Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Protein secretion in the Archaea: multiple paths towards a unique cell surface

Key Points

  • Archaea represent the third domain of life. Many of these prokaryotes thrive under extreme environmental conditions. The structure of their cell envelope differs substantially from that of other prokaryotes, which is related to their eccentric way of life, but also to the distinct solutions required to assemble their unique cellular surface.

  • The Sec (secretion) pathway is the only protein-translocation pathway in nature known to be universally conserved. The Sec translocase mediates the translocation of unfolded proteins across, and the insertion of membrane proteins into, the membrane. The archaeal Sec translocase seems to be mosaic with features that are similar to the Sec translocase of bacteria or eukaryotic endoplasmic reticulum.

  • The Tat (twin arginine translocation) translocase allows the transmembrane translocation of proteins in their fully folded state. This pathway is present in most prokaryotes, and chloroplasts, but it is not essential for viability. Some halophilic archaea depend on the Tat system for viability, and most secretory proteins seem to use this pathway for secretion, indicating a specific adaptation to high saline environments.

  • Most archaea are covered by a surface layer (S-layer) that consists of a crystalline layer of glycoproteins with pores that are permeable to solute and small proteins. Several types of appendage extend from the archaeal cell surface, such as pili and flagella, and also novel structures that are needed for surface attachment and efficient nutrient acquisition in their natural habitat. The assembly of these structures involves transport systems with subunits that are homologous to the cytoplasmic membrane components of bacterial type II and IV secretion systems, but that seem less complex.

Abstract

Archaea are similar to other prokaryotes in most aspects of cell structure but are unique with respect to the lipid composition of the cytoplasmic membrane and the structure of the cell surface. Membranes of archaea are composed of glycerol-ether lipids instead of glycerol-ester lipids and are based on isoprenoid side chains, whereas the cell walls are formed by surface-layer proteins. The unique cell surface of archaea requires distinct solutions to the problem of how proteins cross this barrier to be either secreted into the medium or assembled as appendages at the cell surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell envelope of archaea.
Figure 2: Mosaic subunit composition of the Sec translocase in archaea.
Figure 3: Schematic representation of the conserved signal-recognition particle pathway.
Figure 4: Membrane topology of the Haloferax volcanii Tat translocase subunits.
Figure 5: Model of the assembly of cell appendices in the cell envelope of Sulfolobus solfataricus.

Similar content being viewed by others

References

  1. Woese, C. R. & Fox, G. E. The concept of cellular evolution. J. Mol. Evol. 10, 1?6 (1977).

    CAS  PubMed  Google Scholar 

  2. Rachel, R., Wyschkony, I., Riehl, S. & Huber, H. The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1, 9?18 (2002).

    CAS  PubMed  Google Scholar 

  3. Kates, M. Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria. J. Microbiol. Methods 25, 113?128 (1996).

    CAS  Google Scholar 

  4. De Rosa, M., Trincone, A., Nicolaus, B. & Gambacorta, A. In Life Under Extreme Conditions (ed. di Prisco, G.) 61?87 (Springer, Berlin Heidelberg, 1991).

    Google Scholar 

  5. Upasani, V. N., Desai, S. G., Moldoveanu, N. & Kates, M. Lipids of extremely halophilic archaeobacteria from saline environments in India: a novel glycolipid in Natronobacterium strains. Microbiology 140, 1959?1966 (1994).

    CAS  PubMed  Google Scholar 

  6. Kates, M., Moldoveanu, N. & Stewart, L. C. On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim. Biophys. Acta 1169, 46?53 (1993).

    CAS  PubMed  Google Scholar 

  7. Pohlschroder, M., Prinz, W. A., Hartmann, E. & Beckwith, J. Protein translocation in the three domains of life: variations on a theme. Cell 91, 563?566 (1997).

    CAS  PubMed  Google Scholar 

  8. Veenendaal, A. K., van der Does, C. & Driessen, A. J. M. The protein-conducting channel SecYEG. Biochim. Biophys. Acta 1694, 81?95 (2004).

    CAS  PubMed  Google Scholar 

  9. Osborne, A. R., Rapoport, T. A. & van den Berg, B. Protein translocation by the Sec61/SecY channel. Annu. Rev. Cell Dev. Biol. 21, 529?550 (2005).

    CAS  PubMed  Google Scholar 

  10. von Heijne, G. The signal peptide. J. Membr. Biol. 115, 195?201 (1990).

    CAS  PubMed  Google Scholar 

  11. Nielsen, H., Brunak, S. & von Heijne, G. Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng. 12, 3?9 (1999).

    CAS  PubMed  Google Scholar 

  12. Albers, S. V. & Driessen, A. J. M. Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey. Arch. Microbiol. 177, 209?216 (2002).

    CAS  PubMed  Google Scholar 

  13. Pohlschroder, M., Gimenez, M. I. & Jarrell, K. F. Protein transport in Archaea: Sec and twin arginine translocation pathways. Curr. Opin. Microbiol. 8, 713?719 (2005).

    PubMed  Google Scholar 

  14. Driessen, A. J. M. SecB, a molecular chaperone with two faces. Trends Microbiol. 9, 193?196 (2001).

    CAS  PubMed  Google Scholar 

  15. Luirink, J. & Sinning, I. SRP-mediated protein targeting: structure and function revisited. Biochim. Biophys. Acta 1694, 17?35 (2004).

    CAS  PubMed  Google Scholar 

  16. Wild, K., Halic, M., Sinning, I. & Beckmann, R. SRP meets the ribosome. Nature Struct. Mol. Biol. 11, 1049?1053 (2004).

    CAS  Google Scholar 

  17. Moll, R., Schmidtke, S. & Schafer, G. Domain structure, GTP-hydrolyzing activity and 7S RNA binding of Acidianus ambivalens Ffh-homologous protein suggest an SRP-like complex in archaea. Eur. J. Biochem. 259, 441?448 (1999).

    CAS  PubMed  Google Scholar 

  18. Maeshima, H., Okuno, E., Aimi, T., Morinaga, T. & Itoh, T. An archaeal protein homologous to mammalian SRP54 and bacterial Ffh recognizes a highly conserved region of SRP RNA. FEBS Lett. 507, 336?340 (2001).

    CAS  PubMed  Google Scholar 

  19. Montoya, G., Kaat, K., Moll, R., Schafer, G. & Sinning, I. The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP?SRP receptor complex. Structure 8, 515?525 (2000).

    CAS  PubMed  Google Scholar 

  20. Rose, R. W. & Pohlschroder, M. In vivo analysis of an essential archaeal signal recognition particle in its native host. J. Bacteriol. 184, 3260?3267 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhuiyan, S. H., Gowda, K., Hotokezaka, H. & Zwieb, C. Assembly of archaeal signal recognition particle from recombinant components. Nucleic Acids Res. 28, 1365?1373 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Diener, J. L. & Wilson, C. Role of SRP19 in assembly of the Archaeoglobus fulgidus signal recognition particle. Biochemistry 39, 12862?12874 (2000).

    CAS  PubMed  Google Scholar 

  23. Moll, R., Schmidtke, S. & Schaefer, G. A putative signal recognition particle receptor α subunit (SRα) homologue is expressed in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. FEMS Microbiol. Lett. 137, 51?56 (1996).

    CAS  PubMed  Google Scholar 

  24. Lichi, T., Ring, G. & Eichler, J. Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii. Eur. J. Biochem. 271, 1382?1390 (2004).

    CAS  PubMed  Google Scholar 

  25. Ramirez, C. & Matheson, A. T. A gene in the archaebacterium Sulfolobus solfataricus that codes for a protein equivalent to the α subunits of the signal recognition particle receptor in eukaryotes. Mol. Microbiol. 5, 1687?1693 (1991).

    CAS  PubMed  Google Scholar 

  26. Angelini, S., Deitermann, S. & Koch, H. G. FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 6, 476?481 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kinch, L. N., Saier, M. H. Jr & Grishin, N. V. Sec61β ? a component of the archaeal protein secretory system. Trends Biochem. Sci. 27, 170?171 (2002).

    CAS  PubMed  Google Scholar 

  28. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36?44 (2004). This manuscript describes the high resolution structure of the SecYE complex of the archaeon M. jannaschii . It is the first structure of a protein-conducting channel.

    CAS  PubMed  Google Scholar 

  29. Mitra, K. et al. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 438, 318?324 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Prinz, A., Behrens, C., Rapoport, T. A., Hartmann, E. & Kalies, K. U. Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J. 19, 1900?1906 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ring, G. & Eichler, J. Membrane binding of ribosomes occurs at SecYE-based sites in the Archaea Haloferax volcanii. J. Mol. Biol. 336, 997?1010 (2004).

    CAS  PubMed  Google Scholar 

  32. Irihimovitch, V. & Eichler, J. Post-translational secretion of fusion proteins in the halophilic archaea Haloferax volcanii. J. Biol. Chem. 278, 12881?12887 (2003).

    CAS  PubMed  Google Scholar 

  33. Ortenberg, R. & Mevarech, M. Evidence for post-translational membrane insertion of the integral membrane protein bacterioopsin expressed in the heterologous halophilic archaeon Haloferax volcanii. J. Biol. Chem. 275, 22839?22846 (2000).

    CAS  PubMed  Google Scholar 

  34. Pogliano, J. A. & Beckwith, J. SecD and SecF facilitate protein export in Escherichia coli. EMBO J. 13, 554?561 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hand, N. J., Klein, R., Laskewitz, A. & Pohlschroder, M. Archaeal and bacterial SecD and SecF homologs exhibit striking structural and functional conservation. J. Bacteriol. 188, 1251?1259 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Samuelson, J. C. et al. YidC mediates membrane protein insertion in bacteria. Nature 406, 637?641 (2000).

    CAS  PubMed  Google Scholar 

  37. van der Laan, M., Nouwen, N. P. & Driessen, A. J. M. YidC ? an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes. Curr. Opin. Microbiol. 8, 182?187 (2005).

    CAS  PubMed  Google Scholar 

  38. Yen, M. R., Harley, K. T., Tseng, Y. H. & Saier, M. H. Jr. Phylogenetic and structural analyses of the oxa1 family of protein translocases. FEMS Microbiol. Lett. 204, 223?231 (2001).

    CAS  PubMed  Google Scholar 

  39. Berks, B. C., Palmer, T. & Sargent, F. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr. Opin. Microbiol. 8, 174?181 (2005).

    CAS  PubMed  Google Scholar 

  40. Dilks, K., Gimenez, M. I. & Pohlschroder, M. Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J. Bacteriol. 187, 8104?8113 (2005). Shows that the Tat pathway is essential for aerobic growth of H. volcanii in complex media, confirming the hypothesis that in halophilic archaea the Tat pathway is the main protein-secretion route instead of the Sec translocase.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cristobal, S., de Gier, J. W., Nielsen, H. & von Heijne, G. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. EMBO J. 18, 2982?2990 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ize, B., Gerard, F. & Wu, L. F. In vivo assessment of the Tat signal peptide specificity in Escherichia coli. Arch. Microbiol. 178, 548?553 (2002).

    CAS  PubMed  Google Scholar 

  43. Blaudeck, N., Kreutzenbeck, P., Freudl, R. & Sprenger, G. A. Genetic analysis of pathway specificity during post-translational protein translocation across the Escherichia coli plasma membrane. J. Bacteriol. 185, 2811?2819 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bogsch, E., Brink, S. & Robinson, C. Pathway specificity for a δ pH-dependent precursor thylakoid lumen protein is governed by a 'Sec-avoidance' motif in the transfer peptide and a 'Sec-incompatible' mature protein. EMBO J. 16, 3851?3859 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dilks, K., Rose, R. W., Hartmann, E. & Pohlschroder, M. Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J. Bacteriol. 185, 1478?1483 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hutcheon, G. W. & Bolhuis, A. The archaeal twin-arginine translocation pathway. Biochem. Soc. Trans. 31, 686?689 (2003).

    CAS  PubMed  Google Scholar 

  47. Rose, R. W., Bruser, T., Kissinger, J. C. & Pohlschroder, M. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol. Microbiol. 45, 943?950 (2002).

    CAS  PubMed  Google Scholar 

  48. Falb, M. et al. Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res. 15, 1336?1343 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ginzburg, M., Sachs, L. & Ginzburg, B. Z. Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J. Gen. Physiol 55, 187?207 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Oren, A. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63, 334?348 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ng, W. V. et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl Acad. Sci. USA 97, 12176?12181 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kennedy, S. P., Ng, W. V., Salzberg, S. L., Hood, L. & DasSarma, S. Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res. 11, 1641?1650 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Baliga, N. S. et al. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead sea. Genome Res. 14, 2221?2234 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mevarech, M., Frolow, F. & Gloss, L. M. Halophilic enzymes: proteins with a grain of salt. Biophys. Chem. 86, 155?164 (2000).

    CAS  PubMed  Google Scholar 

  55. Anton, J. et al. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52, 485?491 (2002).

    CAS  PubMed  Google Scholar 

  56. Mongodin, E. F. et al. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl Acad. Sci. USA 102, 18147?18152 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Alami, M. et al. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell 12, 937?946 (2003).

    CAS  PubMed  Google Scholar 

  58. Hatzixanthis, K. et al. Signal peptide-chaperone interactions on the twin-arginine protein transport pathway. Proc. Natl Acad. Sci. USA 102, 8460?8465 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Paetzel, M., Karla, A., Strynadka, N. C. & Dalbey, R. E. Signal peptidases. Chem. Rev. 102, 4549?4580 (2002).

    CAS  PubMed  Google Scholar 

  60. Ng, S. Y. & Jarrell, K. F. Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae. J. Bacteriol. 185, 5936?5942 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bardy, S. L., Ng, S. Y., Carnegie, D. S. & Jarrell, K. F. Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae. J. Bacteriol. 187, 1188?1191 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fine, A., Irihimovitch, V., Dahan, I., Konrad, Z. & Eichler, J. Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii. J. Bacteriol. 188, 1911?1919 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bardy, S. L., Eichler, J. & Jarrell, K. F. Archaeal signal peptides ? a comparative survey at the genome level. Protein Sci. 12, 1833?1843 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Albers, S. V., Koning, S. M., Konings, W. N. & Driessen, A. J. M. Insights into ABC transport in archaea. J. Bioenerg. Biomembr. 36, 5?15 (2004).

    CAS  PubMed  Google Scholar 

  65. Mattar, S. et al. The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J. Biol. Chem. 269, 14939?14945 (1994).

    CAS  PubMed  Google Scholar 

  66. Kokoeva, M. V., Storch, K. F., Klein, C. & Oesterhelt, D. A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids. EMBO J. 21, 2312?2322 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pugsley, A. P. The complete general secretory pathway in Gram-negative bacteria. Microbiol. Rev. 57, 50?108 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nunn, D. Bacterial type II protein export and pilus biogenesis: more than just homologies? Trends Cell Biol. 9, 402?408 (1999).

    CAS  PubMed  Google Scholar 

  69. Holland, I. B., Schmitt, L. & Young, J. Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway. Mol. Membr. Biol. 22, 29?39 (2005).

    CAS  PubMed  Google Scholar 

  70. Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 40, 271?283 (2001).

    CAS  PubMed  Google Scholar 

  71. d'Enfert, C., Reyss, I., Wandersman, C. & Pugsley, A. P. Protein secretion by Gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K-12. J. Biol. Chem. 264, 17462?17468 (1989).

    CAS  PubMed  Google Scholar 

  72. Kohler, R. et al. Structure and assembly of the pseudopilin PulG. Mol. Microbiol. 54, 647?664 (2004).

    PubMed  Google Scholar 

  73. Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416?3428 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Albers, S. V. & Driessen, A. J. M. Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus. Microbiology 151, 763?773 (2005).

    CAS  PubMed  Google Scholar 

  75. Planet, P. J., Kachlany, S. C., Desalle, R. & Figurski, D. H. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl Acad. Sci. USA 98, 2503?2508 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Peabody, C. R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051?3072 (2003). Extensive phylogenetic comparison of the components of type IV pilus assembly/type II secretion systems and the archaeal flagellum-assembly system. Indicates common mechanisms in the assembly of the associated surface structures in prokaryotes.

    CAS  PubMed  Google Scholar 

  77. Tamano, K. et al. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19, 3876?3887 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Macnab, R. M. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta 1694, 207?217 (2004).

    CAS  PubMed  Google Scholar 

  79. Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nature Rev. Microbiol. 1, 137?149 (2003).

    CAS  Google Scholar 

  80. Thanassi, D. G., Stathopoulos, C., Karkal, A. & Li, H. Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of Gram-negative bacteria. Mol. Membr. Biol. 22, 63?72 (2005).

    CAS  PubMed  Google Scholar 

  81. Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289?314 (2002).

    CAS  PubMed  Google Scholar 

  82. Strom, M. S., Nunn, D. N. & Lory, S. Post-translational processing of type IV prepilin and homologs by PilD of Pseudomonas aeruginosa. Methods Enzymol. 235, 527?540 (1994).

    CAS  PubMed  Google Scholar 

  83. Craig, L. et al. Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol. Cell 11, 1139?1150 (2003).

    CAS  PubMed  Google Scholar 

  84. Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1?10 (1999).

    CAS  PubMed  Google Scholar 

  85. Hobbs, M. & Mattick, J. S. Common components in the assembly of type IV fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10, 233?243 (1993).

    CAS  PubMed  Google Scholar 

  86. Cohen-Krausz, S. & Trachtenberg, S. The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. J. Mol. Biol. 321, 383 (2002). Shows that the archaeal flagellum is structurally related to type IV pili rather than to bacterial flagella.

    CAS  PubMed  Google Scholar 

  87. Faguy, D. M., Bayley, D. P., Kostyukova, A. S., Thomas, N. A. & Jarrell, K. F. Isolation and characterization of flagella and flagellin proteins from the Thermoacidophilic archaea Thermoplasma volcanium and Sulfolobus shibatae. J. Bacteriol. 178, 902?905 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Jarrell, K. F., Bayley, D. P., Florian, V. & Klein, A. Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus voltae. Mol. Microbiol. 20, 657?666 (1996).

    CAS  PubMed  Google Scholar 

  89. Bardy, S. L., Ng, S. Y. & Jarrell, K. F. Recent advances in the structure and assembly of the archaeal flagellum. J. Mol. Microbiol. Biotechnol. 7, 41?51 (2004).

    CAS  PubMed  Google Scholar 

  90. Faguy, D. M., Jarrell, K. F., Kuzio, J. & Kalmokoff, M. L. Molecular analysis of archael flagellins: similarity to the type IV pilin-transport superfamily widespread in bacteria. Can. J. Microbiol. 40, 67?71 (1994).

    CAS  PubMed  Google Scholar 

  91. Albers, S. V., Szabó, Z. & Driessen, A. J. M. Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J. Bacteriol. 185, 3918?3925 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bardy, S. L. & Jarrell, K. F. FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol. Lett. 208, 53?59 (2002).

    CAS  PubMed  Google Scholar 

  93. Bardy, S. L. & Jarrell, K. F. Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae. Mol. Microbiol. 50, 1339?1347 (2003).

    CAS  PubMed  Google Scholar 

  94. Nunn, D. N. & Lory, S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc. Natl Acad. Sci. USA 88, 3281?3285 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Trachtenberg, S., Galkin, V. E. & Egelman, E. H. Refining the structure of the Halobacterium salinarum flagellar filament using the iterative helical real space reconstruction method: insights into polymorphism. J. Mol. Biol. 346, 665?676 (2005).

    CAS  PubMed  Google Scholar 

  96. Kupper, J. et al. The flagellar bundle of Halobacterium salinarium is inserted into a distinct polar cap structure. J. Bacteriol. 176, 5184?5187 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Alam, M. & Oesterhelt, D. Morphology, function and isolation of halobacterial flagella. J. Mol. Biol. 176, 459?475 (1984).

    CAS  PubMed  Google Scholar 

  98. Weiss, R. L. Attachment of bacteria to sulphur in extreme environments. J. Gen. Microbiol. 77, 501?507 (1973).

    CAS  Google Scholar 

  99. Leadbetter, J. R. & Breznak, J. A. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 62, 3620?3631 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Miroshnichenko, M. L. et al. Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov. : heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int. J. Syst. Bacteriol. 48, 23?29 (1998).

    PubMed  Google Scholar 

  101. Moissl, C., Rachel, R., Briegel, A., Engelhardt, H. & Huber, R. The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks. Mol. Microbiol. 56, 361?370 (2005). Reports on one of the most complex prokaryotic extracytoplasmic structures described so far that fulfils a role in cellular adherence. An important question is how these hooks are assembled at the cell surface.

    CAS  PubMed  Google Scholar 

  102. Strom, M. S. & Lory, S. Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly. J. Biol. Chem. 266, 1656?1664 (1991).

    CAS  PubMed  Google Scholar 

  103. Pasloske, B. L., Scraba, D. G. & Paranchych, W. Assembly of mutant pilins in Pseudomonas aeruginosa: formation of pili composed of heterologous subunits. J. Bacteriol. 171, 2142?2147 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Macdonald, D. L., Pasloske, B. L. & Paranchych, W. Mutations in the fifth-position glutamate in Pseudomonas aeruginosa pilin affect the transmethylation of the N-terminal phenylalanine. Can. J. Microbiol. 39, 500?505 (1993).

    CAS  PubMed  Google Scholar 

  105. Craig, L., Pique, M. E. & Tainer, J. A. Type IV pilus structure and bacterial pathogenicity. Nature Rev. Microbiol. 2, 363?378 (2004).

    CAS  Google Scholar 

  106. Albers, S. V. et al. Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol. 181, 4285?4291 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Elferink, M. G. L., Albers, S.-V., Konings, W. N. & Driessen, A. J. M. Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol. Microbiol. 39, 1494?1503 (2001). Shows that the hyperthermoacidophile S. solfataricus contains two types of sugar-binding protein, one of which is synthesized with a type IV pilin-like signal sequence that is processed in a similar manner to pilins in bacteria, and flagella in archaea.

    CAS  PubMed  Google Scholar 

  108. Krause, S. et al. Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc. Natl Acad. Sci. USA 97, 3067?3072 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bhattacharjee, M. K., Kachlany, S. C., Fine, D. H. & Figurski, D. H. Nonspecific adherence and fibril biogenesis by Actinobacillus actinomycetemcomitans: TadA protein is an ATPase. J. Bacteriol. 183, 5927?5936 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sexton, J. A. et al. The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J. Bacteriol. 186, 1658?1666 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Herdendorf, T. J., McCaslin, D. R. & Forest, K. T. Aquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase. J. Bacteriol. 184, 6465?6471 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kachlany, S. C. et al. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J. Bacteriol. 182, 6169?6176 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lower, B. H. & Kennelly, P. J. Open reading frame sso2387 from the archaeon Sulfolobus solfataricus encodes a polypeptide with protein serine kinase activity. J. Bacteriol. 185, 3436?3445 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sandkvist, M., Bagdasarian, M., Howard, S. P. & DiRita, V. J. Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J. 14, 1664?1673 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361?372 (2001).

    CAS  PubMed  Google Scholar 

  116. Menetret, J. F. et al. Architecture of the ribosome-channel complex derived from native membranes. J. Mol. Biol. 348, 445?457 (2005).

    CAS  PubMed  Google Scholar 

  117. Manting, E. H., van der Does, C., Remigy, H., Engel, A. & Driessen, A. J. M. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19, 852?861 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Scheuring, J. et al. The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. J. Mol. Biol. 354, 258?271 (2005).

    CAS  PubMed  Google Scholar 

  119. Driessen, A. J. M. Cell biology: two pores better than one? Nature 438, 299?300 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a van der Leeuw grant to A.J.M.D. from the Earth and Life Sciences Foundation (ALW) which is subsidized by the Dutch Organization for Scientific Research (NWO), and Veni and Vidi grants to S.-V.A. from NWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J. M. Driessen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Archaeoglobus fulgidus

Escherichia coli

Haloarcula marismortui

Halobacterium salinarum NRC-1

Haloferax volcanii

Methanocaldococcus jannaschii

Methanococcus maripaludis

Methanococcus voltae

Natronomonas pharaonis

Picrophilus torridus

Pseudomonas aeruginosa

Saccharomyces cerevisiae

Salinibacter ruber

Sulfolobus acidocaldarius

Sulfolobus solfataricus

Vibrio cholerae

FURTHER INFORMATION

Arnold J. M. Driessen's homepage

Glossary

Halophile

A microorganism that requires high levels of sodium chloride, usually above 0.2 M, to grow. Extreme halophiles, most of which are archaea, inhabit water that is up to 10 times more saline than seawater.

Hyperthermophile

A microorganism that has an optimal growth temperature between 80°C and approximately 113°C. Some hyperthermophiles are found in geysers and black smokers.

Isoprenyl groups

Building blocks of the acyl chain of archaeal lipids, representing repeating units of the five-carbon hydrocarbon isoprene, the common synonym for the chemical compound 2-methyl-1,3-butadiene.

Mesophile

A microorganism that grows optimally at temperatures between 20?45°C. Some archaea are mesophiles and are found in environments such as marshland, sewage and soil, whereas many methogenic archaea live in the digestive tracts of humans, and animals such as ruminants and termites.

Chloroplast thylakoid membrane

Chloroplasts are organelles found in plant cells and eukaryotic algae that conduct photosynthesis. They are generally considered to have originated as endosymbiotic cyanobacteria.Thylakoids are membrane-bound compartments, internal to chloroplasts. The thylakoid membrane contains integral membrane-protein complexes that capture light energy from the sun to produce the free energy stored in ATP and NADPH.

F1F0-ATP synthase

An enzyme that can synthesize adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and inorganic phosphate by using the transmembrane proton gradient as a source of energy. The F1 portion of the ATP synthase is above the bacterial cytoplasmic membrane, and constitutes the catalytic domain that contains the nucleotide binding sites. The F0 portion is membrane-integral and conducts the transmembrane movement of protons, which is coupled to the synthesis or hydrolysis of ATP through the F1 portion.

Amphipathic helix

An amphipathic molecule contains both hydrophobic and hydrophilic groups. An amphipathic helix consists of a polypeptide chain with a hydrophobic surface and a hydrophilic surface.

Polytopic membrane protein

A membrane protein containing multiple membrane-spanning helical domains that are embedded in the membrane by hydrophobic interactions with the lipid interior of the bilayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albers, SV., Szabó, Z. & Driessen, A. Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nat Rev Microbiol 4, 537–547 (2006). https://doi.org/10.1038/nrmicro1440

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing