Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Current insights into the biology and pathogenesis of Pneumocystis pneumonia

Key Points

  • Pneumocystis pneumonia (PCP) remains the most prevalent opportunistic infection in patients with AIDS and is a significant cause of severe pneumonia in immunocompromised patients with cancer, organ transplant recipients or those receiving immunosuppressant medications.

  • Pneumocystis is an intractable fungal pathogen classified phylogenetically with the Ascomycetes. Pneumocystis has pathways involved in cell-cycle control, signal transduction and metabolism that are analogous to the pathways in these yeast.

  • Pneumocystis has a unique life cycle alternating between small trophic forms and cysts, which contain 2, 4 or 8 intracystic bodies. The airborne route of transmission is currently the favoured model for the spread of infection.

  • Pneumocystis interacts with the lung epithelium and immune cells of the lower respiratory tract, resulting in inflammation, which is hazardous to the host. This is a complex interaction involving surface antigens of the organism and host surfactant proteins, adhesion molecules, macrophages, neutrophils, lymphocytes, and cytokine and chemokine responses.

  • Drug targets for the treatment of PCP include metabolic pathways for dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR), DNA and protein synthesis inhibition, sterol metabolism, cytochrome b complex and cell-wall construction through inhibition of the GSC1 glucan synthetase.

  • Mutations in DHPS, DHFR, and cytochrome b have raised the concern of emerging resistance to the medications currently in use. The efforts of the Pneumocystis research community have contributed substantially to the current understanding of the complex biology of Pneumocystis and the intricate association with the host. Continued research is essential to continue investigating the biology of this organism in the hope of developing novel treatment strategies for PCP.

Abstract

The fungal infection Pneumocystis pneumonia is the most prevalent opportunistic infection in patients with AIDS. Although the analysis of this opportunistic fungal pathogen has been hindered by the inability to isolate it in pure culture, the use of molecular techniques and genomic analysis have brought insights into its complex cell biology. Analysis of the intricate relationship between Pneumocystis and the host lung during infection has revealed that the attachment of Pneumocystis to the alveolar epithelium promotes the transition of the organism from the trophic to the cyst form. It also revealed that Pneumocystis infection elicits the production of inflammatory mediators, culminating in lung injury and impaired gas exchange. Here we discuss these and other recent findings relating to the biology and pathogenesis of this intractable fungus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pneumocystis life cycle.
Figure 2: The Pneumocystis cell surface and cell-surface proteins.
Figure 3: Fungal mitogen-activated protein kinase (MAPK) pathways.
Figure 4: Interactions between Pneumocystis and alveolar macrophages.

Similar content being viewed by others

Antoni Torres, Catia Cilloniz, … Tom van der Poll

References

  1. Thomas, C. F. Jr & Limper, A. H. Pneumocystis pneumonia. N. Engl. J. Med. 350, 2487–2498 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. HIV/AIDS surveillance supplemental report. Centers for Disease Control and Prevention 9, 1–20 [online] (2003).

  3. Sepkowitz, K. A. Opportunistic infections in patients with and patients without acquired immunodeficiency syndrome. Clin. Infect. Dis. 34, 1098–1107 (2002).

    Article  PubMed  Google Scholar 

  4. Chagas, C. Nova tripanozomiata humana. Mem. Inst. Oswaldo Cruz 1, 159–218 (1909).

    Article  Google Scholar 

  5. Carinii, A. Formas de eschizogonia do Trypanozoma lewisi. Comm. Soc. Med. Sao Paolo 16, 204 (1910).

    Google Scholar 

  6. Delanoë, P. and Delanoë, M. Surles rapporte des kystos de carinii le Trypanosoma lewisi. Compt. Rend. Acad. Sci. 155, 658 (1912).

    Google Scholar 

  7. Edman, J. C. et al. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 334, 519–522 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Gigliotti, F., Harmsen, A. G., Haidaris, C. G. & Haidaris, P. J. Pneumocystis carinii is not universally transmissible between mammalian species. Infect. Immun. 61, 2886–2890 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Stringer, J. R., Beard, C. B., Miller, R. F. & Cushion, M. T. A new name (Pneumocystis jiroveci) for Pneumocystis from humans (response to Hughes). Emerg. Infect. Dis. 9, 277–279 (2003).

    Article  Google Scholar 

  10. Limper, A. H. Pneumocystis nomenclature. Clin. Infect. Dis. 42, 1210–1211; author reply 1212–1214 (2006).

    Article  PubMed  Google Scholar 

  11. Gigliotti, F. Pneumocystis carinii nomenclature: response to Cushion and Stringer. Clin. Infect. Dis. 42, 1208–1209 (2006).

    Article  PubMed  Google Scholar 

  12. Gigliotti, F. Pneumocystis carinii: has the name really been changed? Clin. Infect. Dis. 41, 1752–1755 (2005).

    Article  PubMed  Google Scholar 

  13. Hughes, W. T. Pneumocystis carinii versus Pneumocystis jirovecii (jiroveci) Frenkel. Clin. Infect. Dis. 42, 1211–1212; author reply 1212–1214 (2006).

    Article  PubMed  Google Scholar 

  14. Wakefield, A. E. Detection of DNA sequences identical to Pneumocystis carinii in samples of ambient air. J. Euk. Microbiol. 41, 116S (1994).

    CAS  PubMed  Google Scholar 

  15. Casanova-Cardiel, L. & Leibowitz, M. J. Presence of Pneumocystis carinii DNA in pond water. J. Euk. Microbiol. 44, 28S (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Vargas, S. L. et al. Search for primary infection by Pneumocystis carinii in a cohort of normal, healthy infants. Clin. Infect. Dis. 32, 855–861 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, W., Gigliotti, F. & Harmsen, A. G. Latency is not an inevitable outcome of infection with Pneumocystis carinii. Infect. Immun. 61, 5406–5409 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Morris, A. M., Swanson, M., Ha, H. & Huang, L. Geographic distribution of human immunodeficiency virus-associated Pneumocystis carinii pneumonia in San Francisco. Am. J. Respir. Crit. Care Med. 162, 1622–1626 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Morris, A., Beard, C. B. & Huang, L. Update on the epidemiology and transmission of Pneumocystis carinii. Microbes Infect. 4, 95–103 (2002).

    Article  PubMed  Google Scholar 

  20. Morris, A. et al. Current epidemiology of Pneumocystis pneumonia. Emerg. Infect. Dis. 10, 1713–1720 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Helweg-Larsen, J. et al. Clinical correlation of variations in the internal transcribed spacer regions of rRNA genes in Pneumocystis carinii f. sp. hominis. AIDS 15, 451–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Lundgren, B. et al. Transmission of Pneumocystis carinii from patients to hospital staff. Thorax 52, 422–424 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller, R. F., Ambrose, H. E. & Wakefield, A. E. Pneumocystis carinii f. sp. hominis DNA in immunocompetent health care workers in contact with patients with P. carinii pneumonia. J. Clin. Microbiol. 39, 3877–3882 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vargas, S. L. et al. Transmission of Pneumocystis carinii DNA from a patient with P. carinii pneumonia to immunocompetent contact health care workers. J. Clin. Microbiol. 38, 1536–1538 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hughes, W. T. Natural mode of acquisition for de novo infection with Pneumocystis carinii. J. Infect. Dis. 145, 842–848 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. Wakefield, A. E., Lindley, A. R., Ambrose, H. E., Denis, C. M. & Miller, R. F. Limited asymptomatic carriage of Pneumocystis jiroveci in human immunodeficiency virus-infected patients. J. Infect. Dis. 187, 901–908 (2003).

    Article  PubMed  Google Scholar 

  27. Manoloff, E. S. et al. Risk for Pneumocystis carinii transmission among patients with pneumonia: a molecular epidemiology study. Emerg. Infect. Dis. 9, 132–134 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Morris, A . et al. Association of chronic obstructive pulmonary disease severity and Pneumocystis colonization. Am. J. Respir. Crit. Care Med. 170, 408–413 (2004).

    Article  PubMed  Google Scholar 

  29. Limper, A. H. & Martin, W. J. Pneumocystis carinii: inhibition of lung cell growth mediated by parasite attachment. J. Clin. Invest. 85, 391–396 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Afessa, B., Green, W., Chiao, J. & Frederick, W. Pulmonary complications of HIV infection: autopsy findings. Chest 113, 1225–1229 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Wyder, M. A., Rasch, E. M. & Kaneshiro, E. S. Quantitation of absolute Pneumocystis carinii nuclear DNA content. Trophic and cystic forms isolated from infected rat lungs are haploid organisms. J. Euk. Microbiol. 45, 233–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Matsumoto, Y. & Yoshida, Y. Sporogony in Pneumocystis carinii: synaptonemal complexes and meiotic nuclear divisions observed in precysts. J. Protozool. 31, 420–428 (1984).

    Article  CAS  PubMed  Google Scholar 

  33. Huang, L., Morris, A., Limper, A. H. & Beck, J. M. An official ATS workshop summary: recent advances and future directions in Pneumocystis pneumonia (PCP). Proc. Am. Thorac. Soc. 3, 655–664 (2006).

    Article  PubMed  Google Scholar 

  34. Sloand, E. et al. The challenge of Pneumocystis carinii culture. J. Euk. Microbiol. 40, 188–195 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Keely, S. P. et al. Gene arrays at Pneumocystis carinii telomeres. Genetics 170, 1589–1600 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stringer, J. R. & Cushion, M. T. The genome of Pneumocystis carinii. FEMS Immunol. Med. Microbiol. 22, 15–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Thomas, C. F. Jr, Leof, E. B. & Limper, A. H. Analysis of Pneumocystis carinii introns. Infect. Immun. 67, 6157–6160 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gigliotti, F., Stokes, D. C., Cheatham, A. B., Davis, D. S. & Hughes, W. T. Development of murine monoclonal antibodies to Pneumocystis carinii. J. Infect. Dis. 154, 315–322 (1986).

    Article  CAS  PubMed  Google Scholar 

  39. Gigliotti, F., Ballou, L. R., Hughes, W. T. & Mosley, B. D. Purification and initial characterization of a ferret Pneumocystis carinii surface antigen. J. Infect. Dis. 158, 848–854 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Vuk-Pavlovic, Z., Standing, J. E., Crouch, E. C. & Limper, A. H. Carbohydrate recognition domain of surfactant protein D mediates interactions with Pneumocystis carinii glycoprotein A. Am. J. Respir. Cell. Mol. Biol. 24, 475–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. O'Riordan, D. M., Standing, J. E. & Limper, A. H. Pneumocystis carinii glycoprotein A binds macrophage mannose receptors. Infect. Immun. 63, 779–784 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Linke, M. J., Cushion, M. T. & Walzer, P. D. Properties of the major antigens of rat and human Pneumocystis carinii. Infect. Immun. 57, 1547–1555 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lundgren, B., Koch, C., Mathiesen, L., Nielsen, J. O. & Hansen, J. E. Glycosylation of the major human Pneumocystis carinii surface antigen. Apmis 101, 194–200 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Kovacs, J. A. et al. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii. J. Biol. Chem. 268, 6034–6040 (1993).

    CAS  PubMed  Google Scholar 

  45. Stringer, J. R. & Keely, S. P. Genetics of surface antigen expression in Pneumocystis carinii. Infect. Immun. 69, 627–639 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gigliotti, F. Host species-specific antigenic variation of a mannosylated surface glycoprotein of Pneumocystis carinii. J. Infect. Dis. 165, 329–336 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Kovacs, J. A. et al. Monoclonal antibodies to Pneumocystis carinii: identification of specific antigens and characterization of antigenic differences between rat and human isolates. J. Infect. Dis. 159, 60–70 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Wada, M. & Nakamura, Y. Chromosomal organization of MSG antigen genes of rat Pneumocystis carinii: tandem repeat and unique 5′UTR sequence encoding intron. J. Euk. Microbiol. 41, 115S (1994).

    CAS  PubMed  Google Scholar 

  49. Wada, M. & Nakamura, Y. Type-II major-surface-glycoprotein family of Pneumocystis carinii under the control of novel expression elements. DNA Res. 6, 211–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Kutty, G. & Kovacs, J. A. A single-copy gene encodes Kex1, a serine endoprotease of Pneumocystis jiroveci. Infect. Immun. 71, 571–574 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, L. H. et al. Molecular characterization of KEX1, a kexin-like protease in mouse Pneumocystis carinii. Gene 242, 141–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Lugli, E. B., Allen, A. G. & Wakefield, A. E. A Pneumocystis carinii multi-gene family with homology to subtilisin-like serine proteases. Microbiology 143, 2223–2236 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Lugli, E. B., Bampton, E. T., Ferguson, D. J. & Wakefield, A. E. Cell surface protease PRT1 identified in the fungal pathogen Pneumocystis carinii. Mol. Microbiol. 31, 1723–1733 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Douglas, C. M. Fungal β(1,3)-D-glucan synthesis. Med. Mycol. 39, 55–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Vassallo, R., Standing, J. E. & Limper, A. H. Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses. J. Immunol. 164, 3755–3763 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Kottom, T. J. & Limper, A. H. Cell wall assembly by Pneumocystis carinii. Evidence for a unique gsc-1 subunit mediating β-1,3-glucan deposition. J. Biol. Chem. 275, 40628–40634 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Schmatz, D. M. et al. Treatment of Pneumocystis carinii pneumonia with 1,3-β-glucan synthesis inhibitors. Proc. Natl Acad. Sci. USA 87, 5950–5954 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Powles, M. A. et al. Efficacy of MK-991 (L-743, 872), a semisynthetic pneumocandin, in murine models of Pneumocystis carinii. Antimicrob. Agents Chemother. 42, 1985–1989 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Thomas, C. F., Anders, R. A., Gustafson, M. P., Leof, E. B. & Limper, A. H. Pneumocystis carinii contains a functional cell-division-cycle Cdc2 homologue. Am. J. Respir. Cell. Mol. Biol. 18, 297–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Gustafson, M. P., Thomas, C. F. Jr, Rusnak, F., Limper, A. H. & Leof, E. B. Differential regulation of growth and checkpoint control mediated by a Cdc25 mitotic phosphatase from Pneumocystis carinii. J. Biol. Chem. 276, 835–843 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Johnson, G. L. & Lapadat, R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Bardwell, L., Cook, J. G., Inouye, C. J. & Thorner, J. Signal propagation and regulation in the mating pheromone response pathway of the yeast Saccharomyces cerevisiae. Dev. Biol. 166, 363–379 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Vohra, P. K., Puri, V. & Thomas, C. F. Jr . Complementation and characterization of the Pneumocystis carinii MAPK, PCM. FEBS Lett. 551, 139–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Thomas, C. F. Jr, Kottom, T. J., Leof, E. B. & Limper, A. H. Characterization of a mitogen-activated protein kinase from Pneumocystis carinii. Am. J. Physiol. 275, L193–L199 (1998).

    CAS  PubMed  Google Scholar 

  65. Vohra, P. K., Puri, V., Kottom, T. J., Limper, A. H. & Thomas, C. F. Jr. Pneumocystis carinii STE11, an HMG-box protein, is phosphorylated by the mitogen activated protein kinase PCM. Gene 312, 173–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Vohra, P. K., Park, J. G., Sanyal, B. & Thomas, C. F. Jr. Expression analysis of PCSTE3, a putative pheromone receptor from the lung pathogenic fungus Pneumocystis carinii. Biochem. Biophys. Res. Commun. 319, 193–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kottom, T. J., Kohler, J. R., Thomas, C. F. Jr, Fink, G. R. & Limper, A. H. Lung epithelial cells and extracellular matrix components induce expression of Pneumocystis carinii STE20, a gene complementing the mating and pseudohyphal growth defects of STE20 mutant yeast. Infect. Immun. 71, 6463–6471 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fox, D. & Smulian, A. G. Mitogen-activated protein kinase Mkp1 of Pneumocystis carinii complements the slt2δ defect in the cell integrity pathway of Saccharomyces cerevisiae. Mol. Microbiol. 34, 451–462 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Fox, D. & Smulian, A. G. Mkp1 of Pneumocystis carinii associates with the yeast transcription factor Rlm1 via a mechanism independent of the activation state. Cell. Signal. 12, 381–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Vohra, P. K., Sanyal, B. & Thomas, C. F. Jr. Biochemical requirements for PCBCK1 kinase activity, the Pneumocystis carinii MEKK involved in cell wall integrity. FEMS Microbiol. Lett. 235, 153–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Thomas, C. F. Jr et al. Pneumocystis carinii BCK1 functions in a mitogen-activated protein kinase cascade regulating fungal cell-wall assembly. FEBS Lett. 548, 59–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Kottom, T. J., Thomas, C. F. Jr & Limper, A. H. Characterization of Pneumocystis carinii PHR1, a pH-regulated gene important for cell wall integrity. J. Bacteriol. 183, 6740–6745 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kottom, T. J. & Limper, A. H. Pneumocystis carinii cell wall biosynthesis kinase gene CBK1 is an environmentally responsive gene that complements cell wall defects of cbk-deficient yeast. Infect. Immun. 72, 4628–4636 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Smulian, A. G., Sesterhenn, T., Tanaka, R. & Cushion, M. T. The ste3 pheromone receptor gene of Pneumocystis carinii is surrounded by a cluster of signal transduction genes. Genetics 157, 991–1002 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Smulian, A. G., Ryan, M., Staben, C. & Cushion, M. Signal transduction in Pneumocystis carinii: characterization of the genes (pcg1) encoding the α subunit of the G protein (PCG1) of Pneumocystis carinii carinii and Pneumocystis carinii ratti. Infect. Immun. 64, 691–701 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Limper, A. H., Offord, K. P., Smith, T. F. & Martin, W. J. 2nd. Pneumocystis carinii pneumonia. Differences in lung parasite number and inflammation in patients with and without AIDS. Am. Rev. Respir. Dis. 140, 1204–1209 (1989).

    Article  CAS  PubMed  Google Scholar 

  77. Ezekowitz, R. A. et al. Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature 351, 155–158 (1991).

    Article  CAS  PubMed  Google Scholar 

  78. Steele, C. et al. Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 β-glucan receptor. J. Exp. Med. 198, 1677–1688 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Neese, L. W., Standing, J. E., Olson, E. J., Castro, M. & Limper, A. H. Vitronectin, fibronectin, and gp120 antibody enhance macrophage release of TNF-α in response to Pneumocystis carinii. J. Immunol. 152, 4549–4556 (1994).

    CAS  PubMed  Google Scholar 

  80. Limper, A. H., Hoyte, J. S. & Standing, J. E. The role of alveolar macrophages in Pneumocystis carinii degradation and clearance from the lung. J. Clin. Invest. 99, 2110–2117 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koziel, H. et al. Reduced binding and phagocytosis of Pneumocystis carinii by alveolar macrophages from persons infected with HIV-1 correlates with mannose receptor downregulation. J. Clin. Invest. 102, 1332–1344 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lasbury, M. E. et al. Suppression of alveolar macrophage apoptosis prolongs survival of rats and mice with pneumocystis pneumonia. J. Immunol. 176, 6443–6453 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Vassallo, R., Standing, J. E. & Limper, A. H. Isolated Pneumocystis carinii cell wall glucan provokes lower respiratory tract inflammatory responses. J. Immunol. 164, 3755–3763 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Benfield, T. L. et al. The major surface glycoprotein of Pneumocystis carinii induces release and gene expression of interleukin-8 and tumor necrosis factor α in monocytes. Infect. Immun. 65, 4790–4794 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Carmona, E. M. et al. Pneumocystis cell wall β-glucans induce dendritic cell costimulatory molecule expression and inflammatory activation through a Fas-Fas ligand mechanism. J. Immunol. 177, 459–467 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Hahn, P. Y. et al. Pneumocystis carinii cell wall β-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J. Biol. Chem. 278, 2043–2050 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Lebron, F., Vassallo, R., Puri, V. & Limper, A. H. Pneumocystis carinii cell wall β-glucans initiate macrophage inflammatory responses through NF-κB activation. J. Biol. Chem. 278, 25001–25008 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. McCann, F., Carmona, E., Puri, V., Pagano, R. E. & Limper, A. H. Macrophage internalization of fungal β-glucans is not necessary for initiation of related inflammatory responses. Infect. Immun. 73, 6340–6349 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vetvicka, V., Thornton, B. P. & Ross, G. D. Soluble β-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J. Clin. Invest. 98, 50–61 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brown, G. D. & Gordon, S. Immune recognition. A new receptor for β-glucans. Nature 413, 36–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Evans, S. E. et al. Pneumocystis cell wall β-glucans stimulate alveolar epithelial cell chemokine generation through nuclear factor-κB-dependent mechanisms. Am. J. Respir. Cell. Mol. Biol. 32, 490–497 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang, C. et al. Toll-like receptor 2 mediates alveolar macrophage response to Pneumocystis murina. Infect. Immun. 74, 1857–1864 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vassallo, R., Kottom, T. J., Standing, J. E. & Limper, A. H. Vitronectin and fibronectin function as glucan binding proteins augmenting macrophage responses to Pneumocystis carinii. Am. J. Respir. Cell. Mol. Biol. 25, 203–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Saijo, S . et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nature Immunol. 8, 39–46 (2007).

    Article  CAS  Google Scholar 

  95. Hoffman, O. A., Standing, J. E. & Limper, A. H. Pneumocystis carinii stimulates tumor necrosis factor-α release from alveolar macrophages through a β-glucan-mediated mechanism. J. Immunol. 150, 3932–3940 (1993).

    CAS  PubMed  Google Scholar 

  96. Chen, W., Havell, E. A. & Harmsen, A. G. Importance of endogenous tumor necrosis factor α and γ interferon in host resistance against Pneumocystis carinii infection. Infect. Immun. 60, 1279–1284 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wright, T. W. et al. TNF receptor signaling contributes to chemokine secretion, inflammation, and respiratory deficits during Pneumocystis pneumonia. J. Immunol. 172, 2511–2521 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Kolls, J. K. et al. Exacerbation of murine Pneumocystis carinii infection by adenoviral- mediated gene transfer of a TNF inhibitor. Am. J. Respir. Cell. Mol. Biol. 16, 112–118 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. McAllister, F. et al. CXCR3 and IFN protein-10 in Pneumocystis pneumonia. J. Immunol. 177, 1846–1854 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Benfield, T. L. et al. Prognostic value of interleukin-8 in AIDS-associated Pneumocystis carinii pneumonia. Am. J. Respir. Crit. Care Med. 151, 1058–1062 (1995).

    CAS  PubMed  Google Scholar 

  101. Swain, S. D., Wright, T. W., Degel, P. M., Gigliotti, F. & Harmsen, A. G. Neither neutrophils nor reactive oxygen species contribute to tissue damage during Pneumocystis pneumonia in mice. Infect. Immun. 72, 5722–5732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Swain, S. D., Meissner, N. N. & Harmsen, A. G. CD8 T cells modulate CD4 T-cell and eosinophil-mediated pulmonary pathology in Pneumocystis pneumonia in B-cell-deficient mice. Am. J. Pathol. 168, 466–475 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Phair, J. et al. The risk of Pneumocystis carinii pneumonia among men infected with human immunodeficiency virus type 1. Multicenter AIDS Cohort Study Group. N. Engl. J. Med. 322, 161–165 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. Shellito, J. et al. A new model of Pneumocystis carinii infection in mice selectively depleted of helper T lymphocytes. J. Clin. Invest. 85, 1686–1693 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Roths, J. B., Marshall, J. D., Allen, R. D., Carlson, G. A. & Sidman, C. L. Spontaneous Pneumocystis carinii pneumonia in immunodeficient mutant scid mice. Natural history and pathobiology. Am. J. Pathol. 136, 1173–1186 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Wright, T. W. et al. Immune-mediated inflammation directly impairs pulmonary function, contributing to the pathogenesis of Pneumocystis carinii pneumonia. J. Clin. Invest. 104, 1307–1317 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Harmsen, A. G. & Stankiewicz, M. Requirement for CD4+ cells in resistance to Pneumocystis carinii pneumonia in mice. J. Exp. Med. 172, 937–945 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. Beck, J. M. & Harmsen, A. G. Lymphocytes in host defense against Pneumocystis carinii. Semin. Respir. Infect. 13, 330–338 (1998).

    CAS  PubMed  Google Scholar 

  109. Lund, F. E., Schuer, K., Hollifield, M., Randall, T. D. & Garvy, B. A. Clearance of Pneumocystis carinii in mice is dependent on B cells but not on P. carinii-specific antibody. J. Immunol. 171, 1423–1430 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Lund, F. E. et al. B cells are required for generation of protective effector and memory CD4 cells in response to Pneumocystis lung infection. J. Immunol. 176, 6147–6154 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Marcotte, H. et al. Pneumocystis carinii infection in transgenic B cell-deficient mice. J. Infect. Dis. 173, 1034–1037 (1996).

    Article  CAS  PubMed  Google Scholar 

  112. Wright, T. W., Johnston, C. J., Harmsen, A. G. & Finkelstein, J. N. Chemokine gene expression during Pneumocystis carinii-driven pulmonary inflammation. Infect. Immun. 67, 3452–3460 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Beck, J. M. et al. Reduction in intensity of Pneumocystis carinii pneumonia in mice by aerosol administration of g interferon. Infect. Immun. 59, 3859–3862 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Chen, W., Havell, E. A. & Harmsen, A. G. Importance of endogenous tumor necrosis factor α and γ interferon in host resistance against Pneumocystis carinii infection. Infect. Immun. 60, 1279–1284 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Meissner, N. N., Swain, S., Tighe, M. & Harmsen, A. Role of type I IFNs in pulmonary complications of Pneumocystis murina infection. J. Immunol. 174, 5462–5471 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Beck, J. M. et al. Inflammatory responses to Pneumocystis carinii in mice selectively depleted of helper T lymphocytes. Am. J. Respir. Cell. Mol. Biol. 5, 186–197 (1991).

    Article  CAS  PubMed  Google Scholar 

  117. Beck, J. M. et al. Interaction of rat Pneumocystis carinii and rat alveolar epithelial cells in vitro. Am. J. Physiol. 275, L118–L125 (1998).

    CAS  PubMed  Google Scholar 

  118. Beck, J. M. et al. Pneumocystis pneumonia increases the susceptibility of mice to sublethal hyperoxia. Infect. Immun. 71, 5970–5978 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sepkowitz, K. A. Pneumocystis carinii pneumonia in patients without AIDS. Clin. Infect. Dis. 17, S416–S422 (1993).

    Article  PubMed  Google Scholar 

  120. Bhagwat, S. P., Gigliotti, F., Xu, H. & Wright, T. W. Contribution of T cell subsets to the pathophysiology of Pneumocystis-related immunorestitution disease. Am. J. Physiol. Lung Cell. Mol Physiol (2006).

  121. Walzer, P. D. Attachment of microbes to host cells: relevance of Pneumocystis carinii. Lab. Invest. 54, 589–592 (1986).

    CAS  PubMed  Google Scholar 

  122. Limper, A. H., Standing, J. E., Hoffman, O. A., Castro, M. & Neese, L. W. Vitronectin binds to Pneumocystis carinii and mediates organism attachment to cultured lung epithelial cells. Infect. Immun. 61, 4302–4309 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Benfield, T. L., Prento, P., Junge, J., Vestbo, J. & Lundgren, J. D. Alveolar damage in AIDS-related Pneumocystis carinii pneumonia. Chest 111, 1193–1199 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Beck, J. M. et al. Interaction of rat Pneumocystis carinii and rat alveolar epithelial cells in vitro. Am. J. Physiol. 275, L118–L125 (1998).

    CAS  PubMed  Google Scholar 

  125. Limper, A. H., Edens, M., Anders, R. A. & Leof, E. B. Pneumocystis carinii inhibits cyclin-dependent kinase activity in lung epithelial cells. J. Clin. Invest. 101, 1148–1155 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zimmerman, P. E., Voelker, D. R., McCormack, F. X., Paulsrud, J. R. & Martin, W. J 2nd. 120-kD surface glycoprotein of Pneumocystis carinii is a ligand for surfactant protein A. J. Clin. Invest. 89, 143–149 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. O'Riordan, D. M. et al. Surfactant protein D interacts with Pneumocystis carinii and mediates organism adherence to alveolar macrophages. J. Clin. Invest. 95, 2699–2710 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Beers, M. F., Atochina, E. N., Preston, A. M. & Beck, J. M. Inhibition of lung surfactant protein B expression during Pneumocystis carinii pneumonia in mice. J. Lab. Clin. Med. 133, 423–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  129. Williams, M. D., Wright, J. R., March, K. L. & Martin, W. J. 2nd. Human surfactant protein A enhances attachment of Pneumocystis carinii to rat alveolar macrophages. Am. J. Respir. Cell. Mol. Biol. 14, 232–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. Koziel, H. et al. Surfactant protein-A reduces binding and phagocytosis of Pneumocystis carinii by human alveolar macrophages in vitro. Am. J. Respir. Cell. Mol. Biol. 18, 834–843 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Yong, S. J., Vuk-Pavlovic, Z., Standing, J. E., Crouch, E. C. & Limper, A. H. Surfactant protein D-mediated aggregation of Pneumocystis carinii impairs phagocytosis by alveolar macrophages. Infect. Immun. 71, 1662–1671 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wright, T. W., Notter, R. H., Wang, Z., Harmsen, A. G. & Gigliotti, F. Pulmonary inflammation disrupts surfactant function during Pneumocystis carinii pneumonia. Infect. Immun. 69, 758–764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Edman, J. C. et al. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene. Proc. Natl Acad. Sci. USA 86, 8625–8629 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ma, L., Jia, Q. & Kovacs, J. A. Development of a yeast assay for rapid screening of inhibitors of human-derived Pneumocystis carinii dihydrofolate reductase. Antimicrob. Agents Chemother. 46, 3101–3103 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Achari, A. et al. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nature Struct. Biol. 4, 490–497 (1997).

    Article  CAS  PubMed  Google Scholar 

  136. Johnson, T., Khan, I. A., Avery, M. A., Grant, J. & Meshnick, S. R. Quantitative structure-activity relationship studies of a series of sulfa drugs as inhibitors of Pneumocystis carinii dihydropteroate synthetase. Antimicrob. Agents Chemother. 42, 1454–1458 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Anderson, A. C., Perry, K. M., Freymann, D. M. & Stroud, R. M. The crystal structure of thymidylate synthase from Pneumocystis carinii reveals a fungal insert important for drug design. J. Mol. Biol. 297, 645–657 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Vestereng, V. H. & Kovacs, J. A. Inability of Pneumocystis organisms to incorporate bromodeoxyuridine suggests the absence of a salvage pathway for thymidine. Microbiology 150, 1179–1182 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Morales, I. J. et al. Characterization of a lanosterol 14 α-demethylase from Pneumocystis carinii. Am. J. Res. Cell & Mol. Biol. 29, 232–238 (2003).

    Article  CAS  Google Scholar 

  140. Kaneshiro, E. S. et al. The Pneumocystis carinii drug target S-adenosyl-L-methionine:sterol C-24 methyl transferase has a unique substrate preference. Mol. Microbiol. 44, 989–999 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Masur, H., Kaplan, J. E. & Holmes, K. K. Guidelines for preventing opportunistic infections among HIV-infected persons — 2002. Recommendations of the U.S. Public Health Service and the Infectious Diseases Society of America. Ann. Intern. Med. 137, 435–478 (2002).

    Article  PubMed  Google Scholar 

  142. Sepkowitz, K. A., Brown, A. E., Telzak, E. E., Gottlieb, S. & Armstrong, D. Pneumocystis carinii pneumonia among patients without AIDS at a cancer hospital. JAMA 267, 832–837 (1992).

    Article  CAS  PubMed  Google Scholar 

  143. Yale, S. H. & Limper, A. H. Pneumocystis carinii pneumonia in patients without acquired immunodeficiency syndrome: associated illness and prior corticosteroid therapy. Mayo Clin. Proc. 71, 5–13 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Pareja, J. G., Garland, R. & Koziel, H. Use of adjunctive corticosteroids in severe adult non-HIV Pneumocystis carinii pneumonia. Chest 113, 1215–1224 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Nahimana, A., Rabodonirina, M., Bille, J., Francioli, P. & Hauser, P. M. Mutations of Pneumocystis jirovecii dihydrofolate reductase associated with failure of prophylaxis. Antimicrob. Agents Chemother. 48, 4301–4305 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kessl, J. J. et al. Molecular basis for atovaquone resistance in Pneumocystis jirovecii modeled in the cytochrome bc(1) complex of Saccharomyces cerevisiae. J. Biol. Chem. 279, 2817–2824 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Huang, L. et al. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance. Emerg. Infect. Dis. 10, 1721–1728 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Beard, C. B. et al. Genetic differences in Pneumocystis isolates recovered from immunocompetent infants and from adults with AIDS: epidemiological implications. J. Infect. Dis. 192, 1815–1818 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Crothers, K. et al. Severity and outcome of HIV-associated Pneumocystis pneumonia containing Pneumocystis jirovecii dihydropteroate synthase gene mutations. AIDS 19, 801–805 (2005).

    Article  PubMed  Google Scholar 

  150. Hauser, P. M., Sudre, P., Nahimana, A. & Francioli, P. Prophylaxis failure is associated with a specific Pneumocystis carinii genotype. Clin. Infect. Dis. 33, 1080–1082 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Helweg-Larsen, J., Benfield, T. L., Eugen-Olsen, J., Lundgren, J. D. & Lundgren, B. Effects of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of AIDS-associated P. carinii pneumonia. Lancet 354, 1347–1351 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Takahashi, T. et al. Relationship between mutations in dihydropteroate synthase of Pneumocystis carinii f. sp. hominis isolates in Japan and resistance to sulfonamide therapy. J. Clin. Microbiol. 38, 3161–3164 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Nahimana, A. et al. Sulfa resistance and dihydropteroate synthase mutants in recurrent Pneumocystis carinii pneumonia. Emerg. Infect. Dis. 9, 864–867 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Navin, T. R. et al. Effect of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of P. carinii pneumonia in patients with HIV-1: a prospective study. Lancet 358, 545–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Cushion, M. T. in Topley and Wilson's Microbiology and Microbial Infections 9th edn Vol. 4 (eds Collier, L., Balows, A. & Sussman, M.) (Arnold Publishing, New York, 1998).

    Google Scholar 

Download references

Acknowledgements

C.F.T. and A.H.L. have National Institutes of Health funding. We appreciate the many helpful discussions of P. K. Vohra, B. Sanyal, R. Vassallo, Z. Vuk-Pavlovic and T. J. Kottom. We apologize to our colleagues whose work we could not reference owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Thomas Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Selected characterized Pneumocystis genes* (PDF 106 kb)

Related links

Related links

DATABASES

Entrez Genome

HIV

Entrez Genome Project

Kluyveromyces lactis

Neurospora crassa

Pneumocystis carinii

Pneumocystis muris

Saccharomyces cerevisiae

Schizosaccharomyces pombe

FURTHER INFORMATION

Charles F. Thomas's homepage

Andrew H. Limper's homepage

Broad Institute status of Fungal Genome Initiative projects

Pneumocystis genome project

Wellcome Trust Sanger Institute Pneumocystis carinii telomeric clone sequencing project

Glossary

Surfactant

A surface-active lipoprotein produced by type II alveolar epithelial cells that results in a reduction of surface tension in the alveoli.

Donor consensus site

The recognition sequence at the 5′-end of the intron required for intron splicing.

Acceptor consensus site

The recognition sequence at the 3′-end of the intron required for intron splicing.

Branch-site sequence

An internal recognition sequence in an intron that is necessary for intron splicing.

Chitin

A long-chain polymeric polysaccharide that is a component of the fungal cell wall.

Degenerate PCR

A PCR technique to clone genes based on protein-domain homology. The PCR primer sequence is called degenerate if some of its positions (typically encoding the third codon) have several possible bases.

Cell-division cycle (Cdc) molecules

A conserved family of molecules in eukaryotes that include cyclins and cyclin-dependent kinases.

Cyclin

A cell-cycle protein that has a fluctuating (or cycling) concentration during growth. It interacts with a cyclin-dependent kinase to promote cell-cycle progression.

DNA damage checkpoint

A DNA damage checkpoint is an essential control point in the cell cycle ensuring effective damage repair. When cells have DNA damage that needs to be repaired, cells activate DNA damage checkpoints that arrest the cell cycle.

DNA replication checkpoint

When DNA replication is disrupted, cells activate DNA replication checkpoints that arrest the cell cycle at the G2/M transition until DNA replication is complete. The loss of checkpoint functions leads to loss of genomic integrity and allows accumulation of genetic damage in the daughter cells.

Ascus

The spore-containing structure of the fungi Ascomycota.

Opsonic protein

A protein that functions as a binding enhancer for a cell.

RAG−/−

(RAG−/− mice). A genetic strain of mice that lack the recombination activation gene and are severely immunodeficient owing to a lack of functional B cells and T cells.

Alveolar type I epithelial cell

The most distal portion of the lung, the alveoli, participate in gas exchange and metabolic functions. The alveolar structure includes long, flat, type I pneumocytes, which encompass approximately 95% of the surface area of the alveoli.

Alveolar type II epithelial cell

The alveolar structure also includes cuboidal type II pneumocytes. Type II pneumocytes secrete surfactant proteins and are believed to be regenerative cells involved in alveolar repair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, C., Limper, A. Current insights into the biology and pathogenesis of Pneumocystis pneumonia. Nat Rev Microbiol 5, 298–308 (2007). https://doi.org/10.1038/nrmicro1621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing