Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bacterial protein secretion through the translocase nanomachine

Key Points

  • The Sec machinery is essential for life. All cells need to assemble phospholipid bilayer membranes, which have embedded proteins. In bacteria, the Sec pathway catalyses most of the load of protein secretion and acts as the front end for several subsequent protein-sorting and sub-cellular-targeting machines.

  • A combination of membrane-embedded and soluble factors that contribute to pre-protein targeting and translocation are described. A membrane-embedded pre-protein-conducting channel and an ATPase motor lie at its core.

  • Atomic resolution structures of the pre-protein-conducting channel, its ATPase motor and targeting chaperones are available.

  • The protein-conducting channel is composed of several tilted and straight helices of varying lengths and is gated by a periplasmic plug. It has a well-characterized closed state and an anticipated open state that is expected to result from dilation.

  • Metabolic energy in the form of both ATP and the proton motive force is used to power pre-protein movement through the translocase machine.

  • The available data allow for a synthesis of multiple sub-reactions into a coherent model. This model describes how the translocase recognizes secretory proteins at specific sites and how it subsequently promotes protein export by a series of distinct energy-driven conformational states.

Abstract

All cells must traffic proteins across their membranes. This essential process is responsible for the biogenesis of membranes and cell walls, motility and nutrient scavenging and uptake, and is also involved in pathogenesis and symbiosis. The translocase is an impressively dynamic nanomachine that is the central component which catalyses transmembrane crossing. This complex, multi-stage reaction involves a cascade of inter- and intramolecular interactions that select, sort and target polypeptides to the membrane, and use energy to promote the movement of these polypeptides across — or their lateral escape and integration into — the phospholipid bilayer, with high fidelity and efficiency. Here, we review the most recent data on the structure and function of the translocase nanomachine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial protein secretion.
Figure 2: Structure of the SecYEG protein-conducting channel.
Figure 3: The structure of SecA.
Figure 4: Hypothetical SecA–SecYEG interaction models.
Figure 5: The structure of SecB.
Figure 6: SecA-dependent pre-protein translocation — a model for the sequence of events.

Similar content being viewed by others

References

  1. Economou, A. et al. Secretion by numbers: protein traffic in prokaryotes. Mol. Microbiol. 62, 308–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Holland, I. B. Translocation of bacterial proteins — an overview. Biochim. Biophys. Acta 1694, 5–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Luirink, J. & Sinning, I. SRP-mediated protein targeting: structure and function revisited. Biochim. Biophys. Acta 1694, 17–35 (2004).

    CAS  PubMed  Google Scholar 

  4. Randall, L. L. & Hardy, S. J. SecB, one small chaperone in the complex milieu of the cell. Cell. Mol. Life Sci. 59, 1617–1623 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004). The first crystal structure of the membrane-embedded pre-protein-conducting channel. It provided hypotheses for the channel-dilation mechanism and its gating.

    Article  CAS  PubMed  Google Scholar 

  6. Li, W. et al. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol. Cell 26, 511–521 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Hanein, D. et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278, 2123–2126 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Manting, E. H., van Der Does, C., Remigy, H., Engel, A. & Driessen, A. J. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19, 852–861 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scheuring, J. et al. The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. J. Mol. Biol. 354, 258–271 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Breyton, C., Haase, W., Rapoport, T. A., Kuhlbrandt, W. & Collinson, I. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 418, 662–665 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318–324 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hunt, J. F. et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 297, 2018–2026 (2002). The first crystal structure of the SecA motor subunit of the translocase. Provided high-resolution information for the structural and functional dissection of the motor.

    Article  CAS  PubMed  Google Scholar 

  15. Osborne, A. R., Clemons, W. M. Jr & Rapoport, T. A. A large conformational change of the translocation ATPase SecA. Proc. Natl Acad. Sci. USA 101, 10937–10942 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zimmer, J., Li, W. & Rapoport, T. A. A novel dimer interface and conformational changes revealed by an X-ray structure of B. subtilis SecA. J. Mol. Biol. 364, 259–265 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Papanikolau, Y. et al. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor. J. Mol. Biol. 366, 1545–1557 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, V. et al. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl Acad. Sci. USA 100, 2243–2248 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vassylyev, D. G. et al. Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer. J. Mol. Biol. 364, 248–258 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Ullers, R. S. et al. SecB is a bona fide generalized chaperone in Escherichia coli. Proc. Natl Acad. Sci. USA 101, 7583–7588 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schierle, C. F. et al. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. J. Bacteriol. 185, 5706–5713 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sijbrandi, R. et al. Signal recognition particle (SRP)-mediated targeting and Sec-dependent translocation of an extracellular Escherichia coli protein. J. Biol. Chem. 278, 4654–4659 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Randall, L. L. Translocation of domains of nascent periplasmic proteins across the cytoplasmic membrane is independent of elongation. Cell 33, 231–240 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Hartl, F. U., Lecker, S., Schiebel, E., Hendrick, J. P. & Wickner, W. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 63, 269–279 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Scotti, P. A. et al. SecA is not required for signal recognition particle-mediated targeting and initial membrane insertion of a nascent inner membrane protein. J. Biol. Chem. 274, 29883–29888 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Neumann-Haefelin, C., Schafer, U., Muller, M. & Koch, H. G. SRP-dependent co-translational targeting and SecA-dependent translocation analyzed as individual steps in the export of a bacterial protein. EMBO J. 19, 6419–6426 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paetzel, M., Karla, A., Strynadka, N. C. & Dalbey, R. E. Signal peptidases. Chem. Rev. 102, 4549–4580 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Mogensen, J. E. & Otzen, D. E. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57, 326–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Nakamoto, H. & Bardwell, J. C. Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim. Biophys. Acta 1694, 111–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Gruber, C. W., Cemazar, M., Heras, B., Martin, J. L. & Craik, D. J. Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem. Sci. 31, 455–464 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Brundage, L., Hendrick, J. P., Schiebel, E., Driessen, A. J. & Wickner, W. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 62, 649–657 (1990). In vitro functional reconstitution of the translocase from purified components. This study identified the components of the core channel and opened the floodgates for subsequent biochemical and biophysical studies.

    Article  CAS  PubMed  Google Scholar 

  32. Bostina, M., Mohsin, B., Kuhlbrandt, W. & Collinson, I. Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J. Mol. Biol. 352, 1035–1043 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Schatz, P. J., Bieker, K. L., Ottemann, K. M., Silhavy, T. J. & Beckwith, J. One of three transmembrane stretches is sufficient for the functioning of the SecE protein, a membrane component of the E. coli secretion machinery. EMBO J. 10, 1749–1757 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saparov, S. M. et al. Determining the conductance of the SecY protein translocation channel for small molecules. Mol. Cell 26, 501–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Cannon, K. S., Or, E., Clemons, W. M. Jr, Shibata, Y. & Rapoport, T. A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169, 219–225 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bieker, K. L., Phillips, G. J. & Silhavy, T. J. The sec and prl genes of Escherichia coli. J. Bioenerg. Biomembr. 22, 291–310 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Derman, A. I., Puziss, J. W., Bassford, P. J. Jr & Beckwith, J. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12, 879–888 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Plath, K., Mothes, W., Wilkinson, B. M., Stirling, C. J. & Rapoport, T. A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94, 795–807 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Tam, P. C., Maillard, A. P., Chan, K. K. & Duong, F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J. 24, 3380–3388 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maillard, A. P., Lalani, S., Silva, F., Belin, D. & Duong, F. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J. Biol. Chem. 282, 1281–1287 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Junne, T., Schwede, T., Goder, V. & Spiess, M. The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol. Biol. Cell 17, 4063–4068 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tani, K., Tokuda, H. & Mizushima, S. Translocation of ProOmpA possessing an intramolecular disulfide bridge into membrane vesicles of Escherichia coli. Effect of membrane energization. J. Biol. Chem. 265, 17341–17347 (1990).

    CAS  PubMed  Google Scholar 

  43. De Keyzer, J., Van Der Does, C. & Driessen, A. J. Kinetic analysis of the translocation of fluorescent precursor proteins into Escherichia coli membrane vesicles. J. Biol. Chem. 277, 46059–46065 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Gumbart, J. & Schulten, K. Molecular dynamics studies of the archaeal translocon. Biophys. J. 90, 2356–2367 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishiyama, K., Suzuki, T. & Tokuda, H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 85, 71–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Alami, M., Dalal, K., Lelj-Garolla, B., Sligar, S. G. & Duong, F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J. 26, 1995–2004 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mori, H. et al. Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J. Biol. Chem. 278, 14257–14264 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Hamman, B. D., Chen, J. C., Johnson, E. E. & Johnson, A. E. The aqueous pore through the translocon has a diameter of 40–60 Å during cotranslational protein translocation at the ER membrane. Cell 89, 535–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Osborne, A. R. & Rapoport, T. A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129, 97–110 (2007). Describes how in dimeric SecYEG one trimer provides the active exit pore and SecA docks on the other trimer.

    Article  CAS  PubMed  Google Scholar 

  50. Baud, C. et al. Allosteric communication between signal peptides and the SecA protein DEAD motor ATPase domain. J. Biol. Chem. 277, 13724–13731 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Karamanou, S. et al. A molecular switch in SecA protein couples ATP hydrolysis to protein translocation. Mol. Microbiol. 34, 1133–1145 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Papanikou, E. et al. Identification of the preprotein binding domain of SecA. J. Biol. Chem. 280, 43209–43217 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Sianidis, G. et al. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J. 20, 961–970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Price, A., Economou, A., Duong, F. & Wickner, W. Separable ATPase and membrane insertion domains of the SecA subunit of preprotein translocase. J. Biol. Chem. 271, 31580–31584 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Keramisanou, D. et al. Disorder-order folding transitions underlie catalysis in the helicase motor of SecA. Nature Struct. Mol. Biol. 13, 594–602 (2006).

    Article  CAS  Google Scholar 

  56. Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Mori, H. & Ito, K. The long alpha-helix of SecA is important for the ATPase coupling of translocation. J. Biol. Chem. 281, 36249–36256 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Breukink, E. et al. The C terminus of SecA is involved in both lipid binding and SecB binding. J. Biol. Chem. 270, 7902–7907 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Matousek, W. M. & Alexandrescu, A. T. NMR structure of the C-terminal domain of SecA in the free state. Biochim. Biophys. Acta 1702, 163–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Dempsey, B. R. et al. Solution NMR structure and X-ray absorption analysis of the C-terminal zinc-binding domain of the SecA ATPase. Biochemistry 43, 9361–9371 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Fekkes, P., de Wit, J. G., Boorsma, A., Friesen, R. H. & Driessen, A. J. Zinc stabilizes the SecB binding site of SecA. Biochemistry 38, 5111–5116 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Musial-Siwek, M., Rusch, S. L. & Kendall, D. A. Selective photoaffinity labeling identifies the signal peptide binding domain on SecA. J. Mol. Biol. 365, 637–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Gelis, I. et al. Structural basis for signal sequence recognition by the 204kDa translocase motor SecA determined by NMR. Cell (in the press). This study presents the first structure of a pre-protein segment with a translocase component and reveals movements in the PBD that could underlie the mechanism of translocation. This is the first solution structure of SecA. Owing to its size, this was a major challenge for NMR-based methods.

  64. Karamanou, S. et al. Preprotein-controlled catalysis in the helicase motor of SecA. EMBO J. 26, 2904–2914 (2007). First insight into how pre-proteins control ATP-driven catalysis by the SecA motor through the PBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vrontou, E., Karamanou, S., Baud, C., Sianidis, G. & Economou, A. Global co-ordination of protein translocation by the SecA IRA1 switch. J. Biol. Chem. 279, 22490–22497 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Woodbury, R. L., Hardy, S. J. & Randall, L. L. Complex behavior in solution of homodimeric SecA. Protein Sci. 11, 875–882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Driessen, A. J. SecA, the peripheral subunit of the Escherichia coli precursor protein translocase, is functional as a dimer. Biochemistry 32, 13190–13197 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Shilton, B. et al. Escherichia coli SecA shape and dimensions. FEBS Lett. 436, 277–282 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Shinkai, A., Akita, M., Matsuyama, S. & Mizushima, S. Quantitative renaturation from a guanidine-denatured state of the SecA dimer, a 200 KDa protein involved in protein secretion in Escherichia coli. Biochem. Biophys. Res. Commun. 172, 1217–1223 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. Akita, M., Shinkai, A., Matsuyama, S. & Mizushima, S. SecA, an essential component of the secretory machinery of Escherichia coli, exists as homodimer. Biochem. Biophys. Res. Commun. 174, 211–216 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Dempsey, B. R., Economou, A., Dunn, S. D. & Shilton, B. H. The ATPase domain of SecA can form a tetramer in solution. J. Mol. Biol. 315, 831–843 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Hirano, M., Matsuyama, S. & Tokuda, H. The carboxyl-terminal region is essential for Sec-A dimerization. Biochem. Biophys. Res. Commun. 229, 90–95 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Karamanou, S. et al. Escherichia coli SecA truncated at its termini is functional and dimeric. FEBS Lett. 579, 1267–1271 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Mori, H. et al. Amino-terminal region of SecA is involved in the function of SecG for protein translocation into Escherichia coli membrane vesicles. J. Biochem. (Tokyo) 124, 122–129 (1998).

    Article  CAS  Google Scholar 

  75. Or, E., Boyd, D., Gon, S., Beckwith, J. & Rapoport, T. The bacterial ATPase SecA functions as a monomer in protein translocation. J. Biol. Chem. 280, 9097–9105 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Mori, H. & Ito, K. Different modes of SecY–SecA interactions revealed by site-directed in vivo photo-cross-linking. Proc. Natl Acad. Sci. USA 103, 16159–16164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. van der Sluis, E. O. et al. Identification of two interaction sites in SecY that are important for the functional interaction with SecA. J. Mol. Biol. 361, 839–849 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Nagamori, S., Nishiyama, K. & Tokuda, H. Membrane topology inversion of SecG detected by labeling with a membrane-impermeable sulfhydryl reagent that causes a close association of SecG with SecA. J. Biochem. (Tokyo) 132, 629–634 (2002).

    Article  CAS  Google Scholar 

  79. Nishiyama, K., Mizushima, S. & Tokuda, H. Preferential interaction of Sec-G with Sec-E stabilizes an unstable Sec-E derivative in the Escherichia coli cytoplasmic membrane. Biochem. Biophys. Res. Commun. 217, 217–223 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Snyders, S., Ramamurthy, V. & Oliver, D. Identification of a region of interaction between Escherichia coli SecA and SecY proteins. J. Biol. Chem. 272, 11302–11306 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Dapic, V. & Oliver, D. Distinct membrane binding properties of N- and C-terminal domains of Escherichia coli SecA ATPase. J. Biol. Chem. 275, 25000–25007 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. de Keyzer, J. et al. Covalently dimerized SecA is functional in protein translocation. J. Biol. Chem. 280, 35255–35260 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Jilaveanu, L. B. & Oliver, D. SecA dimer cross-linked at its subunit interface is functional for protein translocation. J. Bacteriol. 188, 335–338 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Or, E., Navon, A. & Rapoport, T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J. 21, 4470–4479 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Duong, F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 22, 4375–4384 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Benach, J. et al. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J. Biol. Chem. 278, 3628–3638 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Lill, R., Dowhan, W. & Wickner, W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60, 271–280 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Tziatzios, C. et al. The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. J. Mol. Biol. 340, 513–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Collinson, I. et al. Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J. 20, 2462–2471 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Duong, F. & Wickner, W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J. 16, 2756–2768 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pogliano, J. A. & Beckwith, J. SecD and SecF facilitate protein export in Escherichia coli. EMBO J. 13, 554–561 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matsuyama, S., Fujita, Y. & Mizushima, S. SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. EMBO J. 12, 265–270 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Economou, A., Pogliano, J. A., Beckwith, J., Oliver, D. B. & Wickner, W. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 83, 1171–1181 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Yi, L. & Dalbey, R. E. Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria. Mol. Membr. Biol. 22, 101–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Serek, J. et al. Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J. 23, 294–301 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beck, K. et al. YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep. 2, 709–714 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nouwen, N. & Driessen, A. J. SecDFyajC forms a heterotetrameric complex with YidC. Mol. Microbiol. 44, 1397–1405 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. van Dalen, A. & de Kruijff, B. The role of lipids in membrane insertion and translocation of bacterial proteins. Biochim. Biophys. Acta 1694, 97–109 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Suzuki, H., Nishiyama, K. & Tokuda, H. Increases in acidic phospholipid contents specifically restore protein translocation in a cold-sensitive secA or secG null mutant. J. Biol. Chem. 274, 31020–31024 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Rietveld, A. G., Killian, J. A., Dowhan, W. & de Kruijff, B. Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J. Biol. Chem. 268, 12427–12433 (1993).

    CAS  PubMed  Google Scholar 

  101. Xu, Z. et al. Crystal structure of the bacterial protein export chaperone SecB. Nature Struct. Biol. 12, 1172–1177 (2000).

    Article  CAS  Google Scholar 

  102. Zhou, J. & Xu, Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nature Struct. Biol. 10, 942–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Dekker, C., de Kruijff, B. & Gros, P. Crystal structure of SecB from Escherichia coli. J. Struct. Biol. 144, 313–319 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Randall, L. L. et al. The interaction between the chaperone SecB and its ligands: evidence for multiple subsites for binding. Protein Sci. 7, 2384–2390 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Knoblauch, N. T. et al. Substrate specificity of the SecB chaperone. J. Biol. Chem. 274, 34219–34225 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Woodbury, R. L. et al. Complexes between protein export chaperone SecB and SecA. Evidence for separate sites on SecA providing binding energy and regulatory interactions. J. Biol. Chem. 275, 24191–24198 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Fekkes, P., van der Does, C. & Driessen, A. J. The molecular chaperone SecB is released from the carboxy-terminus of SecA during initiation of precursor protein translocation. EMBO J. 16, 6105–6113 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Crane, J. M. et al. Mapping of the docking of SecA onto the chaperone SecB by site-directed spin labeling: insight into the mechanism of ligand transfer during protein export. J. Mol. Biol. 353, 295–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Karamyshev, A. L. & Johnson, A. E. Selective SecA association with signal sequences in ribosome-bound nascent chains: a potential role for SecA in ribosome targeting to the bacterial membrane. J. Biol. Chem. 280, 37930–37940 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Eisner, G., Koch, H. G., Beck, K., Brunner, J. & Muller, M. Ligand crowding at a nascent signal sequence. J. Cell Biol. 163, 35–44 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chou, Y. T. & Gierasch, L. M. The conformation of a signal peptide bound by Escherichia coli preprotein translocase SecA. J. Biol. Chem. 280, 32753–32760 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Khatib, K. & Belin, D. A novel class of secA alleles that exert a signal-sequence-dependent effect on protein export in Escherichia coli. Genetics 162, 1031–1043 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kourtz, L. & Oliver, D. Tyr-326 plays a critical role in controlling SecA-preprotein interaction. Mol. Microbiol. 37, 1342–1356 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Baud, C. et al. Purification of a functional mature region from a SecA-dependent preprotein. Protein Expr. Purif. 40, 336–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Schiebel, E., Driessen, A. J., Hartl, F. U. & Wickner, W. ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 64, 927–939 (1991). Biochemical dissection of the distinct energetic roles of ATP and the PMF in promoting translocation.

    Article  CAS  PubMed  Google Scholar 

  116. Fak, J. J. et al. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Biochemistry 43, 7307–7327 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Economou, A. & Wickner, W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78, 835–843 (1994). Demonstrated that ATP energy is used for defined SecA conformational events that correlate with the defined movements of short pre-protein segments described by Schiebel and colleagues in reference 115.

    Article  CAS  PubMed  Google Scholar 

  118. Yamada, H., Matsuyama, S., Tokuda, H. & Mizushima, S. A high concentration of SecA allows proton motive force-independent translocation of a model secretory protein into Escherichia coli membrane vesicles. J. Biol. Chem. 264, 18577–18581 (1989).

    CAS  PubMed  Google Scholar 

  119. Nishiyama, K., Fukuda, A., Morita, K. & Tokuda, H. Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. EMBO J. 18, 1049–1058 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bessonneau, P., Besson, V., Collinson, I. & Duong, F. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J. 21, 995–1003 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nouwen, N., de Kruijff, B. & Tommassen, J. prlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors. Proc. Natl Acad. Sci. USA 93, 5953–5957 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Arkowitz, R. A., Joly, J. C. & Wickner, W. Translocation can drive the unfolding of a preprotein domain. EMBO J. 12, 243–253 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Engelman, D. M. & Steitz, T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23, 411–422 (1981).

    Article  CAS  PubMed  Google Scholar 

  124. Joly, J. C. & Wickner, W. The SecA and SecY subunits of translocase are the nearest neighbors of a translocating preprotein, shielding it from phospholipids. EMBO J. 12, 255–263 (1993). First direct demonstration that pre-proteins travel in a proteinaceous environment that is composed of SecA and SecY and form distinct interactions with each.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Economou, T. & Dalbey, R. E. (eds) Special issue of Biochimica et Biophysica Acta — Molecular Cell Research on Protein Export/Secretion in Bacteria Vol. 1694, 1–333 (2004).

  126. White, S. H. & von Heijne, G. Transmembrane helices before, during, and after insertion. Curr. Opin. Struct. Biol. 15, 378–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Kiefer, D. & Kuhn, A. Hydrophobic forces drive spontaneous membrane insertion of the bacteriophage Pf3 coat protein without topological control. EMBO J. 18, 6299–6306 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gallusser, A. & Kuhn, A. Initial steps in protein membrane insertion. Bacteriophage M13 procoat protein binds to the membrane surface by electrostatic interaction. EMBO J. 9, 2723–2729 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Urbanus, M. L. et al. Sec-dependent membrane protein insertion: sequential interaction of nascent FtsQ with SecY and YidC. EMBO Rep. 2, 524–529 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. van der Laan, M., Bechtluft, P., Kol, S., Nouwen, N. & Driessen, A. J. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165, 213–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Clantin, B. et al. Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science 317, 957–961 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Kim, S. et al. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317, 961–964 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Bos, M. P., Robert, V. & Tommassen, J. Biogenesis of the Gram-negative bacterial outer membrane. Annu. Rev. Microbiol. 7 June 2007 (doi:10.1146/annurev.micro.61.080706.093245).

    Article  CAS  PubMed  Google Scholar 

  134. Crane, J. M. et al. Sites of interaction of a precursor polypeptide on the export chaperone SecB mapped by site-directed spin labeling. J. Mol. Biol. 363, 63–74 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Kalodimos laboratory for an exciting collaboration and to B. Kalodimos and T. Pugsley for stimulating discussions. Research in our laboratory is supported by grants from the European Union (LSHG-CT-2005-037586), the Greek General Secretariat of Research and the European Regional Development Fund (01AKMON46 and PENED03ED623).

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

Entrez Genome Project

Bacillus subtilis

Escherichia coli

Methanococcus jannaschii

Mycobacterium tuberculosis

Thermus thermophilus

Entrez Protein

ecSecYEG

Protein Data Bank

bsSecA

bsSecA I

bsSecA II

ecSecA

ecSecB

mjSecYEG

mtSecA

ttSecA

FURTHER INFORMATION

Anastassios Economou's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papanikou, E., Karamanou, S. & Economou, A. Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol 5, 839–851 (2007). https://doi.org/10.1038/nrmicro1771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing