Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Can fungal biopesticides control malaria?

Abstract

Recent research has raised the prospect of using insect fungal pathogens for the control of vector-borne diseases such as malaria. In the past, microbial control of insect pests in both medical and agricultural sectors has generally had limited success. We propose that it might now be possible to produce a cheap, safe and green tool for the control of malaria, which, in contrast to most chemical insecticides, will not eventually be rendered useless by evolution of resistance. Realizing this potential will require lateral thinking by biologists, technologists and development agencies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Infection by fungal entomopathogens.
Figure 2: Biopesticides for the control of locusts and grasshoppers in Africa.
Figure 3: Fungal infection reduces malaria transmission by mosquitoes.
Figure 4: The sustainability of chemical and biological interventions against adult mosquitoes.

Similar content being viewed by others

References

  1. Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 369–389 (2000).

    Article  Google Scholar 

  2. Zaim, M. & Guillet, P. Alternative insecticides: an urgent need. Trends Parasitol. 18, 161–163 (2002).

    Article  Google Scholar 

  3. Hargreaves, K. et al. Anopheles arabiensis and An. quadriannulatus resistance to DDT in South Africa. Med. Vet. Entomol. 17, 417–422 (2003).

    Article  CAS  Google Scholar 

  4. Thomas, M. B. & Blanford, S. Thermal biology in insect–pathogen interactions. Trends Ecol. Evol. 18, 344–350 (2003).

    Article  Google Scholar 

  5. Georgis, R. in Microbial Insecticides: Novelty or Necessity? (ed. Evans H. F.) 243–252 (British Crop Protection Council Monograph No. 68, 1997).

    Google Scholar 

  6. Fravel, D. R. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43, 337–359 (2005).

    Article  CAS  Google Scholar 

  7. Bateman, R. P., Carey, M., Moore, D. & Prior, C. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann. Appl. Biol. 122, 145–152 (1993).

    Article  Google Scholar 

  8. Lomer, C. J. et al. Biological control of locusts and grasshoppers. Annu. Rev. Entomol. 46, 667–702 (2001).

    Article  CAS  Google Scholar 

  9. Thomas, M. B., Kooyman, C. Locust biopesticides: a tale of two continents. Biocontr. News Info. 25, 47N–51N (2004).

    Google Scholar 

  10. Spurgin, P. Operational use of Green Guard® for locust and grasshopper control in Australia. Biocontr. News Info. 25, 51N–53N (2004).

    Google Scholar 

  11. Lawrence, L. A green locust control for Australian farmers. Outlooks Pest Man. [Dec], 253–254 (2005).

    Article  Google Scholar 

  12. Australian Government: Department of Agriculture Fisheries and Forestry. Australian Plague Locust Commission (APLC), [online] (2007).

  13. Lacey, L. A. & Undeen, A. H. Microbial control of black flies and mosquitoes. Annu. Rev. Entomol. 31, 265–296 (1986).

    Article  CAS  Google Scholar 

  14. Rishikesh, N., Dubitiskij, A. M. & Moreau, C. M. in Malaria: Principles and Practices of Malariology (eds Wernsdorfer, W. H. & McGregor, I.) 1227–1250 (Churchill Livingstone, New York, 1988).

    Google Scholar 

  15. Scholte, E.-J., Knols, B. G. J., Samson, R. A. & Takken, W. Entomopathogenic fungi for mosquito control: a review. J. Insect Sci. 4, 19 (2004).

    Article  Google Scholar 

  16. Fillinger, U. & Lindsay, S. W. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop. Med. Int. Health 11, 1629–1642 (2006).

    Article  CAS  Google Scholar 

  17. Scholte, E.-J. et al. Pathogenicity of six East African entomopathogenic fungi to adult Anopheles gambiae s. s. (Diptera: Culicidae) mosquitoes. Proc. Exp. Appl. Entomol. NEV, Amsterdam 14, 25–29 (2003).

    Google Scholar 

  18. Scholte, E.-J. et al. Infection of malaria Anopheles gambiae (s. s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malaria J. 2, 29 (2003).

    Article  Google Scholar 

  19. Blanford, S. et al. Fungal pathogen reduces potential for malaria transmission. Science 308, 1638–1641 (2005).

    Article  CAS  Google Scholar 

  20. Scholte, E.-J. et al. An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308, 1641–1642 (2005).

    Article  CAS  Google Scholar 

  21. Scholte, E.-J., Knols, B. G. J. & Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 91, 43–49 (2006).

    Article  Google Scholar 

  22. Ward, M. D. W. & Selgrade, M. K. Benefits and risks in malaria control. Science 310, 49 (2005).

    Article  Google Scholar 

  23. Hutchinson, O. C. & Cunningham, A. A. Benefits and risks in malaria control. Science 310, 49 (2005).

    CAS  PubMed  Google Scholar 

  24. Thomas, M. B. et al. Benefits and risks in malaria control. Science 310, 50 (2005).

    Google Scholar 

  25. MacDonald, G. The Epidemiology and Control of Malaria (Oxford Univ. Press, London, 1957).

    Google Scholar 

  26. Anderson, R. M. in Population Biology of Infectious Diseases (eds Anderson, R. M. & May, R. M.) 242–261 (Chapman & Hall, London, 1982).

    Book  Google Scholar 

  27. Seyoum, E., Moore, D. & Charnley, A. K. Reduction in flight activity and food consumption by the desert locust, Schistocerca gregaria, after infection with Metarhizium flavoviride. J. Appl. Entomol. 118, 310–315 (1994).

    Article  Google Scholar 

  28. Thomas, M. B., Blanford, S., Gbongboui, C. & Lomer, C. J. Experimental studies to evaluate spray applications of a mycoinsecticide against the rice grasshopper, Hieroglyphus daganensis, in northern Benin. Entomol. Exp. Applic. 87, 93–102 (1998).

    Article  Google Scholar 

  29. Arthurs, S. & Thomas, M. B. Effects of a mycoinsecticide on feeding and fecundity of the brown locust, Locustana pardalina. Biocontr. Sci. Technol. 10, 321–329 (2000).

    Article  Google Scholar 

  30. Arthurs, S. P. & Thomas, M. B. Investigation into behavioural changes in Schistocerca gregaria following infection with a mycoinsecticide: implications for susceptibility to predation. Ecol. Entomol. 26, 227–234 (2001).

    Article  Google Scholar 

  31. Blanford, S. & Thomas, M. B. Adult survival, maturation and reproduction of the desert locust, Schistocerca gregaria, infected with Metarhizium anisopliae var. acridum. J. Invertebr. Pathol. 78, 1–8 (2001).

    Article  CAS  Google Scholar 

  32. Hargreaves, K. et al. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med. Vet. Entomol. 14, 181–189 (2000).

    Article  CAS  Google Scholar 

  33. Brooke, B. D. et al. Bioassay and biochemical analyses of insecticide resistance in southern African Anopheles funestus (Diptera: Culicidae). Bull. Entomol. Res. 91, 265–272 (2001).

    Article  CAS  Google Scholar 

  34. Hemingway, J. Taking aim at mosquitoes. Nature 430, 936 (2004).

    Article  CAS  Google Scholar 

  35. Brogdon, W. G. & McAllister, J. C. Insecticide resistance and vector control. Emerg. Infect. Dis. 4, 605–613 (1998).

    Article  CAS  Google Scholar 

  36. Michalakis, Y. & Renaud, F. Malaria: fungal allies enlisted. Nature 435, 891–893 (2005).

    Article  CAS  Google Scholar 

  37. Ferrari, J., Müller, C. B., Kraaijeveld, A. R. & Godfray, H. C. J. Clonal variation and covariation in aphid resistance to parasitoids and a pathogen. Evolution 55, 1805–1814 (2001).

    Article  CAS  Google Scholar 

  38. Blanford, S., Thomas, M. B., Pugh, C. & Pell, J. K. Temperature checks the Red Queen? Resistance and virulence in a fluctuating environment. Ecol. Lett. 6, 2–5 (2003).

    Article  Google Scholar 

  39. Tinsley, M. C., Blanford, S., Jiggins, F. M. Genetic variation in Drosophila melanogaster pathogen susceptibility. Parasitology 132, 767–773 (2006).

    Article  CAS  Google Scholar 

  40. Traniello, J. F. A., Rosengaus, R. B. & Savoie, K. The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc. Natl Acad. Sci. USA 99, 6838–6842 (2002).

    Article  CAS  Google Scholar 

  41. Hughes, W. O. H., Eilenberg, J. & Boomsma, J. J. Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc. R. Soc. B 269, 1811–1819 (2002).

    Article  Google Scholar 

  42. Elliot, S. L., Blanford, S. & Thomas, M. B. Host–pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proc. R. Soc. B 269, 1599–1607 (2002).

    Article  Google Scholar 

  43. Partridge, L. & Barton, N. H. Optimality, mutation and the evolution of ageing. Nature 362, 305–311 (1993).

    Article  CAS  Google Scholar 

  44. Boete, C. & Koella, J. C. Evolutionary ideas about genetically manipulated mosquitoes and malaria control. Trends Parasitol. 19, 32–38 (2003).

    Article  Google Scholar 

  45. Riehle, M. M. et al. Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 312, 577–579 (2006).

    Article  CAS  Google Scholar 

  46. Enserink, M. Microbiology. Mosquito-killing fungi may join the battle against malaria. Science 308, 1531–1533 (2005).

    Article  CAS  Google Scholar 

  47. Itoh, T. Evaluation of long-lasting insecticidal nets after 2 years household use. Trop. Med. Int. Health 10, 1321–1326 (2005).

    Article  Google Scholar 

  48. Maniania, N. K. A low-cost contamination device for infecting adult tsetse flies, Glossina spp., with the entomopathogenic fungus Metarhizium anisopliae in the field. Biocontr. Sci. Technol. 12, 59–66 (2002).

    Article  Google Scholar 

  49. Hong, T. D., Jenkins, N. E. & Ellis, R. H. Fluctuating temperature and the longevity of conidia of Metarhizium flavoviride in storage. Biocontr. Sci. Technol. 9, 165–176 (1999).

    Article  Google Scholar 

  50. Hong, T. D., Jenkins, N. E. & Ellis, R. H. The effects of duration of development and drying regime on the longevity of conidia of Metarhizium flavoviride. Mycol. Res. 104, 662–665 (2000).

    Article  Google Scholar 

  51. Schisler, D. A. & Slininger, P. J. Microbial selection strategies that enhance the likelihood of developing commercial biological control products. J. Ind. Microbio. Biot. 19, 172–179 (1997).

    Article  CAS  Google Scholar 

  52. Hynes, R. K. & Boyetchko, S. M. Research initiatives in the art and science of biopesticide formulations. Soil Biol. Biochem. 38, 845–849 (2006).

    Article  CAS  Google Scholar 

  53. Thomas, M. B., Klass, J. & Blanford, S. The year of the locust. Pesticide Outlook 11, 192–195 (2000).

    Article  Google Scholar 

  54. Onwujekwe, O. et al. Socio-economic inequity in demand for insecticide-treated nets, in-door residual house spraying, larviciding and fogging in Sudan. Malaria J. 4, 4–62 (2005).

    Article  Google Scholar 

  55. Meltzer, M. I. et al. The household-level economics of using permethrin-treated bed nets to prevent malaria in children less than five years of age. Am. J. Trop. Med. Hyg. 68, 149–160 (2003).

    Article  Google Scholar 

  56. Cherry, A. J. et al. Operational and economic analysis of a West African pilot-scale production plant for aerial conidia of Metarhizium spp. for use as a mycoinsecticide against locusts and grasshoppers. Biocontr. Sci. Technol. 9, 35–51 (1999).

    Article  Google Scholar 

  57. Jenkins, N. E. & Grzywacz, D. Quality control of fungal and biocontrol agents — assurance of product performance. Biocontr. Sci. Technol. 10, 753–777 (2000).

    Article  Google Scholar 

  58. Sharp, B. et al. Malaria control by residual insecticide spraying in Chingola and Chililabombwe, Coperbelt Province, Zambia. Trop. Med. Int. Health 7, 732–736 (2002).

    Article  Google Scholar 

  59. WHO. Global Strategic Framework for Integrated Vector Management. WHO/CDS/CPE/PVC/2004. 10. (WHO, Geneva, 2004).

  60. M. A. Osta et al. Effects of mosquito genes on Plasmodium development. Science 303, 2030–2032 (2004).

    Article  CAS  Google Scholar 

  61. Hemingway, J. & Craig, A. Parasitology: new ways to control malaria. Science 303, 1984–1985 (2004).

    Article  CAS  Google Scholar 

  62. St Leger, R. J. et al. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc. Natl Acad. Sci. USA 93, 6349–6354 (1996).

    Article  CAS  Google Scholar 

  63. Alphey, L. et al. Malaria control with genetically manipulated insect vectors. Science 298, 119–121 (2002).

    Article  CAS  Google Scholar 

  64. Scott, T. W. et al. The ecology of genetically modified mosquitoes. Science 298, 117–118 (2002).

    Article  CAS  Google Scholar 

  65. Gillespie, J. P. et al. Fungi as elicitors of insect immune responses. Arch. Insect Biochem. Physiol. 44, 49–68 (2000).

    Article  CAS  Google Scholar 

  66. Roberts, D. W. & St. Leger, R. J. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv. Appl. Microbiol. 54, 1–70 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our empirical work is funded by The Wellcome Trust. We are grateful to S. Blanford, K. Vernick and members of the Research Consortium for Novel and Sustainable Approaches of Adult Vector Control Based on Fungi, particularly M. Coetzee, C. Curtis, G. Killeen, B. Knols and W. Takken, for discussion and encouragement. This article was written while A.R. was at the Wissenshaftskolleg zu Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Matt Thomas's homepage

The Read Group homepage

Glossary

Appressorium

A flattened, hyphal 'pressing' organ that is produced by a germinating fungal spore, from which an infection peg grows and penetrates the host cuticle.

Biocontrol

(Also 'biological control'.) The use of live natural enemies such as predators, parasitoids or pathogens to control pest insects, weeds or diseases. The normal ambition is that the introduced organism will be self-sustaining, but it can also include inundative approaches which need not be self-sustaining, as with biopesticides (see below).

Biopesticide

In simplest terms, refers to a pesticide that is biological in origin (that is, viruses, bacteria, fungi). The approach is characterized by repeated applications of a live organism with little or no reliance on the organism to reproduce or be self-sustaining in order to effect control. The biocontrol agent is essentially used as a chemical-pesticide analogue.

Entomological inoculation rate

(EIR). A measure of the frequency with which a human is bitten by an infectious mosquito.

Haemocoel

The body cavity of an arthropod in which most of the major organs are found. It is filled with the arthropod equivalent of blood, named haemolymph.

Oocyst

A walled, vegetatively replicating malaria parasite under the basal lamina of the mosquito midgut in which the transmissible sporozoites form.

Parasite incubation period

The time from infection of the mosquito — following a blood feed from a human host carrying malaria — to the point at which the mosquito is infectious and can transmit the parasite to a new host during a further feeding bout. Throughout large areas of malaria transmission the parasite incubation period is 12–14 days or longer.

Paratransgenic approaches

(Or paratransgenesis.) Genetic manipulation of vector-associated organisms — commensal or symbiotic bacteria, or fungal entomopathogens — to alter the ability of the vector to transmit a pathogen. The insect vector itself is not genetically modified.

Sporozoite

Small elongated cells that arise from repeated division within the oocyst. The malaria sporozoites accumulate in the salivary glands and are introduced into the blood of the vertebrate host by the mosquito bite.

Vectorial capacity

Provides a measure of disease risk as determined by the ability of a vector to successfully transmit disease, and incorporates vector competence, abundance, biting rates, survival rates and parasite incubation period.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, M., Read, A. Can fungal biopesticides control malaria?. Nat Rev Microbiol 5, 377–383 (2007). https://doi.org/10.1038/nrmicro1638

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing