Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Beneficial suicide: why neutrophils die to make NETs

Abstract

Neutrophils are one of the main types of effector cell in the innate immune system and were first shown to effectively kill microorganisms by phagocytosis more than 100 years ago. Recently, however, it has been found that stimulated neutrophils can also produce extracellular structures called neutrophil extracellular traps (NETs) that capture and kill microorganisms. This Progress article gives an overview of the structure, function and generation of NETs, and their role in infections.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neutrophils and neutrophil extracellular traps (NETs).
Figure 2: The steps leading to neutrophil extracellular trap (NET) formation.

Similar content being viewed by others

References

  1. Bainton, D. F., Ullyot, J. L. & Farquhar, M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow: origin and content of azurophil and specific granules. J. Exp. Med. 134, 907–934 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nathan, C. Neutrophils and immunity: challenges and opportunities. Nature Rev. Immunol. 6, 173–182 (2006).

    CAS  Google Scholar 

  3. Borregaard, N., Sehested, M., Nielsen, B. S., Sengelov, H. & Kjeldsen, L. Biosynthesis of granule proteins in normal human bone-marrow cells — gelatinase is a marker of terminal neutrophil differentiation. Blood 85, 812–817 (1995).

    CAS  PubMed  Google Scholar 

  4. Borregaard, N. & Cowland, J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503–3521 (1997).

    CAS  PubMed  Google Scholar 

  5. Delves, P. J. & Roitt, I. M. The immune system— first of two parts. New Engl. J. Med. 343, 37–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Metchnikoff, E. LIimmunité Dans Les Maladies Infectieuses (Masson and Cie, Paris, 1901).

    Google Scholar 

  7. Coxon, A. et al. A novel role for the β−2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5, 653–666 (1996).

    Article  PubMed  Google Scholar 

  8. Zhang, B., Hirahashi, J., Cullere, X. & Mayadas, T. N. Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J. Biol. Chem. 278, 28443–28454 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Serhan, C. N. & Savill, J. Resolution of inflammation: the beginning programs the end. Nature Immunol. 6, 1191–1197 (2005).

    Article  CAS  Google Scholar 

  10. Haslett, C. Granulocyte apoptosis and inflammatory disease. Br. Med. Bull. 53, 669–683 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Lehrer, R. I. & Ganz, T. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11, 23–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007–3017 (1998).

    CAS  PubMed  Google Scholar 

  13. Heyworth, P. G., Cross, A. R. & Curnutte, J. T. Chronic granulomatous disease. Curr. Opin. Immunol. 15, 578–584 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med. 13, 463–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Tonks, N. K. Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667–670 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Steinberg, B. E. & Grienstein, S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci. STKE pe11 (2007).

  20. Buchanan, J. T. et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16, 396–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Beiter, K. et al. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 16, 401–407 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Wartha, F. et al. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell. Microbiol. 9, 1162–1171 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8, 668–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Hirsch, J. G. Bactericidal action of histone. J. Exp. Med. 108, 925–944 (1958).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho, J. H. et al. Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. FASEB J. 16, 429–431 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, H. S., Park, C. B., Kim, M. S. & Kim, S. C. cDNA cloning and characterization of buforin I, an antimicrobial peptide: a cleavage product of histone H2A. Biochem. Biophys. Res. Commun. 229, 381–387 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, H. S. et al. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J. Immunol. 165, 3268–3274 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S. & Kim, S. C. Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl Acad. Sci. USA 97, 8245–8250 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patat, S. A. et al. Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur. J. Biochem. 271, 4825–4833 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Sumby, P. et al. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc. Natl Acad. Sci. USA 102, 1679–1684 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gupta, A. K., Hasler, P., Holzgreve, W., Gebhardt, S. & Hahn, S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum. Immunol. 66, 1146–1154 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Alghamdi, A. S. & Foster, D. N. Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biol. Reprod. 73, 1174–1181 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Lippolis, J. D., Reinhardt, T. A., Goff, J. P. & Horst, R. L. Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk. Vet. Immunol. Immunopathol. 113, 248–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Palic, D., Andreasen, C. B., Ostojic, J., Tell, R. M. & Roth, J. A. Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules. J. Immunol. Meth. 319, 87–97 (2007).

    Article  CAS  Google Scholar 

  35. Fairhurst, A. M., Wandstrat, A. E. & Wakeland, E. K. Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv. Immunol. 92, 1–69 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Duranton, J. et al. Effect of DNase on the activity of neutrophil elastase, cathepsin G and proteinase 3 in the presence of DNA. FEBS Lett. 473, 154–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. McCauley, T. C., Zhang, H. M., Bellin, M. E. & Ax, R. L. Purification and characterization of fertility-associated antigen (FAA) in bovine seminal fluid. Mol. Reprod. Dev. 54, 145–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Zhong, X. Y. et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am. J. Obst. Gynecol. 184, 414–419 (2001).

    Article  CAS  Google Scholar 

  39. Redman, C. W. & Sargent, I. L. Latest advances in understanding preeclampsia. Science 308, 1592–1594 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Volker Brinkmann or Arturo Zychlinsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Staphylococcus aureus

group A Streptococcus

Streptococcus pneumoniae

Shigella flexneri

Salmonella typhimurium

Candida albicans

Entrez Protein

interleukin (IL)-8

C5a

lymphocyte-function-associated antigen 1

FURTHER INFORMATION

Arturo Zychlinsky's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkmann, V., Zychlinsky, A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5, 577–582 (2007). https://doi.org/10.1038/nrmicro1710

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1710

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing