Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Inventing the dynamo machine: the evolution of the F-type and V-type ATPases

Abstract

The rotary proton- and sodium-translocating ATPases are reversible molecular machines present in all cellular life forms that couple ion movement across membranes with ATP hydrolysis or synthesis. Sequence and structural comparisons of F- and V-type ATPases have revealed homology between their catalytic and membrane subunits, but not between the subunits of the central stalk that connects the catalytic and membrane components. Based on this pattern of homology, we propose that these ATPases originated from membrane protein translocases, which, themselves, evolved from RNA translocases. We suggest that in these ancestral translocases, the position of the central stalk was occupied by the translocated polymer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the F- and V-type membrane ATPases.
Figure 2: Proposed evolution of the F- and V-type membrane ATPases.
Figure 3: Phylogenetic tree of the catalytic subunits of the F- and V-type ATPases and related P-loop ATPases.

Similar content being viewed by others

References

  1. Nelson, N. Structure, function, and evolution of proton-ATPases. Plant Physiol. 86, 1–3 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Drory, O. & Nelson, N. The emerging structure of vacuolar ATPases. Physiology (Bethesda) 21, 317–325 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Gogarten, J. P. et al. Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl Acad. Sci. USA 86, 6661–6665 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gogarten, J. P., Starke, T., Kibak, H., Fishman, J. & Taiz, L. Evolution and isoforms of V-ATPase subunits. J. Exp. Biol. 172, 137–147 (1992).

    CAS  PubMed  Google Scholar 

  5. Boyer, P. D. The ATP synthase — a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Junge, W. & Nelson, N. Nature's rotary electromotors. Science 308, 642–644 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Perzov, N., Padler-Karavani, V., Nelson, H. & Nelson, N. Features of V-ATPases that distinguish them from F-ATPases. FEBS Lett. 504, 223–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Nakanishi-Matsui, M. & Futai, M. Stochastic proton pumping ATPases: from single molecules to diverse physiological roles. IUBMB Life 58, 318–322 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Muller, V. & Gruber, G. ATP synthases: structure, function and evolution of unique energy converters. Cell. Mol. Life Sci. 60, 474–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Hilario, E. & Gogarten, J. P. Horizontal transfer of ATPase genes — the tree of life becomes a net of life. Biosystems 31, 111–119 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Hilario, E. & Gogarten, J. P. The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. J. Mol. Evol. 46, 703–715 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Nesbo, C. L. & Doolittle, W. F. Targeting clusters of transferred genes in Thermotoga maritima. Environ. Microbiol. 5, 1144–1154 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Stock, D., Gibbons, C., Arechaga, I., Leslie, A. G. & Walker, J. E. The rotary mechanism of ATP synthase. Curr. Opin. Struct. Biol. 10, 672–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Iwata, M. et al. Crystal structure of a central stalk subunit C and reversible association/dissociation of vacuole-type ATPase. Proc. Natl Acad. Sci. USA 101, 59–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Bernal, R. A. & Stock, D. Three-dimensional structure of the intact Thermus thermophilus H+-ATPase/synthase by electron microscopy. Structure 12, 1789–1798 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Makyio, H. et al. Structure of a central stalk subunit F of prokaryotic V-type ATPase/synthase from Thermus thermophilus. EMBO J. 24, 3974–3983 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meier, T., Polzer, P., Diederichs, K., Welte, W. & Dimroth, P. Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science 308, 659–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. & Walker, J. E. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Science 308, 654–659 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Schafer, I. B. et al. Crystal structure of the archaeal A1A0 ATP synthase subunit B from Methanosarcina mazei Go1: implications of nucleotide-binding differences in the major A1A0 subunits A and B. J. Mol. Biol. 358, 725–740 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. Wilkens, S. Rotary molecular motors. Adv. Protein Chem. 71, 345–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Gibbons, C., Montgomery, M. G., Leslie, A. G. & Walker, J. E. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nature Struct. Biol. 7, 1055–1061 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr. Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Junge, W., Lill, H. & Engelbrecht, S. ATP synthase: an electrochemical transducer with rotatory mechanics. Trends Biochem. Sci. 22, 420–423 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Panke, O., Gumbiowski, K., Junge, W. & Engelbrecht, S. F-ATPase: specific observation of the rotating c subunit oligomer of EF0EF1 . FEBS Lett. 472, 34–38 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Xing, J., Liao, J. C. & Oster, G. Making ATP. Proc. Natl Acad. Sci. USA 102, 16539–16546 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cherepanov, D. A., Mulkidjanian, A. Y. & Junge, W. Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett. 449, 1–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Feniouk, B. A. et al. The proton-driven rotor of ATP synthase: ohmic conductance (10 fS), and absence of voltage gating. Biophys. J. 86, 4094–4109 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mulkidjanian, A. Y. Proton in the well and through the desolvation barrier. Biochim. Biophys. Acta 1757, 415–427 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Deckers-Hebestreit, G., Greie, J., Stalz, W. & Altendorf, K. The ATP synthase of Escherichia coli: structure and function of F0 subunits. Biochim. Biophys. Acta 1458, 364–373 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Fillingame, R. H., Jiang, W. & Dmitriev, O. Y. Coupling H+ transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor. J. Exp. Biol. 203, 9–17 (2000).

    CAS  PubMed  Google Scholar 

  31. Beyenbach, K. W. & Wieczorek, H. The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209, 577–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Walker, J. E. & Cozens, A. L. Evolution of ATP synthase. Chem. Scr. 26B, 263–272 (1986).

    CAS  Google Scholar 

  33. Walker, J. E. ATP synthesis by rotary catalysis (Nobel lecture). Angew. Chem. Int. Ed. Engl. 37, 2309–2319 (1998).

    Article  Google Scholar 

  34. Supekova, L., Supek, F. & Nelson, N. The Saccharomyces cerevisiae VMA10 is an intron-containing gene encoding a novel 13-kDa subunit of vacuolar H+-ATPase. J. Biol. Chem. 270, 13726–13732 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Pallen, M. J., Bailey, C. M. & Beatson, S. A. Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the F0F1 and vacuolar ATPases. Protein Sci. 15, 935–941 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lolkema, J. S., Chaban, Y. & Boekema, E. J. Subunit composition, structure, and distribution of bacterial V-type ATPases. J. Bioenerg. Biomembr. 35, 323–335 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Kawano, M., Igarashi, K., Yamato, I. & Kakinuma, Y. Arginine residue at position 573 in Enterococcus hirae vacuolar-type ATPase NtpI subunit plays a crucial role in Na+ translocation. J. Biol. Chem. 277, 24405–24410 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Kawasaki-Nishi, S., Nishi, T. & Forgac, M. Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation. Proc. Natl Acad. Sci. USA 98, 12397–12402 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adelman, J. L. et al. Mechanochemistry of transcription termination factor Rho. Mol. Cell 22, 611–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Skordalakes, E. & Berger, J. M. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114, 135–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Patel, S. S. & Picha, K. M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Gomis-Ruth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Cabezon, E. & de la Cruz, F. TrwB: an F1-ATPase-like molecular motor involved in DNA transport during bacterial conjugation. Res. Microbiol. 157, 299–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Aussel, L. et al. FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases. Cell 108, 195–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Iyer, L. M., Makarova, K. S., Koonin, E. V. & Aravind, L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res. 32, 5260–5279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Juuti, J. T., Bamford, D. H., Tuma, R. & Thomas, G. J. Jr. Structure and NTPase activity of the RNA-translocating protein (P4) of bacteriophage phi 6. J. Mol. Biol. 279, 347–359 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Pirttimaa, M. J., Paatero, A. O., Frilander, M. J. & Bamford, D. H. Nonspecific nucleoside triphosphatase P4 of double-stranded RNA bacteriophage phi6 is required for single-stranded RNA packaging and transcription. J. Virol. 76, 10122–10127 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kainov, D. E. et al. RNA packaging device of double-stranded RNA bacteriophages, possibly as simple as hexamer of P4 protein. J. Biol. Chem. 278, 48084–48091 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Kainov, D. E., Tuma, R. & Mancini, E. J. Hexameric molecular motors: P4 packaging ATPase unravels the mechanism. Cell. Mol. Life Sci. 63, 1095–1105 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Laskey, R. A. & Madine, M. A. A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep. 4, 26–30 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, J. Y. & Yang, W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. Cell 127, 1349–1360 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Skordalakes, E. & Berger, J. M. Structural insights into RNA-dependent ring closure and ATPase activation by the Rho termination factor. Cell 127, 553–564 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Vogler, A. P., Homma, M., Irikura, V. M. & Macnab, R. M. Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits. J. Bacteriol. 173, 3564–3572 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Aizawa, S. I. Bacterial flagella and type III secretion systems. FEMS Microbiol. Lett. 202, 157–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Blocker, A., Komoriya, K. & Aizawa, S. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc. Natl Acad. Sci. USA 100, 3027–3030 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tato, I., Zunzunegui, S., de la Cruz, F. & Cabezon, E. TrwB, the coupling protein involved in DNA transport during bacterial conjugation, is a DNA-dependent ATPase. Proc. Natl Acad. Sci. USA 102, 8156–8161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Philippe, H. & Laurent, J. How good are deep phylogenetic trees? Curr. Opin. Genet. Dev. 8, 616–623 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Gribaldo, S. & Philippe, H. Ancient phylogenetic relationships. Theor. Popul. Biol. 61, 391–408 (2002).

    Article  PubMed  Google Scholar 

  61. Yu, X. & Egelman, E. H. The RecA hexamer is a structural homologue of ring helicases. Nature Struct. Biol. 4, 101–104 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Iyer, L. M., Leipe, D. D., Koonin, E. V. & Aravind, L. Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 146, 11–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Pohlschroder, M., Hartmann, E., Hand, N. J., Dilks, K. & Haddad, A. Diversity and evolution of protein translocation. Annu. Rev. Microbiol. 59, 91–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Wilharm, G., Dittmann, S., Schmid, A. & Heesemann, J. On the role of specific chaperones, the specific ATPase, and the proton motive force in type III secretion. Int. J. Med. Microbiol. 297, 27–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Wilharm, G., Lehmann, V., Neumayer, W., Trcek, J. & Heesemann, J. Yersinia enterocolitica type III secretion: evidence for the ability to transport proteins that are folded prior to secretion. BMC Microbiol. 4, 27 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Koonin, E. V. & Gorbalenya, A. E. Autogenous translation regulation by Escherichia coli ATPase SecA may be mediated by an intrinsic RNA helicase activity of this protein. FEBS Lett. 298, 6–8 (1992).

    Article  CAS  PubMed  Google Scholar 

  67. Keramisanou, D. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nature Struct. Mol. Biol. 13, 594–602 (2006).

    Article  CAS  Google Scholar 

  68. Martin, W. & Russell, M. J. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. Lond. B 358, 59–85 (2003).

    Article  CAS  Google Scholar 

  69. Pereto, J., Lopez-Garcia, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29, 469–477 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Mushegian, A. R. & Koonin, E. V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl Acad. Sci. USA 93, 10268–10273 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Edgell, D. R. & Doolittle, W. F. Archaea and the origin(s) of DNA replication proteins. Cell 89, 995–998 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Leipe, D. D., Aravind, L. & Koonin, E. V. Did DNA replication evolve twice independently? Nucleic Acids Res. 27, 3389–3401 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Koonin, E. V. & Martin, W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 21, 647–654 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jekely, G. Did the last common ancestor have a biological membrane? Biol. Direct 1, 35 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Deamer, D. W. The first living systems: a bioenergetic perspective. Microbiol. Mol. Biol. Rev. 61, 239–261 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ourisson, G. & Nakatani, Y. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem. Biol. 1, 11–23 (1994).

    Article  CAS  PubMed  Google Scholar 

  77. Gotoh, M. et al. Membrane properties of branched polyprenyl phosphates, postulated as primitive membrane constituents. Chem. Biodivers. 3, 434–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Woese, C. R. On the evolution of cells. Proc. Natl Acad. Sci. USA 99, 8742–8747 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vetsigian, K., Woese, C. & Goldenfeld, N. Collective evolution and the genetic code. Proc. Natl Acad. Sci. USA 103, 10696–10701 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient virus world and evolution of cells. Biol. Direct 1, 29 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Kainov, D. E., Lisal, J., Bamford, D. H. & Tuma, R. Packaging motor from double-stranded RNA bacteriophage phi12 acts as an obligatory passive conduit during transcription. Nucleic Acids Res. 32, 3515–3521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ouzounis, C. A., Kunin, V., Darzentas, N. & Goldovsky, L. A minimal estimate for the gene content of the last universal common ancestor — exobiology from a terrestrial perspective. Res. Microbiol. 157, 57–68 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Koonin, E. V., Mushegian, A. R. & Bork, P. Non-orthologous gene displacement. Trends Genet. 12, 334–336 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Senior, A. E., Muharemagic, A. & Wilke-Mounts, S. Assembly of the stator in Escherichia coli ATP synthase. Complexation of α subunit with other F1 subunits is prerequisite for δ subunit binding to the N-terminal region of α. Biochemistry 45, 15893–15902 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Mueller, D. M. Partial assembly of the yeast mitochondrial ATP synthase. J. Bioenerg. Biomembr. 32, 391–400 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Puri, N., Lai-Zhang, J., Meier, S. & Mueller, D. M. Expression of bovine F1-ATPase with functional complementation in yeast Saccharomyces cerevisiae. J. Biol. Chem. 280, 22418–22424 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Minamino, T. & Namba, K. Self-assembly and type III protein export of the bacterial flagellum. J. Mol. Microbiol. Biotechnol. 7, 5–17 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Imada, K., Minamino, T., Tahara, A. & Namba, K. Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits. Proc. Natl Acad. Sci. USA 104, 485–490 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Adachi, J. & Hasegawa, M. MOLPHY: programs for Molecular Phylogenetics (Institute of Statistical Mathematics, Tokyo, 1992).

    Google Scholar 

  91. Hasegawa, M., Kishino, H. & Saitou, N. On the maximum likelihood method in molecular phylogenetics. J. Mol. Evol. 32, 443–445.

  92. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. & Barton, G. J. J Pred: a consensus secondary structure prediction server. Bioinformatics 14, 892–893 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Rost, B., Yachdav, G. & Liu, J. The PredictProtein server. Nucleic Acids Res. 32, W321–326 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Cherepanov, M. Forgac, M. Huss and W. Junge for helpful discussions, and V. Dolja and T. Senkevich for critical reading of the manuscript. This study was supported by grants to KSM, MYG and EVK from INTAS and Deutsche Forschungsgemeinschaft (AYM), and the Intramural Research Program of the National Library of Medicine at the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Armen Y. Mulkidjanian or Eugene V. Koonin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Multiple alignment of protein sequences used for the construction of the tree shown in Figure 3. (PDF 86 kb)

Related links

Related links

FURTHER INFORMATION

Eugene V. Koonin's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulkidjanian, A., Makarova, K., Galperin, M. et al. Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 5, 892–899 (2007). https://doi.org/10.1038/nrmicro1767

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1767

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing