Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multimetal resistance and tolerance in microbial biofilms

Key Points

  • This Review focuses on the combined action of chemical, physical and physiological phenomena that protect biofilm microorganisms from toxic metal ions. This includes: metabolic heterogeneity that is introduced by community structure; intercellular signalling events that contribute to the biofilm lifestyle; metal-ion immobilization by biosorption; bioinorganic reactions of metal ions with microbial metabolites; adaptive stress responses; persister cells; and genetic rearrangements or mutations that produce variant phenotypes.

  • Different metal species have distinct chemistries and can poison cells through multiple biochemical pathways. Correlations between susceptibility data and metal-ion physicochemical parameters suggest that chemical mechanisms of toxicity differ between planktonic and biofilm cells.

  • The co-selection of genetic and biochemical pathways might be involved in multimetal and multidrug resistance and/or tolerance.

  • The evidence reviewed here suggests that multimetal resistance (MMR) and tolerance (MMT) may be linked to phenotypic variation among cells in the biofilm population.

  • We propose a multifactorial model of biofilm MMR and MMT in which biofilms can withstand metal toxicity by a process of cellular diversification that is ongoing within the microbial population.

Abstract

Geochemical cycling and industrial pollution have made toxic metal ions a pervasive environmental pressure throughout the world. Biofilm formation is a strategy that microorganisms might use to survive a toxic flux in these inorganic compounds. Evidence in the literature suggests that biofilm populations are protected from toxic metals by the combined action of chemical, physical and physiological phenomena that are, in some instances, linked to phenotypic variation among the constituent biofilm cells. Here, we propose a multifactorial model by which biofilm populations can withstand metal toxicity by a process of cellular diversification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time- and dose-dependent killing of biofilms by metals.
Figure 2: Biochemical mechanisms of microbiological metal toxicity.
Figure 3: Correlation of metal-ion physicochemistry to planktonic-cell and biofilm susceptibility.
Figure 4: Phenotypic variation in Pseudomonas aeruginosa is linked to biofilm multidrug and multimetal resistance.
Figure 5: A multifactorial model of multimetal resistance and tolerance in biofilms.

Similar content being viewed by others

References

  1. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004). An excellent review of the biofilm research field.

    Article  CAS  Google Scholar 

  2. Harrison, J. J., Turner, R. J., Marques, L. L. R. & Ceri, H. Biofilms: a new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. Am. Sci. 93, 508–515 (2005).

    Article  Google Scholar 

  3. Battin, T. J. et al. Microbial landscapes: new paths to biofilm research. Nature Rev. Microbiol. 5, 76–81 (2007).

    Article  CAS  Google Scholar 

  4. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Purevdorj-Gage, B., Costerton, W. J. & Stoodley, P. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 151, 1569–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Southey-Pillig, C. J., Davies, D. G. & Sauer, K. Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J. Bacteriol. 187, 8114–8126 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haagensen, J. A. J. et al. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J. Bacteriol. 189, 28–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Lewis, K. Persister cells, dormancy and infectious disease. Nature Rev. Microbiol. 5, 48–56 (2007).

    Article  CAS  Google Scholar 

  9. Bjarnsholt, T. et al. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151, 373–383 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Spoering, A. & Lewis, K. Biofilm and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harrison, J. J., Turner, R. J. & Ceri, H. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ. Microbiol. 7, 981–994 (2005). A report suggesting that persister cells are responsible for MMT in bacterial biofilms.

    Article  CAS  PubMed  Google Scholar 

  12. Teitzel, G. M. & Parsek, M. R. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69, 2313–2320 (2003). The first report that bacterial biofilms are less susceptibile to heavy metals than planktonic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harrison, J. J. et al. Metal resistance in Candida biofilms. FEMS Microbiol. Ecol. 55, 479–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Stewart, P. S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292, 107–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Ramage, G., Saville, S. P., Thomas, P. D. & Lopez-Ribot, J. L. Candida biofilms: an update. Eukaryotic Cell 4, 633–638 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boles, B. B., Theondel, M. & Singh, P. K. Self-generated diversity produces “insurance effects” in biofilm communities. Proc. Natl Acad. Sci. USA 101, 16630–16635 (2004). A key paper that introduced the concept of the insurance hypothesis to the biofilm research field.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davies, J. A. et al. The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14. FEMS Microbiol. Ecol. 59, 32–46 (2007). A report that links biofilm phenotypic variants to MMR.

    Article  CAS  PubMed  Google Scholar 

  18. Harrison, J. J. et al. Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151, 3181–3195 (2005). A report that links MMT to the toxin–antitoxin modules that are involved in persister-cell formation.

    Article  CAS  PubMed  Google Scholar 

  19. Holm, O., Hansen, E., Lassen, C., Stuer-Lauridsen, F. & Kjolholt, J. European Commission DG ENV. E3, Heavy Metals in Waste — Final Report (COWI Consulting Engineers, Denmark, 2002).

    Google Scholar 

  20. Munoz, R. et al. Sequential removal of heavy metal ions and organic pollutants using an algal-bacterial consortium. Chemosphere 63, 903–911 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Singh, R., Paul, D. & Jain, R. Biofilms: implications in bioremediation. Trends Microbiol. 14, 389–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Diels, L. et al. Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71, 235–241 (2003).

    Article  CAS  Google Scholar 

  23. Chang, W. C., Hsu, G. S., Chiang, S. M. & Su, M. C. Heavy metal removal from aqueous solution by wasted biomass from a combined AS-biofilm process. Bioresour. Technol. 97, 1503–1508 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Anderson, C., Pederson, K. & Jakobsson, A. M. Autoradiographic comparisons of radionuclide adsorption between subsurface anaerobic biofilms and granitic host rocks. Geomicrobiol. J. 23, 15–29 (2006).

    Article  CAS  Google Scholar 

  25. Rawlings, D. E. & Johnson, D. B. The microbiology of biomining: development and optimization of mineral oxidizing microbial consortia. Microbiology 153, 315–324 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence, J. R. et al. Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Appl. Environ. Microbiol. 70, 4326–4339 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vilchez, R., Pozo, C., Gomez, M. A., Rodelas, B. & Gonzalez-Lopez, J. Dominance of sphingomonads in a copper exposed biofilm community for groundwater treatment. Microbiology 153, 325–337 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Nieboer, E. & Fletcher, G. G. in Toxicology of Metals (ed. Chang, L. W.) 113–132 (CRC, Boca Raton, 1996).

    Google Scholar 

  29. Stohs, S. J. & Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18, 321–336 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Zannoni, D., Borsetti, F., Harrison, J. J. & Turner, R. J. The bacterial response to the chalcogen metalloids Se and Te. Adv. Microb. Physiol. 53, 1–71 (2007).

    Article  CAS  Google Scholar 

  31. Turner, R. J., Aharonowitz, Y., Weiner, J. & Taylor, D. E. Glutathione is a target of tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can. J. Microbiol. 47, 33–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Tremaroli, V., Fedi, S. & Zannoni, D. Evidence for a tellurite-dependent generation of reative oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch. Microbiol. 187, 127–135 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Kessi, J. & Hanselmann, K. W. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J. Biol. Chem. 279, 50662–50669 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Geslin, C., Llanos, J., Prieur, D. & Jeanthon, C. The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res. Microbiol. 152, 901–905 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Inoaoka, T., Matsumura, Y. & Tsuchido, T. SodA and manganese are essential for resistance to oxidative stress in growing and sporulating cells of Bacillus subtillis. J. Bacteriol. 181, 1939–1943 (1999).

    Google Scholar 

  36. Pomposiello, P. J. & Demple, B. Global adjustment of microbial physiology during free radical stress. Adv. Microb. Physiol. 46, 319–341 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Foulkes, E. C. Biological membranes in toxicology (Taylor & Francis, Philadelphia, 1998).

    Book  Google Scholar 

  38. Borsetti, F., Francia, F., Turner, R. J. & Zannoni, D. The thiol:disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO32–) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. J. Bacteriol. 189, 851–859 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Lohmeier-Vogel, E. M., Ung, S. & Turner, R. J. In vivo31P nuclear magnetic resonance investigation of tellurite toxicity in Escherichia coli. Appl. Environ. Microbiol. 70, 7342–7347 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Workentine, M. L., Harrison, J. J., Stenroos, P. U., Ceri, H. & Turner, R. J. Pseudomonas fluorescens' view of the periodic table. Environ. Microbiol. (in the press).

  41. Nies, D. H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Xu, K. D., Stewart, P. S., Xia, F., Huang, C. & McFeters, G. A. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol. 64, 4035–4039 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Werner, E. et al. Stratified growth in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 70, 6188–6196 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, C., Xu, K. D., McFeters, G. A. & Stewart, P. S. Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl. Environ. Microbiol. 64, 1526–1531 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pringault, O., Epping, E., Guyoneaud, R., Khalili, A. & Kuhl, M. Dynamics of anoxygenic photosynthesis in an experimental green sulphur bacteria biofilm. Environ. Microbiol. 1, 295–305 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Hunter, R. C. & Beveridge, T. J. Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 71, 2501–2510 (2005). An excellent paper that shows pH discontinuities in biofilms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rani, S. A. et al. Spatial patterns of DNA replication, protein synthesis and oxygen concentration within bacterial biofilms reveal diverse physiological states. J. Bacteriol. 189, 4223–4233 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, K. D., McFeters, G. A. & Stewart, P. S. Biofilm resistance to antimicrobial agents. Microbiology 146, 547–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Borriello, G. et al. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother. 48, 2659–2664 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walters III, M. C., Roe, F., Bugnicourt, A., Franklin, M. J. & Stewart, P. S. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob. Agents Chemother. 47, 317–323 (2003).

    Article  CAS  Google Scholar 

  51. Lafleur, M. D., Kumamoto, C. A. & Lewis, K. Candida albicans biofilms produce antifungal tolerant persister cells. Antimicrob. Agents Chemother. 50, 3839–3846 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Harrison, J. J. et al. Metal ions may supress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl. Environ. Microbiol. 73, 4940–4949 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harrison, J. J., Turner, R. J. & Ceri, H. A subpopulation of Candida albicans and Candida tropicalis biofilm cells are highly tolerant to chelating agents. FEMS Microbiol. Lett. 272, 172–181 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Harrison, J. J. et al. Effects of the twin-arginine translocase on the structure and antimicrobial susceptibility of Escherichia coli biofilms. Can. J. Microbiol. 51, 671–683 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Harrison, J. J. et al. The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol. Proced. Online 8, 194–215 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shrout, J. D. et al. The impact of quorum-sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62, 1264–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Kirisits, M. J. & Parsek, M. R. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell. Microbiol. 8, 1841–1849 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Hassett, D. J. et al. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol. Microbiol. 34, 1082–1093 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Teitzel, G. M. et al. Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J. Bacteriol. 188, 7242–7256 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parvatiyar, K. et al. Global analysis of cellular factors and responses involved in Pseudomonas aeruginosa resistance to arsenite. J. Bacteriol. 187, 4853–4864 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harrison, J. J., Ceri, H., Stremick, C. & Turner, R. J. Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions. FEMS Microbiol. Lett. 235, 357–362 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. van Hullebusch, E. D., Zandvoort, M. H. & Lens, P. N. L. Metal immobilization by biofilms: mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2, 9–33 (2003).

    Article  CAS  Google Scholar 

  63. Tabak, H. H., Lens, P., van Hullebusch, E. D. & Dejonghe, W. Developments in bioremediation of soils and sediments polluted with metals and radionuclides — 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev. Environ. Sci. Biotechnol. 4, 115–156 (2005).

    Article  CAS  Google Scholar 

  64. Mages, M., Ovari, M., Tumpling, W. & Kropfl, K. Biofilms as bio-indicator for polluted waters? Total reflection X-ray fluorescence analysis of biofilms of the Tisza river (Hungary). Anal. Bioanal. Chem. 378, 1095–1101 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Dupraz, C. & Visscher, P. T. Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13, 429–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Whitchurch, C. B., Tolker-Neilsen, T., Ragas, P. C. & Mattick, J. S. Extracellular DNA required for bacterial biofilm formation. Science 295, 1487 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Branda, S. S., Chu, F., Kearns, D. B., Losick, R. & Kolter, R. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59, 1229–1238 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Branda, S. S., Vik, S., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Sutherland, I. W. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147, 3–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, H. & Fang, H. P. Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol. Bioeng. 80, 806–811 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Stewart, P. S. Diffusion in biofilms. J. Bacteriol. 185, 1485–1491 (2003). A comprehensive review that quantitatively compares the diffusion rates of various compounds through biofilms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Römling, U., Gomelsky, M. & Galperin, M. Y. C-di-GMP: the dawning of a novel bacterial signaling system. Mol. Microbiol. 57, 629–639 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Drenkard, E. & Ausubel, F. M. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743 (2002). The first report that biofilm phenotypic variants have altered antibiotic susceptibility.

    Article  CAS  PubMed  Google Scholar 

  74. Hu, Z. et al. Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy. Appl. Environ. Microbiol. 71, 4014–4021 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu, Z. et al. Spatial distributions of copper in microbial biofilms by scanning electrochemical microscopy. Environ. Sci. Technol. 41, 936–941 (2007). A report that quantifies the kinetics of metal diffusion in biofilms.

    Article  CAS  PubMed  Google Scholar 

  76. Langley, S. & Beveridge, T. J. Metal binding by Pseudomonas aeruginosa PAO1 is influenced by growth of the cells as a biofilm. Can. J. Microbiol. 45, 616–622 (1999). A report that shows that biofilm cells bind metals in different quantities than planktonic cells.

    Article  CAS  PubMed  Google Scholar 

  77. Schooling, S. R. & Beveridge, T. J. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188, 5945–5957 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kirisitis, M. J., Prost, L., Starkey, M. & Parsek, M. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 71, 4809–4821 (2005).

    Article  CAS  Google Scholar 

  79. Häussler, S. Biofilm formation by the small colony variant phenotype or Pseudomonas aeruginosa. Environ. Microbiol. 6, 546–551 (2004).

    Article  PubMed  Google Scholar 

  80. Beyenal, H. et al. Uranium immobilization by sulfate reducing biofilms. Environ. Sci. Technol. 38, 2067–2074 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Beyenal, H. & Lewandowski, Z. Dynamics of lead immobilization in sulfate reducing biofilms. Water Res. 38, 2726–2736 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Toner, B., Fakra, S., Villalobos, M., Warwick, T. & Sposito, G. Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm. Appl. Environ. Microbiol. 71, 1300–1310 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stintzi, A., Evans, K., Meyer, J. M. & Poole, K. Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine synthesis. FEMS Microbiol. Lett. 166, 341–345 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Cortese, M. S. et al. Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. Biometals 15, 103–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Zawadzka, A. M., Crawford, R. L. & Paszczynski, A. J. Pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas stutzeri KC reduces and precipitates selenium and tellurium oxyanions. Appl. Environ. Microbiol. 72, 3119–3129 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brown, S. D. et al. Molecular dynamics of the Shewanella oneidensis response to chromate stress. Mol. Cell. Proteomics 5, 1054–1071 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Hu, P., Brodie, E. L., Suzuki, Y., McAdams, H. H. & Andersen, G. L. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J. Bacteriol. 187, 8437–8449 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Szomolay, B., Klapper, I., Dockery, J. & Stewart, P. S. Adaptive responses to antimicrobial agents in biofilms. Environ. Microbiol. 7, 1186–1191 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Lewis, K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999–1007 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kaneko, Y., Theondel, M., Olakanmi, O., Britigan, B. E. & Singh, P. K. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Invest. 117, 877–888 (2007). An excellent paper that describes the potential clinical use of the transition metal Ga as an anti-biofilm agent.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004). The first gene-array analysis of bacterial persister cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shah, D. et al. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 6, 53 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Korch, S. B., Henderson, T. A. & Hill, T. M. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50, 1199–1213 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. van den Broek, D., Bloemberg, G. V. & Lugtenberg, B. J. The role of phenotypic variation in rhizosphere Pseudomonas bacteria. Environ. Microbiol. 7, 1686–1697 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Venturi, V. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol. Rev. 30, 274–291 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Duffy, B. K. & Defago, G. Controlling instability in gacSgacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 66, 3142–3150 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sánchez-Contreras, M. et al. Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J. Bacteriol. 184, 1587–1596 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martinez-Granero, F., Capdevila, S., Sánchez-Contreras, M., Martin, M. & Rivilla, R. Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiology 151, 975–983 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358–11363 (2006). A multi-centre study that suggests that electrically conductive nanowires are produced by many microorganisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Coby, A. J. & Picardal, F. W. Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction. Environ. Sci. Technol. 40, 3813–3818 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Wright, M. S., Peltier, G. L., Stapanauskas, R. & McArthur, J. V. Bacterial tolerances to metals and antibiotics in metal contaminated and reference streams. FEMS Microbiol. Ecol. 58, 293–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Baker-Austin, C., Wright, M. S., Stepanauskas, R. & McArthur, J. V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Harrison, J. J., Ceri, H., Stremick, C. & Turner, R. J. Biofilm susceptibility to metal toxicity. Environ. Microbiol. 6, 1220–1227 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Harrison, J. J., Turner, R. J. & Ceri, H. High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol. 5, 53 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.J.T. and H.C. have been supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). J.J.H. has been supported by the NSERC through a Canada Graduate Scholarship — Doctoral award and by the Alberta Heritage Foundation for Medical Research through a full-time Ph.D. studentship award. The authors would like to thank M. L. Workentine and M. F. Hynes for expert advice and critical reading of this manuscript before submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Turner.

Related links

Related links

DATABASES

Entrez Genome Project

Candida albicans

Candida tropicalis

Escherichia coli

Pseudomonas aeruginosa

Pseudomonas fluorescens

Pseudomonas putida

Pseudomonas stutzeri

Staphylococcus aureus

Entrez Protein

P. aeruginosa PA14

FURTHER INFORMATION

Raymond J. Turner's homepage

Howard Ceri's homepage

Comprehensive Environmental Response, Compensation, and Liability Act 2005 Priority List

Glossary

Biofilm

A cell–cell or surface-adherent assemblage of microorganisms that is encased in an extracellular matrix of self-produced polymers.

Differentiation

A developmental process whereby a cell acquires a specialized gene-expression profile that produces a cellular morphology or function that is distinct from the original cell type.

Planktonic cells

A suspension of microorganisms that grow primarily as free-floating, single cells in a liquid medium that is under constant mixing.

Susceptibility

The sensitivity of a microorganism to exposure to a toxic environmental stressor.

Lanthanide

One of the series of 15 f- and d-block elements that have atomic numbers 57–71, from lanthanum to lutetium.

Actinide

One of the series of 15 f- and d-block elements that have atomic numbers 89–103, from actinium to lawrencium, all of which are radioactive.

Multimetal resistance

(MMR). The ability of a microorganism to continue growing in the presence of multiple toxic metal or metalloid cations or oxyanions, either alone or in combination.

Multimetal tolerance

(MMT). The ability of a microorganism to survive, but not grow, in the presence of multiple toxic metal or metalloid cations or oxyanions, either alone or in combination.

Multidrug resistance

(MDR). The ability of a microorganism to continue growing in the presence of multiple, structurally non-related antibiotics, either alone or in combination.

Multidrug tolerance

(MDT). The ability of a microorganism to survive, but not grow, in the presence of multiple, structurally non-related antibiotics, either alone or in combination. This has also been referred to as non-inherited antibiotic resistance.

Minimum bactericidal concentration

(MBC). Conventionally, the concentration of an antimicrobial agent (antibiotic, biocide or metal ion) that kills at least 99.9% of a planktonic (MBCP) or biofilm (MBCB) bacterial population.

Minimum inhibitory concentration

(MIC). The lowest concentration of an antimicrobial agent (antibiotic, biocide or metal ion) that arrests the growth of a planktonic cell population.

Painter-type reaction

A group of thermodynamically favourable reactions between Se and Te oxyanions and the reduced thiol groups of proteins that result in the formation of selenotrisulphides (RS-Se-SR) and tellurotrisulphides (RS-Te-SR), respectively.

Standard reduction potential

(ΔE0). The tendency of a chemical species to acquire electrons from a standard hydrogen electrode at 25°C, 1 atmosphere and at a concentration of 1 M (measured in volts).

Electronegativity

(χ). The ability of an atom, as part of a molecule, to attract electrons towards itself.

Solubility product of the metal–sulphide complex

(pKSP). In a biological context, the measure of a metal ion's affinity for S.

Pearson softness index

A scale that is based on the theory of hard and soft acids and bases. From the viewpoint of biological donor sites, hard ions prefer to bind O or N, soft ions prefer S and borderline ions will bind to O, N or S.

Electron density

The probability that an electron is present at a specific location in an atom or molecule.

Covalent index

The ability of an atom to participate in covalent as opposed to ionic bonds.

Redox poise

The capacity of the biofilm to function in chemical reduction (electron donating or hydrogen accepting) versus oxidation (electron accepting or hydrogen donating) reactions.

Calgary Biofilm Device

(CBD). A batch-culture apparatus for in vitro high-throughput susceptibility testing of microbial biofilms.

Quorum sensing

(QS). A microbial cell–cell communication process that uses small signalling molecules to coordinate population behaviours or regulate genes in response to the concentration of inducers.

Lithification

The process in which sediments are gradually converted under pressure into solid sedimentary rock.

One-dimensional diffusive transport model

A mathematical model that describes the density fluctuations in particles that undergo movements that minimize a concentration gradient.

Siderophore

A Fe-specific chelator that is produced by microorganisms under nutrient-limited conditions as part of a Fe-acquisition system.

Persister cell

A metabolically quiescent cell that neither grows nor dies when exposed to cidal concentrations of antimicrobial compounds.

Toxin–antitoxin module

A chromosomal and plasmid-borne operon that encodes a stable toxic protein or RNA molecule and a labile antitoxin.

Insurance hypothesis

In ecology, the hypothesis that biodiversity insures ecosystems against a decline in their functioning because if many species are present there is a higher chance that some will maintain function even if others fail.

Humic acid

A colloidal mixture of substances that is present in soil and that arises by the microbial degradation of dead biomass. Humic acids are compositionally undefined, but include hydrophobic bioorganics that self-aggregate and chelate multivalent metal ions.

Soluble electron carrier

A water-soluble molecule that shuttles electrons in the microbial respiratory chain by accepting electrons from a donor and transferring them to an acceptor.

Nanowire

An electrically conductive pilus that is composed of bundles of individually conductive filaments that are 10–20 nm in diameter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, J., Ceri, H. & Turner, R. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5, 928–938 (2007). https://doi.org/10.1038/nrmicro1774

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing