Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The importance of culturing bacterioplankton in the 'omics' age

Abstract

Progress in the culturing of microorganisms that are important to ocean ecology has recently accelerated, and technology has been a factor in these advances. However, rather than a single technological breakthrough, a combination of methods now enable microbiologists to screen large numbers of cultures and manipulate cells that are growing at the low biomass densities that are characteristic of those found in seawater. The value of ribosomal RNA databases has been reaffirmed, as they provide nucleic-acid probes for screening to identify important new species in culture. The new cultivation approaches have focused on specific targets that ecological studies suggest are significant for geochemical transformations, such as SAR11. Here, we review how to cultivate marine oligotrophs and why it is worth the effort.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrated approaches in marine microbiology.
Figure 2: Phylogeny of selected marine bacteria.
Figure 3: Cultivation of oligotrophs.
Figure 4: Micrographs of important oligotrophic marine bacteria.

Similar content being viewed by others

References

  1. Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling Expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, 398–431 (2007).

    Article  CAS  Google Scholar 

  2. Yooseph, S. et al. The Sorcerer II Global Ocean Sampling Expedition: expanding the universe of protein families. PLoS Biol. 5, 432–466 (2007).

    Article  CAS  Google Scholar 

  3. Morita, R. Y. Starvation — survival of heterotrophs in the marine environment. Adv. Microb. Ecol. 6, 171–198 (1982).

    Article  Google Scholar 

  4. ZoBell, C. E. Studies on marine bacteria. J. Mar. Res. 4, 42–75 (1941).

    Google Scholar 

  5. Ishida, Y. & Kadota, H. Growth patterns and substrate requirements of naturally occurring obligate oligotrophs. Microb. Ecol. 7, 123–130 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Poindexter, J. S. Oligotrophy: feast and famine. Adv. Microb. Ecol. 5, 63–89 (1981).

    Article  CAS  Google Scholar 

  7. Button, D. K. Biochemical basis for the whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl. Environ. Microbiol. 57, 2033–2038 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Button, D. K., Schut, F., Quang, P., Martin, R. & Robertson, B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl. Environ. Microbiol. 59, 881–891 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schut, F. et al. Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions. Appl. Environ. Microbiol. 59, 2150–2161 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Carlson, C. A. et al. Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat. Microb. Ecol. 30, 19–36 (2002).

    Article  Google Scholar 

  11. Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. de Bruyn, J. C., Boogerd, F. C., Bos, P. & Kuenen, J. G. Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl. Environ. Microbiol. 56, 2891–2894 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrari, B. C., Binnerup, S. J. & Gillings, M. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71, 8714–8720 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ziegler, M., Lange, M. & Dott, W. Isolation and morphological and cytological characterization of filamentous bacteria from bulking sludge. Water Res. 24, 1437–1451 (1990).

    Article  Google Scholar 

  16. Eilers, H. et al. Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl. Environ. Microbiol. 67, 5134–5142 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schlegel, H. G. & Jannasch, H. W. Enrichment cultures. Annu. Rev. Microbiol. 21, 49–70 (1967).

    Article  CAS  PubMed  Google Scholar 

  18. Renesto, P. et al. Genome-based design of a cell-free culture medium for Tropheryma whipplei. Lancet 362, 447–449 (2003).

    Article  PubMed  Google Scholar 

  19. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).

    Article  PubMed  Google Scholar 

  21. Stingl, U., Tripp, H. J. & Giovannoni, S. J. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic Time series study Site (BATS). ISME J. (in the press).

  22. Konneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).

    Article  PubMed  Google Scholar 

  23. Morris, R. M., Rappé, M. S., Urbach, E., Connon, S. A. & Giovannoni, S. J. Prevalence of the Chloroflexi-related SAR202 bacterioplankton cluster throughout the mesopelagic zone and deep ocean. Appl. Environ. Microbiol. 70, 2836–2842 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eilers, H., Pernthaler, J., Glockner, F. O. & Amann, R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044–3051 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    Article  PubMed  Google Scholar 

  26. Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).

    Article  PubMed  Google Scholar 

  27. Gomez-Consarnau, L. et al. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Giovannoni, S. J. et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Stingl, U., Vergin, K. L. & Giovannoni, S. J. The SAR92 clade: an abundant coastal clade of culturable marine bacteria possessing proteorhodopsin. Appl. Environ. Microbiol. 73, 2290–2296 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwalbach, M. S., Brown, M. & Fuhrman, J. A. Impact of light on marine bacterioplankton community structure. Aquat. Microb. Ecol. 39, 235–245 (2005).

    Article  Google Scholar 

  31. Jensen, P. R., Williams, P. G., Oh, D. C., Zeigler, L. & Fenical, W. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl. Environ. Microbiol. 73, 1146–1152 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Schmid, M. C. et al. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ. Microbiol. 9, 1476–1484 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Miller, T. R. & Belas, R. Motility is involved in Silicibacter sp. TM1040 interaction with dinoflagellates. Environ. Microbiol. 8, 1648–1659 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Van Baalen, C. Studies on marine blue-green algae. Bot. Marina 4, 129–139 (1962).

    Article  Google Scholar 

  35. Waterbury, J. B., Watson, S. W., Guillard, R. R. & Brane, L. E. Widespread occurrence of unicellular, marine, planktonic cyanobacterium. Nature 277, 293–294 (1979).

    Article  Google Scholar 

  36. Chisholm, S. W. et al. A novel free-living prochorophyte abundant in oceanic euphotic zone. Nature 334, 340–343 (1988).

    Article  Google Scholar 

  37. Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297–300 (1992).

    Article  CAS  Google Scholar 

  38. Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Stephens, R. S. et al. Genome sequence of an obligate intracellular pathogen of humans. Science 282, 754–758 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, M. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, e69 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moran, M. A. et al. Ecological genomics of marine Roseobacters. Appl. Environ. Microbiol. 73, 4559–4569 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Godoy, F. et al. Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int. J. Syst. Evol. Microbiol. 53, 473–477 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Button, D. K. & Robertson, B. R. in Handbook of Methods in Aquatic Microbiology (eds Kemp, P. F., Sherr, B. F., Sherr, E. B. & Cole, J. J.) 163–173 (Lewis Publishers, Boca Raton, 1993).

    Google Scholar 

  45. Eguchi, M. et al. Sphingomonas alaskensis strain AFO1, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl. Environ. Microbiol. 67, 4945–4954 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cavicchioli, R., Ostrowski, M., Fegatella, F., Goodchild, A. & Guixa-Boixereu, N. Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Microb. Ecol. 45, 203–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Fegatella, F., Lim, J., Kjelleberg, S. & Cavicchioli, R. Implications of rRNA operon copy number and ribosome content in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain RB2256. Appl. Environ. Microbiol. 64, 4433–4438 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fegatella, F., Ostrowski, M. & Cavicchioli, R. An assessment of protein profiles from the marine oligotrophic ultramicrobacterium, Sphingomonas sp. strain RB2256. Electrophoresis 20, 2094–2098 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Ostrowski, M., Cavicchioli, R., Blaauw, M. & Gottschal, J. C. Specific growth rate plays a critical role in hydrogen peroxide resistance of the marine oligotrophic ultramicrobacterium Sphingomonas alaskensis strain RB2256. Appl. Environ. Microbiol. 67, 1292–1299 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cho, J. C. & Giovannoni, S. J. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl. Environ. Microbiol. 70, 432–440 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cho, J. C. et al. Polyphyletic photosynthetic reaction centre genes in oligotrophic marine Gammaproteobacteria. Environ. Microbiol. 9, 1456–1463 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Fuchs, B. M. et al. Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc. Natl Acad. Sci. USA 104, 2891–2896 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Speksnijder, A. G. C. L. et al. Microvariation artifacts introduced by PCR and cloning of closely related 16S rRNA gene sequences. Appl. Environ. Microbiol. 67, 469–472 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dufresne, A. et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl Acad. Sci. USA 100, 10020–10025 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Raes, J., Korbel, J. O., Lercher, M. J., von Mering, C. & Bork, P. Prediction of effective genome size in metagenomic samples. Genome Biol. 8, R10 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Rappé, M. S. & Giovannoni, S. J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).

    Article  PubMed  Google Scholar 

  59. Morris, R. M., Cho, J. C., Rappé, M. S., Vergin, K. L. & Carlson, C. A. Bacterioplankton responses to deep seasonal mixing in the Sargasso Sea. Limnol. Oceanogr 50, 382–391 (2005).

    Article  Google Scholar 

  60. Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S–23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68, 1180–1191 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Button, D. K., Robertson, B., Gustafson, E. & Zhao, X. Experimental and theoretical bases of specific affinity, a cytoarchitecture-based formulation of nutrient collection proposed to supercede the Michaelis-Menten paradigm of microbial kinetics. Appl. Environ. Microbiol. 70, 5511–5521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).

    Article  CAS  Google Scholar 

  63. Kuznetsov, S. I., Dubinina, G. A. & Lapteva, N. A. Biology of oligotrophic bacteria. Annu. Rev. Microbiol. 33, 377–387 (1979).

    Article  CAS  PubMed  Google Scholar 

  64. Carlson, C. A. & Ducklow, H. W. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea. Aquat. Microb. Ecol. 10, 69–85 (1996).

    Article  Google Scholar 

  65. Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper was supported by National Science Foundation grant DEB-0207085 and by a grant from the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Giovannoni.

Ethics declarations

Competing interests

Stephen Giovannoni and Oregon State University hold United States patent 6,951,714 (High Througput Microbial Culturing), which is licensed to Diversa Corporation. To the best of our knowledge this technology is not currently being applied commercially, and the statements made in our manuscript will not result in financial gain.

Related links

Related links

DATABASES

Entrez Genome

Prochlorococcus marinus

Entrez Genome Project

Candidatus Pelagibacter ubique

Chlamydia trachomatis

HTCC2080

KT71

Nitrosopumilus maritimus SCM-1

Sphingopyxis alaskenis

Wolbachia pipientis

FURTHER INFORMATION

Stephen Giovannoni's homepage

Glossary

Bacterioplankton

The bacteria that inhabit the water column of lakes and oceans, either freely suspended or attached to particles.

Euphotic zone

A transitional region of the water column where light levels are low and labile organic matter is in even shorter supply than at the surface, but where macronutrients, such as iron, phosphorous and reduced forms of nitrogen, are readily available.

Heterotrophic

The acquisition of metabolic energy by the consumption of living or dead organic matter.

Oligotrophic

An aquatic environment that has low levels of nutrients and algal photosynthetic production (for example, high mountain lakes or the open ocean).

Pelagic

Relating to or occurring in the water column.

Tangential flow filtration

A technique that re-circulates the retentate (the part of a solution that does not cross the membrane) along a membrane surface that is only permeable to water and low-molecular-weight compounds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovannoni, S., Stingl, U. The importance of culturing bacterioplankton in the 'omics' age. Nat Rev Microbiol 5, 820–826 (2007). https://doi.org/10.1038/nrmicro1752

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1752

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing