Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The biological role of death and lysis in biofilm development

Abstract

Recent studies have revealed that the regulated death of bacterial cells is important for biofilm development. Following cell death, a sub-population of the dead bacteria lyse and release genomic DNA, which then has an essential role in intercellular adhesion and biofilm stability. This Opinion focuses on the role of regulated cell death and lysis in biofilm development and provides a functional comparison between bacterial programmed cell death and apoptosis. The hypothesis that the differential regulation of these processes during biofilm development contributes to the antibiotic tolerance of biofilm cells is also explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cid/lrg regulatory network.
Figure 2: Common strategies that control the onset of cell death.

Similar content being viewed by others

References

  1. Lewis, K. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64, 503–514 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hetts, S. W. To die or not to die: an overview of apoptosis and its role in disease. JAMA 279, 300–307 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999–1007 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Claverys, J. P. & Havarstein, L. S. Cannibalism and fratricide: mechanisms and raisons d'etre. Nature Rev. Microbiol. 5, 219–229 (2007).

    Article  CAS  Google Scholar 

  5. Davis, B. D., Chen, L. L. & Tai, P. C. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc. Natl Acad. Sci. USA 83, 6164–6168 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giesbrecht, P., Kersten, T., Maidhof, H. & Wecke, J. Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol. Mol. Biol. Rev. 62, 1371–1414 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Malik, M., Zhao, X. & Drlica, K. Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones. Mol. Microbiol. 61, 810–825 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Horne, D. & Tomasz, A. Tolerant response of Streptococcus sanguis to β-lactams and other cell wall inhibitors. Antimicrob. Agents Chemother. 11, 888–896 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Groicher, K. H., Firek, B. A., Fujimoto, D. F. & Bayles, K. W. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J. Bacteriol. 182, 1794–1801 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rice, K. C. et al. The Staphylococcus aureus cidAB operon: evaluation of its role in the regulation of murein hydrolase activity and penicillin tolerance. J. Bacteriol. 185, 2635–2643 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rice, K. C., Nelson, J. B., Patton, T. G., Yang, S. J. & Bayles, K. W. Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons. J. Bacteriol. 187, 813–821 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bayles, K. W. The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol. 8, 274–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Bayles, K. W. Are the molecular strategies that control apoptosis conserved in bacteria? Trends Microbiol. 11, 306–311 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Rice, K. C. & Bayles, K. W. Death's toolbox: examining the molecular components of bacterial programmed cell death. Mol. Microbiol. 50, 729–738 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, I. N., Smith, D. L. & Young, R. Holins: the protein clocks of bacteriophage infections. Ann. Rev. Microbiol. 54, 799–825 (2000).

    Article  CAS  Google Scholar 

  16. Park, T., Struck, D. K., Deaton, J. F. & Young, R. Topological dynamics of holins in programmed bacterial lysis. Proc. Natl Acad. Sci. USA 103, 19713–19718 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brunskill, E. W. & Bayles, K. W. Identification of LytSR-regulated genes from Staphylococcus aureus. J. Bacteriol. 178, 5810–5812 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Patton, T. G., Rice, K. C., Foster, M. K. & Bayles, K. W. The Staphylococcus aureus cidC gene encodes a pyruvate oxidase that affects acetate metabolism and cell death in stationary phase. Mol. Microbiol. 56, 1664–1674 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, S. J., Dunman, P. M., Projan, S. J. & Bayles, K. W. Characterization of the Staphylococcus aureus CidR regulon: elucidation of a novel role for acetoin metabolism in cell death and lysis. Mol. Microbiol. 60, 458–468 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, S. J. et al. A LysR-type regulator, CidR, is required for induction of the Staphylococcus aureus cidABC operon. J. Bacteriol. 187, 5893–5900 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Patton, T. G., Yang, S. J. & Bayles, K. W. The role of proton motive force in expression of the Staphylococcus aureus cid and lrg operons. Mol. Microbiol. 59, 1395–1404 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Reed, J. C. et al. BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J. Cell. Biochem. 60, 23–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt, H., Bukholm, G. & Holberg-Petersen, M. Adhesiveness and invasiveness of staphylococcal species in a cell culture model. APMIS 97, 655–660 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. White, E. Mechanisms of apoptosis regulation by viral oncogenes in infection and tumorigenesis. Cell Death Differ. 13, 1371–1377 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Antonsson, B., Montessuit, S., Lauper, S., Eskes, R. & Martinou, J. C. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J. 345, 271–278 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Antonsson, B., Montessuit, S., Sanchez, B. & Martinou, J. C. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J. Biol. Chem. 276, 11615–11623 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Armstrong, J. S. Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays 28, 253–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Soane, L. & Fiskum, G. Inhibition of mitochondrial neural cell death pathways by protein transduction of Bcl-2 family proteins. J. Bioenerg. Biomembr. 37, 179–190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Reed, J. C. Dysregulation of apoptosis in cancer. J. Clin. Oncol. 17, 2941–2953 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Gautam, S. & Sharma, A. Involvement of caspase-3-like protein in rapid cell death of Xanthomonas. Mol. Microbiol. 44, 393–401 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Raju, K. K., Gautam, S. & Sharma, A. Molecules involved in the modulation of rapid cell death in Xanthomonas. J. Bacteriol. 188, 5408–5416 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kirkin, V., Joos, S. & Zornig, M. The role of Bcl-2 family members in tumorigenesis. Biochim. Biophys. Acta 1644, 229–249 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Schmitt, C. A., Rosenthal, C. T. & Lowe, S. W. Genetic analysis of chemoresistance in primary murine lymphomas. Nature Med. 6, 1029–1035 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Rice, K. C. et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Natl Acad. Sci. USA 104, 8113–8118 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Allesen-Holm, M. et al. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol. Microbiol. 59, 1114–1128 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Qin, Z. et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153, 2083–2092 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Webb, J. S. et al. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185, 4585–4592 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mai-Prochnow, A. et al. Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata. Appl. Environ. Microbiol. 70, 3232–3238 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mai-Prochnow, A., Webb, J. S., Ferrari, B. C. & Kjelleberg, S. Ecological advantages of autolysis during the development and dispersal of Pseudoalteromonas tunicata biofilms. Appl. Environ. Microbiol. 72, 5414–5420 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Panaretakis, T., Pokrovskaja, K., Shoshan, M. C. & Grander, D. Activation of Bak, Bax, and BH3-only proteins in the apoptotic response to doxorubicin. J. Biol. Chem. 277, 44317–44326 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Real, P. J. et al. Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. Cancer Res. 64, 7947–7953 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Real, P. J. et al. Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21, 7611–7618 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Anderl, J. N., Zahller, J., Roe, F. & Stewart, P. S. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47, 1251–1256 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anderl, J. N., Franklin, M. J. & Stewart, P. S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44, 1818–1824 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stewart, P. S. & Costerton, J. W. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Tomasz, A., Albino, A. & Zanati, E. Multiple antibiotic resistance in a bacterium with suppressed autolytic system. Nature 227, 138–140 (1970).

    Article  CAS  PubMed  Google Scholar 

  50. Tuomanen, E., Durack, D. T. & Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. Antimicrob. Agents Chemother. 30, 521–527 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank M. Chaussee, K. Rice, G. Somerville and R. Young for helpful comments and suggestions made during the preparation of this manuscript. In addition, the assistance of V. Vonstein in compiling the list of cid and lrg homologues is appreciated. This comparative analysis was performed in the SEED environment, which was developed by the Fellowship for Interpretation of Genomes in collaboration with an international team of researchers and is available through the National Microbial Pathogen Data Resource. Support was provided by the National Institutes of Health (R01AI038,901) and the US Department of Defense (DAAD 19-03-1-0191).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Pseudomonas aeruginosa

Pseudoalteromonas tunicate

Staphylococcus aureus

Staphylococcus epidermidis

Streptococcus pneumoniae

Streptococcus pyogenes

Streptococcus sanguis

Entrez Protein

AlpP

CidA

CidB

CidR

LrgA

LrgB

FURTHER INFORMATION

Kenneth W. Bayles's homepage

National Microbial Pathogen Data Resource

SEED

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayles, K. The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5, 721–726 (2007). https://doi.org/10.1038/nrmicro1743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing