Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Virus trafficking – learning from single-virus tracking

Key Points

  • Single-virus tracking in live cells allows researchers to follow the fate of individual virus particles, to probe dynamic interactions between viruses and the cellular machinery, and to dissect the infection process into fundamental steps so that the molecular mechanisms underlying each step can be determined.

  • Tracking individual virus particles in live cells has shed light on virus–cell interactions that are important for viral entry, and on fundamental cellular mechanisms and pathways.

  • Viral transport mechanisms, such as diffusive movement and directed movement by motor proteins on cytoskeleton tracks, have been probed using single-virus tracking.

  • By monitoring the assembly of individual virions using single-virus imaging, the kinetics of viral assembly and the exit mechanisms of viruses have been revealed.

Abstract

What could be a better way to study virus trafficking than 'miniaturizing oneself' and 'taking a ride with the virus particle' on its journey into the cell? Single-virus tracking in living cells potentially provides us with the means to visualize the virus journey. This approach allows us to follow the fate of individual virus particles and monitor dynamic interactions between viruses and cellular structures, revealing previously unobservable infection steps. The entry, trafficking and egress mechanisms of various animal viruses have been elucidated using this method. The combination of single-virus trafficking with systems approaches and state-of-the-art imaging technologies should prove exciting in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-lapse images of influenza viruses in live cells.
Figure 2: Viral entry and transport.
Figure 3: Viral assembly and egress.

Similar content being viewed by others

References

  1. Marsh, M. & Helenius, A. Virus entry: open sesame. Cell 124, 729–740 (2006). A comprehensive review of the main mechanisms of viral entry.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pelkmans, L. & Helenius, A. Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell Biol. 15, 414–422 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Conner, S. D. & Schmid, S. L. Regulated portals of entry into cells. Nature 422, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006). A review of the uses of fluorescent probes for studying proteins and protein–protein interaction in cells.

    Article  CAS  PubMed  Google Scholar 

  5. Lakadamyali, M., Rust, M. J., Babcock, H. P. & Zhuang, X. Visualizing infection of individual influenza viruses. Proc. Natl Acad. Sci. USA 100, 9280–9285 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seisenberger, G. et al. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 294, 1929–1932 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Shaner, N. C., Steinbach, P. A. & Tsien, R. Y. A guide to choosing fluorescent proteins. Nature Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Marks, K. M. & Nolan, G. P. Chemical labeling strategies for cell biology. Nature Methods 3, 591–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dixit, S. K. et al. Quantum dot encapsulation in viral capsids. Nano Lett. 6, 1993–1999 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Zheng, J. & Dickson, R. M. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J. Am. Chem. Soc. 124, 13982–13983 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Rust, M. J., Lakadamyali, M., Zhang, F. & Zhuang, X. Assembly of endocytic machinery around individual influenza viruses during viral entry. Nature Struct. Mol. Biol. 11, 567–573 (2004). By real-time imaging of individual virus particles in live cells, this paper reveals that influenza viruses can exploit two endocytic pathways in parallel and enter cells either by de novo formation of clathrin-coated pits or by a clathrin- and caveolin-independent pathway.

    Article  CAS  Google Scholar 

  14. Gaidarov, I., Santini, F., Warren, R. A. & Keen, J. H. Spatial control of coated-pit dynamics in living cells. Nature Cell Biol. 1, 1–7 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Lehmann, M. J., Sherer, N. M., Marks, C. B., Pypaert, M. & Mothes, W. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell Biol. 170, 317–325 (2005). A vivid demonstration of actin-dependent virus surfing along the filopodia of polarized epithelial cells towards the viral entry site.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ewers, H. et al. Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes. Proc. Natl Acad. Sci. USA 102, 15110–15115 (2005). Single-virus tracking revealed distinct types of lateral movement of polyoma virus-like particles on the cell surface.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coyne, C. B. & Bergelson, J. M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124, 119–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001). An early single-virus tracking work that demonstrated the caveolin-mediated entry mechanism for Simian virus 40 and the presence of a new intracellular organelle, the caveosome.

    Article  CAS  PubMed  Google Scholar 

  19. Pelkmans, L., Burli, T., Zerial, M. & Helenius, A. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118, 767–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Tagawa, A. et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters. J. Cell Biol. 170, 769–779 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Elphick, G. F. et al. The human polyomavirus, JCV, uses serotonin receptors to infect cells. Science 306, 1380–1383 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Pietiainen, V. et al. Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events. Mol. Biol. Cell 15, 4911–4925 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Upla, P. et al. Clustering induces a lateral redistribution of α 2 β 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Mol. Biol. Cell 15, 625–636 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matlin, K. S., Reggio, H., Helenius, A. & Simons, K. Infectious entry pathway of influenza virus in a canine kidney-cell line. J. Cell Biol. 91, 601–613 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. Sieczkarski, S. B. & Whittaker, G. R. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J. Virol. 76, 10455–10464 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006). Real-time tracking of single-virus particles and other endocytic ligands in live cells enabled the discovery of a new endocytic sorting mechanism.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Vonderheit, A. & Helenius, A. Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol 3, e233 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Meier, O. et al. Adenovirus triggers macropinocytosis and endosomal leakage together with its clathrin-mediated uptake. J. Cell Biol. 158, 1119–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daecke, J., Fackler, O. T., Dittmar, M. T. & Krausslich, H. G. Involvement of clathrin-mediated endocytosis in human immunodeficiency virus type 1 entry. J. Virol. 79, 1581–1594 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Damm, E. M. et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 168, 477–488 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liebl, D. et al. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in Rab11-positive endosomes. J. Virol. 80, 4610–4622 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nicola, A. V. & Straus, S. E. Cellular and viral requirements for rapid endocytic entry of herpes simplex virus. J. Virol. 78, 7508–7517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Melikyan, G. B., Barnard, R. J., Abrahamyan, L. G., Mothes, W. & Young, J. A. Imaging individual retroviral fusion events: from hemifusion to pore formation and growth. Proc. Natl Acad. Sci. USA 102, 8728–8733 (2005). Real-time imaging of the fusion processes between individual virus particles and cell membranes revealed semi-fusion and small fusion pores as fusion intermediate states.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Markosyan, R. M., Cohen, F. S. & Melikyan, G. B. Time-resolved imaging of HIV-1 Env-mediated lipid and content mixing between a single virion and cell membrane. Mol. Biol. Cell 16, 5502–5513 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le Blanc, I. et al. Endosome-to-cytosol transport of viral nucleocapsids. Nature Cell Biol. 7, 653–664 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Luby-Phelps, K. Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192, 189–221 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Greber, U. F. & Way, M. A superhighway to virus infection. Cell 124, 741–754 (2006). A comprehensive review of the intracellular transport mechanisms used by viruses.

    Article  CAS  PubMed  Google Scholar 

  41. Radtke, K., Dohner, K. & Sodeik, B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell. Microbiol. 8, 387–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Suomalainen, M. et al. Microtubule-dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J. Cell. Biol. 144, 657–672 (1999). An early single-virus tracking study that revealed the active-transport mechanisms of adenoviruses in cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dohner, K. et al. Function of dynein and dynactin in herpes simplex virus capsid transport. Mol. Biol. Cell 13, 2795–2809 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McDonald, D. et al. Visualization of the intracellular behavior of HIV in living cells. J. Cell Biol. 159, 441–452 (2002). A single-virus tracking study that revealed the transport mechanisms of HIV-1 virus at various stages of the virus life cycle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Georgi, A., Mottola-hartshorn, C., Warner, W., Fields, B. & Chen, L. B. Detection of individual fluorecently labelled reovirions in living cells. Proc. Natl Acad. Sci. USA 87, 6579–6583 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, G. A., Pomeranz, L., Gross, S. P. & Enquist, L. W. Local modulation of plus-end transport targets herpesvirus entry and egress in sensory axons. Proc. Natl Acad. Sci. USA 101, 16034–16039 (2004). This time-lapse imaging study of herpes simplex viruses in live cells that elucidated distinct microtubule-dependent transport mechanisms for incoming and progeny HSV virus capsids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elliott, G. & O'Hare, P. Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection. J. Virol. 73, 4110–4119 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Antinone, S. E. et al. The Herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus. J. Virol. 80, 5494–5498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lee, G. E., Murray, J. W., Wolkoff, A. W. & Wilson, D. W. Reconstitution of herpes simplex virus microtubule-dependent trafficking in vitro. J. Virol. 80, 4264–4275 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolfstein, A. et al. The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro. Traffic 7, 227–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Dohner, K., Radtke, K., Schmidt, S. & Sodeik, B. Eclipse phase of herpes simplex virus type 1 infection: Efficient dynein-mediated capsid transport without the small capsid protein VP26. J. Virol. 80, 8211–8224 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Luxton, G. W. et al. Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins. Proc. Natl Acad. Sci. USA 102, 5832–5837 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luxton, G. W., Lee, J. I., Haverlock-Moyns, S., Schober, J. M. & Smith, G. A. The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport. J. Virol. 80, 201–209 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Suomalainen, M., Nakano, M. Y., Boucke, K., Keller, S. & Greber, U. F. Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J. 20, 1310–1319 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Strunze, S., Trotman, L. C., Boucke, K. & Greber, U. F. Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol. Biol. Cell 16, 2999–3009 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Babcock, H. P., Chen, C. & Zhuang, X. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys. J. 87, 2749–2758 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Arhel, N. et al. Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes. Nature Methods 3, 817–824 (2006). This paper demonstrated the use of advanced 3D tracking methods for the study of viral motion in live cells.

    Article  CAS  PubMed  Google Scholar 

  58. Ward, B. M. & Moss, B. Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails. J. Virol. 75, 11651–11663 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hollinshead, M. et al. Vaccinia virus utilizes microtubules for movement to the cell surface. J. Cell Biol. 154, 389–402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rietdorf, J. et al. Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus. Nature Cell Biol. 3, 992–1000 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Ward, B. M. & Moss, B. Visualization of intracellular movement of vaccinia virus virions containing a green fluorescent protein-B5R membrane protein chimera. J. Virol. 75, 4802–4813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Herrero-Martinez, E., Roberts, K. L., Hollinshead, M. & Smith, G. L. Vaccinia virus intracellular enveloped virions move to the cell periphery on microtubules in the absence of the A36R protein. J. Gen. Virol. 86, 2961–2968 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Ward, B. M. Visualization and characterization of the intracellular movement of vaccinia virus intracellular mature virions. J. Virol. 79, 4755–4763 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Smith, G. L., Murphy, B. J. & Law, M. Vaccinia virus motility. Annu. Rev. Microbiol. 57, 323–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Newsome, T. P., Scaplehorn, N. & Way, M. SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus. Science 306, 124–129 (2004). An elegant analysis of the molecular mechanisms used by vaccinia virus to regulate switching between microtubule-dependent and actin-dependent modes of transport within the cell.

    Article  CAS  PubMed  Google Scholar 

  66. Newsome, T. P., Weisswange, I., Frischknecht, F. & Way, M. Abl collaborates with Src family kinases to stimulate actin-based motility of vaccinia virus. Cell Microbiol. 8, 233–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Jouvenet, N., Monaghan, P., Way, M. & Wileman, T. Transport of African swine fever virus from assembly sites to the plasma membrane is dependent on microtubules and conventional kinesin. J. Virol. 78, 7990–8001 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jouvenet, N. et al. African swine fever virus induces filopodia-like projections at the plasma membrane. Cell Microbiol. (2006).

  69. Perlman, M. & Resh, M. D. Identification of an intracellular trafficking and assembly pathway for HIV-1 gag. Traffic 7, 731–745 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Kar, A. K., Iwatani, N. & Roy, P. Assembly and intracellular localization of the bluetongue virus core protein VP3. J. Virol. 79, 11487–11495 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. del Rio, T., Ch'ng, T. H., Flood, E. A., Gross, S. P. & Enquist, L. W. Heterogeneity of a fluorescent tegument component in single pseudorabies virus virions and enveloped axonal assemblies. J. Virol. 79, 3903–3919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sampaio, K. L., Cavignac, Y., Stierhof, Y. D. & Sinzger, C. Human cytomegalovirus labeled with green fluorescent protein for live analysis of intracellular particle movements. J. Virol. 79, 2754–2767 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005). The first systems-biology study of viral entry mechanisms by high-throughput siRNA screening.

    Article  CAS  PubMed  Google Scholar 

  74. Hell, S. W. Toward fluorescence nanoscopy. Nature Biotech. 21, 1347–1355 (2003).

    Article  CAS  Google Scholar 

  75. Rust, M., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods (2006).

  76. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotech. 21, 1368–1376 (2003).

    Article  CAS  Google Scholar 

  79. Evans, C. L. et al. Chemical imaging of tissue in vivo with videl-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci USA 102, 16807–16812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chudakov, D. M., Lukyanov, S. & Lukyanov, K. A. Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol. 23, 605–613 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Stephens, D. J. & Allan, V. J. Light microscopy techniques for live cell imaging. Science 300, 82–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Amos, W. B. & White, J. G. How the confocal laser scanning microscope entered biological research. Biol. Cell 95, 335–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Olivo-Marin, J.-C. Extraction of spots in biological images using multiscale products. Pattern Recognition 35, 1989–1996 (2002).

    Article  Google Scholar 

  85. Sbalzarini, I. F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Genovesio, A. & Olivo-Marin, J. C. Split and merge data association filter for dense multi-target tracking. IEEE ICP 4, 677–680 (2004).

    Google Scholar 

  87. Helenius, A., Kartenbeck, J., Simons, K. & Fries, E. On the entry of Semliki forest virus into BHK-21 cells. J. Cell Biol. 84, 404–420 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barak, L. S. & Webb, W. W. Diffusion of low density lipoprotein-receptor complex on human fibroblasts. J. Cell Biol. 95, 846–852 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. De Brabander, M., Geuens, G., Nuydens, R., Moeremans, M. & De Mey, J. Probing microtubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios 43, 273–283 (1985).

    CAS  PubMed  Google Scholar 

  90. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature 331, 450–453 (1988).

    Article  CAS  PubMed  Google Scholar 

  91. Inoue, S. Imaging of unresolved objects, superresolution, and precision of distance measurement with video microscopy. Methods Cell Biol. 30, 85–112 (1989).

    Article  CAS  PubMed  Google Scholar 

  92. Qian, H., Sheetz, M. P. & Elson, E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saxton, M. J. Single-particle tracking: models of directed transport. Biophys. J. 67, 2110–2119 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ghosh, R. N. & Webb, W. W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys. J. 66, 1301–1318 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bachi, T. Direct observation of the budding and fusion of an enveloped virus by video microscopy of viable cells. J. Cell Biol. 107, 1689–1695 (1988).

    Article  CAS  PubMed  Google Scholar 

  96. Lowy, R. J., Sarkar, D. P., Chen, Y. & Blumenthal, R. Observation of single influenza virus-cell fusion and measurement by fluorescence video microscopy. Proc. Natl Acad. Sci. USA 87, 1850–1854 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Georgi, A., Mottola-Hartshorn, C., Warner, A., Fields, B. & Chen, L. B. Detection of individual fluorescently labeled reovirions in living cells. Proc. Natl Acad. Sci. USA 87, 6579–6583 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Anderson, C. M., Georgiou, G. N., Morrison, I. E., Stevenson, G. V. & Cherry, R. J. Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. J. Cell Sci. 101, 415–425 (1992).

    PubMed  Google Scholar 

  99. Prasher, D. C., Eckenrode, V. K., Ward, W. W., Prendergast, F. G. & Cormier, M. J. Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111, 229–233 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. Inouye, S. & Tsuji, F. I. Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett. 341, 277–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  101. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Heim, R., Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl Acad. Sci. USA 91, 12501–12504 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cudmore, S., Cossart, P., Griffiths, G. & Way, M. Actin-based motility of vaccinia virus. Nature 378, 636–638 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Lewis, J. D. et al. Viral nanoparticles as tools for intravital vascular imaging. Nature Med. 12, 354–360 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Genovesio, A. et al. Multiple particle tracking in 3-D+t microscopy: method and application to the tracking of endocytosed quantum dots. IEEE TIP 15, 1062–1070 (2006).

    Google Scholar 

Download references

Acknowledgements

We thank J. C. Vaughan for his critical reading of the manuscript and other members of the Zhuang laboratory for helpful discussions. We apologize to colleagues whose work might not have been cited due to space constraints. This work is supported in part by the National Institutes of Health. X. Z. is a Howard Hughes Medical Institute investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Zhuang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

The movie shows the time course of an influenza virus particle labelled with the lipophilic dye DiD as the virus enters and moves inside a mammalian cell. The movie reveals the slow actin-dependent movement of the virus particle near the cell periphery and the rapid microtubule-dependent transport of the virus towards the perinuclear region. The sudden colour change from blue/pink to yellow/white reflects a dramatic increase in the fluorescence signal of DiD, indicating the fusion of the virus with an endosome. A schematic of this process is shown in figure 1 (panel a). The movie was previously published with REF. 5. (MP4 1671 kb)

Supplementary information S2 (movie)

The movie shows the time course of a DiD-labelled influenza virus particle being internalized by a clathrin-coated vesicle. The virus is coloured red and the clathrin is coloured green. Overlay of green and red signals appears yellow. A schematic of this process is shown in figure 1 (panel b). The movie was previously published with REF. 13. (MP4 2335 kb)

Related links

Related links

DATABASES

Entrez Genome

African swine fever virus

Avian leukosis virus

HIV

HSV

Simian virus 40

VSV

UniProtKB

A36R

B5R

HIV-1 Gag

FURTHER INFORMATION

Xiaowei Zhuang's homepage

Glossary

Evanescent wave

An evanescent wave is an electromagnetic wave exhibiting exponential decay with distance. Optical evanescent waves are commonly found during total internal reflection.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandenburg, B., Zhuang, X. Virus trafficking – learning from single-virus tracking. Nat Rev Microbiol 5, 197–208 (2007). https://doi.org/10.1038/nrmicro1615

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1615

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing