia coli. DNA Res. 15, 25–38 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Low, A. S. et al. Cloning, expression, and characterization of fimbrial operon F9 from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 74, 2233–2244 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Spears, K. J., Roe, A. J. & Gally, D. L. A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol. Lett. 255, 187–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Turner, J., Bowers, R. G., Begon, M., Robinson, S. E. & French, N. P. A semi-stochastic model of the transmission of Escherichia coli O157 in a typical dairy herd: dynamics, sensitivity analysis and intervention/prevention strategies. J. Theor. Biol. 241, 806–822 (2006).

    Article  PubMed  Google Scholar 

  75. Turner, J., Bowers, R. G., Clancy, D., Behnke, M. C. & Christley, R. M. A network model of E. coli transmission within a typical UK dairy herd: the effect of heterogeneity and clustering on the prevalence of infection. J. Theor. Biol. 254, 45–54 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Wood, J. C., Spiers, D. C., Naylor, S. W., Gettinby, G. & McKendrick, I. J. A continuum model of the within-animal population dynamics of E. coli O157. J. Biol. Sys. 14, 425–443 (2006).

    Article  Google Scholar 

  77. [No authors listed]. European Centre for Disease Provention and Control. Annual epidemiological report on communicable diseases in Europe 2005. [online], http://ecdc.europa.eu/pdf/ECDC_epi_report_2007.pdf (2007).

  78. [No authors listed]. Health protection Agency, Northern Ireland addition. Gastrointestinal infections: 2005. Monthly Report 15, 2–13 (2006).

  79. [No authors listed]. The Centers for Disease Control and Prevention. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food — 10 sites, United States 2005. MMWR 55, 392–395 (2006).

  80. Paiba, G. A. et al. Prevalence of faecal excretion of verocytotoxogenic Escherichia coli O157 in cattle in England and Wales. Vet. Rec. 153, 347–353 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Eriksson, E., Aspan, A., Gunnarsson, A. & Vågsholm, I. Prevalence of verotoxin-producing Escherichia coli (VTEC) O157 in Swedish dairy herds. Epidemiol. Infect. 133, 349–358 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vold, L., Klungseth, B., Kruse, H., Skjerve, E. & Wasteson, Y. Occurrence of shigatoxinogenic Escherichia coli O157 in Norwegian cattle herds. Epidemiol. Infect. 120, 21–28 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. LeJeune, J. T., Hancock, D., Wasteson, Y., Skjerve, E. & Urdahl, A. M. Comparison of E. coli O157 and shiga toxin encoding genes (stx) prevalence between Ohio, USA and Norwegian dairy cattle. Int. J. Food Microbiol. 109, 19–24 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Oporto, B., Esteban, J. I., Aduriz, G., Juste, R. A. & Hurtado, A. Escherichia coli O157:H7 and non-O157 shiga toxin-producing E. coli in healthy cattle, sheep and swine herds in northern Spain. Zoonoses Public Health 55, 73–81 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Schouten, J. M. et al. Prevalence estimation and risk factors for Escherichia coli on Dutch dairy farms. Prev. Vet. Med. 64, 49–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Schouten, J. M., van de Giessen, A. W., Frankena, K., De Jong, M. C. M. & Graat, E. A. M. Escherichia coli O157 prevalence in Dutch poultry, pig finishing and veal herds and risk factors in Dutch veal herds. Prev. Vet. Med. 70, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Heuvelink, A. E. et al. Occurrence of verocytotoxin-producing Escherichia coli O157 on Dutch dairy farms. J. Clin. Microbiol. 36, 3480–3487 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sami, M., Firouzi, R. & Shekarforoush, S. S. Prevalence of Escherichia coli O157:H7 on dairy farms in Shiraz, Iran by immunomagnetic separation and multiplex PCR. Iran. J. Vet. Res. 8, 319–324 (2007).

    Google Scholar 

  89. Vidovic, S. & Korber, D. R. Prevalence of Escherichia coli O157 in Saskatchewan cattle: characterization of isolates by using random amplified polymorphic DNA PCR, antibiotic resistance profiles and pathogenicity determinants. Appl. Environ. Microbiol. 72, 4347–4355 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Renter, D. G. et al. Detection and determinants of Escherichia coli O157:H7 in Alberta feedlot pens immediately prior to slaughter. Can. J. Vet. Res. 72, 217–227 (2008).

    PubMed  PubMed Central  Google Scholar 

  91. Elder, R. O. et al. Correlation of enterohemorragic Escherichia coli O157 prevalence in feces, hides and carcasses of beef cattle during processing. Proc. Natl Acad. Sci. USA 97, 2999–3003 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Murinda, S. E. et al. Prevalence and molecular characterization of Escherichia coli O157:H7 in bulk tank milk survey of dairy farms in east Tennessee. J. Food Prot. 65, 752–759 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was part of IPRAVE, Epidemiology and Evolution of Enterobacteriaceae Infections in Humans and Domestic Animals, funded by the Wellcome Trust. D.G. is funded by DEFRA under the Veterinary Training and Research Initiative and by LK0006. The authors thank all members of the IPRAVE consortium who are listed in Supplementary information S1 (table).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Margo Chase-Topping or Mark Woolhouse.

Supplementary information

Supplementary information S1 (table)

Institutions and people in the IPRAVE consortium (PDF 179 kb)

Related links

Related links

DATABASES

Entrez Genome Project

Escherichia coli

Mycobacterium avium subsp. paratuberculosis

Salmonella enterica subsp. enterica serovar Typhimurium

FURTHER INFORMATION

IPRAVE

SUPPLEMENTARY INFORMATION

S1 (table)

Glossary

Verocytotoxin

A class of bacterial toxin produced by some Escherichia coli strains and Shigella species. The name is derived from the ability of the secreted protein to kill Vero (African green monkey kidney) cells in culture.

Immunomagnetic separation

A laboratory tool used to enhance the sensitivity of bacterial culture techniques. Antibodies that coat paramagnetic beads bind to any Escherichia coli O157 in the test sample, thereby capturing the cells and facilitating their concentration for subsequent routine culture.

Odds ratio

An odds ratio is defined as the ratio of the odds of an event occurring in one group to the odds of it occurring in another group. If the probabilities of the event in each of the groups are p (first group) and q (second group), then the odds ratio is

An odds ratio of 1 indicates that the condition or event under study is equally likely in both groups. An odds ratio that is greater than 1 indicates that the condition or event is more likely in the first group, whereas an odds ratio that is less than 1 indicates that the condition or event is less likely in the first group.

Phage type

A method for discriminating bacterial strains based on their differing susceptibility to lysis by bacteriophages.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chase-Topping, M., Gally, D., Low, C. et al. Super-shedding and the link between human infection and livestock carriage of Escherichia coli O157. Nat Rev Microbiol 6, 904–912 (2008). https://doi.org/10.1038/nrmicro2029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing