Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Selective transmission of CCR5-utilizing HIV-1: the 'gatekeeper' problem resolved?

An Erratum to this article was published on 01 May 2006

Abstract

Understanding the mechanisms of HIV-1 transmission is crucial for the development of effective preventive microbicides and vaccine strategies, and remains one of the main goals of HIV research. Over the past decade, many studies have focused on trying to identify the 'gatekeeping' mechanism that restricts the transmission of CXCR4-utilizing HIV-1 more efficiently than CCR5-utilizing HIV-1. However, to date, no study has explained the almost perfect negative selection of the former in vivo. Here, we propose that there is no single gatekeeper and that, instead, the selective transmission of R5 HIV-1 depends on the superimposition of multiple imperfect gatekeepers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential restriction points for mucosal transmission of CXCR4-utilizing (X4) HIV-1.
Figure 2: Two mechanisms of selective transmission of CCR5-utilizing (R5) HIV-1.

Similar content being viewed by others

References

  1. Moore, J. P., Kitchen, S. G., Pugach, P. & Zack, J. A. The CCR5 and CXCR4 coreceptors — central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res. Hum. Retroviruses 20, 111–126 (2004).

    Article  CAS  Google Scholar 

  2. Delwart, E. L. et al. Human immunodeficiency virus type 1 populations in blood and semen. J. Virol. 72, 617–623 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pillai, S. K. et al. Semen-specific genetic characteristics of human immunodeficiency virus type 1 env. J. Virol. 79, 1734–1742 (2005).

    Article  CAS  Google Scholar 

  4. Scarlatti, G. et al. Transmission of human immunodeficiency virus type 1 (HIV-1) from mother to child correlates with viral phenotype. Virology 197, 624–629 (1993).

    Article  CAS  Google Scholar 

  5. Zhu, T. et al. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261, 1179–1181 (1993).

    Article  CAS  Google Scholar 

  6. van't Wout, A. B. et al. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J. Clin. Invest. 94, 2060–2067 (1994).

    Article  CAS  Google Scholar 

  7. Poles, M. A., Elliott, J., Taing, P., Anton, P. A. & Chen, I. S. A preponderance of CCR5+ CXCR4+ mononuclear cells enhances gastrointestinal mucosal susceptibility to human immunodeficiency virus type 1 infection. J. Virol. 75, 8390–8399 (2001).

    Article  CAS  Google Scholar 

  8. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    Article  CAS  Google Scholar 

  9. Dean, M. et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862 (1996).

    Article  CAS  Google Scholar 

  10. Samson, M., Labbe, O., Mollereau, C., Vassart, G. & Parmentier, M. Molecular cloning and functional expression of a new human CC-chemokine receptor gene. Biochemistry 35, 3362–3367 (1996).

    Article  CAS  Google Scholar 

  11. Wilkinson, D. A., Operskalski, E. A., Busch, M. P., Mosley, J. W. & Koup, R. A. A 32-bp deletion within the CCR5 locus protects against transmission of parenterally acquired human immunodeficiency virus but does not affect progression to AIDS-defining illness. J. Infect. Dis. 178, 1163–1166 (1998).

    Article  CAS  Google Scholar 

  12. Fenyo, E.M. et al. Distinct replicative and cytopathic characteristics of human immunodeficiency virus isolates. J. Virol. 62, 4414–4419 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Scarlatti, G. et al. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nature Med. 3, 1259–1265 (1997).

    Article  CAS  Google Scholar 

  14. Connor, R. I., Sheridan, K. E., Ceradini, D., Choe, S. & Landau, N. R. Change in coreceptor use coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 185, 621–628 (1997).

    Article  CAS  Google Scholar 

  15. Fouchier, R. A., Meyaard, L., Brouwer, M., Hovenkamp, E. & Schuitemaker, H. Broader tropism and higher cytopathicity for CD4+ T cells of a syncytium-inducing compared to a non-syncytium-inducing HIV-1 isolate as a mechanism for accelerated CD4+ T cell decline in vivo. Virology 219, 87–95 (1996).

    Article  CAS  Google Scholar 

  16. Koot, M. et al. Conversion rate towards a syncytium-inducing (SI) phenotype during different stages of human immunodeficiency virus type 1 infection and prognostic value of SI phenotype for survival after AIDS diagnosis. J. Infect. Dis. 179, 254–258 (1999).

    Article  CAS  Google Scholar 

  17. Chen, Z., Gettie, A., Ho, D. D. & Marx, P. A. Primary SIVsm isolates use the CCR5 coreceptor from sooty mangabeys naturally infected in west Africa: a comparison of coreceptor usage of primary SIVsm, HIV-2, and SIVmac. Virology 246, 113–124 (1998).

    Article  CAS  Google Scholar 

  18. Glushakova, S. et al. Preferential coreceptor utilization and cytopathicity by dual-tropic HIV-1 in human lymphoid tissue ex vivo. J. Clin. Invest. 104, R7–R11 (1999).

    Article  CAS  Google Scholar 

  19. Bomsel, M. & David, V. Mucosal gatekeepers: selecting HIV viruses for early infection. Nature Med. 8, 114–116 (2002).

    Article  CAS  Google Scholar 

  20. Galvin, S. R. & Cohen, M. S. The role of sexually transmitted diseases in HIV transmission. Nature Rev. Microbiol. 2, 33–42 (2004).

    Article  CAS  Google Scholar 

  21. Miller, C. J. & Shattock, R. J. Target cells in vaginal HIV transmission. Microbes Infect. 5, 59–67 (2003).

    Article  CAS  Google Scholar 

  22. Pudney, J., Quayle, A. J. & Anderson, D. J. Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone. Biol. Reprod. 73, 1253–1263 (2005).

    Article  CAS  Google Scholar 

  23. Kwong, P. D., Wyatt, R., Sattentau, Q. J., Sodroski, J. & Hendrickson, W. A. Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J. Virol. 74, 1961–1972 (2000).

    Article  CAS  Google Scholar 

  24. Bergey, E. J. et al. Interaction of HIV-1 and human salivary mucins. J. AIDS 7, 995–1002 (1994).

    CAS  Google Scholar 

  25. Moulard, M. et al. Selective interactions of polyanions with basic surfaces on human immunodeficiency virus type 1 gp120. J. Virol. 74, 1948–1960 (2000).

    Article  CAS  Google Scholar 

  26. Vives, R. R., Imberty, A., Sattentau, Q. J. & Lortat-Jacob, H. Heparan sulfate targets the HIV-1 envelope glycoprotein gp120 coreceptor binding site. J. Biol. Chem. 280, 21353–21357 (2005).

    Article  CAS  Google Scholar 

  27. Quinones-Mateu, M. E. et al. Human epithelial β-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17, F39–F48 (2003).

    Article  CAS  Google Scholar 

  28. Sun, L. et al. Human β-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J. Virol. 79, 14318–14329 (2005).

    Article  CAS  Google Scholar 

  29. Leikina, E. et al. Carbohydrate-binding molecules inhibit viral fusion and entry by crosslinking membrane glycoproteins. Nature Immunol. 6, 995–1001 (2005).

    Article  CAS  Google Scholar 

  30. Patterson, B. K. et al. Repertoire of chemokine receptor expression in the female genital tract: implications for human immunodeficiency virus transmission. Am. J. Pathol. 153, 481–490 (1998).

    Article  CAS  Google Scholar 

  31. McClure, C. P. et al. HIV coreceptor and chemokine ligand gene expression in the male urethra and female cervix. AIDS 19, 1257–1265 (2005).

    Article  CAS  Google Scholar 

  32. Greenhead, P. et al. Parameters of human immunodeficiency virus infection of human cervical tissue and inhibition by vaginal virucides. J. Virol. 74, 5577–86 (2000).

    Article  CAS  Google Scholar 

  33. Yeaman, G. R. et al. Chemokine receptor expression in the human ectocervix: implications for infection by the human immunodeficiency virus-type I. Immunology 113, 524–533 (2004).

    Article  CAS  Google Scholar 

  34. Asin, S. N. et al. Transmission of HIV-1 by primary human uterine epithelial cells and stromal fibroblasts. J. Infect. Dis. 190, 236–245 (2004).

    Article  CAS  Google Scholar 

  35. Auvert, B. et al. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2, e298 (2005).

    Article  Google Scholar 

  36. Patterson, B. K. et al. Susceptibility to human immunodeficiency virus-1 infection of human foreskin and cervical tissue grown in explant culture. Am. J. Pathol. 161, 867–873 (2002).

    Article  Google Scholar 

  37. Horejsh, D., Ruckwardt, T. J. & David Pauza, C. CXCR4-dependent HIV-1 infection of differentiated epithelial cells. Virus Res. 90, 275–86 (2002).

    Article  CAS  Google Scholar 

  38. Agace, W. W. et al. Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Curr. Biol. 10, 325–328 (2000).

    Article  CAS  Google Scholar 

  39. Meng, G. et al. Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nature Med. 8, 150–156 (2002).

    Article  CAS  Google Scholar 

  40. Bomsel, M. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nature Med. 3, 42–47 (1997).

    Article  CAS  Google Scholar 

  41. Fotopoulos, G. et al. Transepithelial transport of HIV-1 by M cells is receptor-mediated. Proc. Natl Acad. Sci. USA 99, 9410–9414 (2002).

    Article  CAS  Google Scholar 

  42. Rousseau, C. M. et al. Association of levels of HIV-1-infected breast milk cells and risk of mother-to-child transmission. J. Infect. Dis. 190, 1880–1888 (2004).

    Article  Google Scholar 

  43. Satomi, M. et al. Transmission of macrophage-tropic HIV-1 by breast-milk macrophages via DC-SIGN. J. Infect. Dis. 191, 174–181 (2005).

    Article  CAS  Google Scholar 

  44. Kawamura, T. et al. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc. Natl Acad. Sci. USA. 100, 8401–8406 (2003).

    Article  CAS  Google Scholar 

  45. Zaitseva, M. et al. Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nature Med. 3, 1369–1375 (1997).

    Article  CAS  Google Scholar 

  46. Prakash, M., Kapembwa, M. S., Gotch, F. & Patterson, S. Chemokine receptor expression on mucosal dendritic cells from the endocervix of healthy women. J. Infect. Dis. 190, 246–250 (2004).

    Article  CAS  Google Scholar 

  47. Blauvelt, A., Glushakova, S. & Margolis, L. B. HIV-infected human Langerhans cells transmit infection to human lymphoid tissue ex vivo. AIDS 14, 647–651 (2000).

    Article  CAS  Google Scholar 

  48. Arrighi, J. F. et al. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J. Exp. Med. 200, 1279–1288 (2004).

    Article  CAS  Google Scholar 

  49. Turville, S. G. et al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103, 2170–2179 (2004).

    Article  CAS  Google Scholar 

  50. Granelli-Piperno, A., Delgado, E., Finkel, V., Paxton, W. & Steinman, R. M. Immature dendritic cells selectively replicate macrophagetropic (M-tropic) human immunodeficiency virus type 1, while mature cells efficiently transmit both M- virus type 1 spreading in CD4+ T lymphocytes: R5 but not X4 viruses replicate in the absence of T-cell receptor restimulation. J. Virol. 73, 7515–7523 (1999).

    Google Scholar 

  51. Gupta, P. et al. Memory CD4+ T cells are the earliest detectable human immunodeficiency virus type 1 (HIV-1)-infected cells in the female genital mucosal tissue during HIV-1 transmission in an organ culture system. J. Virol. 76, 9868–9876 (2002).

    Article  CAS  Google Scholar 

  52. Locher, C. P. et al. Differential effects of R5 and X4 human immunodeficiency virus type 1 infection on CD4+ cell proliferation and activation. J. Gen. Virol. 86, 1171–1179 (2005).

    Article  CAS  Google Scholar 

  53. Ostrowski, M. A. et al. Both memory and CD45RA+/CD62L+ naive CD4+ T cells are infected in human immunodeficiency virus type 1-infected individuals. J. Virol. 73, 6430–6435 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. van Rij, R. P. et al. Differential coreceptor expression allows for independent evolution of non-syncytium-inducing and syncytium-inducing HIV-1. J. Clin. Invest. 106, 1039–1052 (2000).

    Article  CAS  Google Scholar 

  55. Haase, A. T. Perils at mucosal front lines for HIV and SIV and their hosts. Nature Rev. Immunol. 5, 783–792 (2005).

    Article  CAS  Google Scholar 

  56. Spijkerman, I. J. et al. Lower prevalence and incidence of HIV-1 syncytium-inducing phenotype among injecting drug users compared with homosexual men. AIDS 9, 1085–1092 (1995).

    Article  CAS  Google Scholar 

  57. Glushakova, S., Baibakov, B., Margolis, L. B. & Zimmerberg, J. Infection of human tonsil histocultures: a model for HIV pathogenesis. Nature Med. 1, 1320–1322 (1995).

    Article  CAS  Google Scholar 

  58. Grivel, J. C. & Margolis, L. B. CCR5- and CXCR4-tropic HIV-1 are equally cytopathic for their T-cell targets in human lymphoid tissue. Nature Med. 5, 344–346 (1999).

    Article  CAS  Google Scholar 

  59. Harouse, J. M. et al. CD8+ T cell-mediated CXC chemokine receptor 4-simian/human immunodeficiency virus suppression in dually infected rhesus macaques. Proc. Natl Acad. Sci. USA 100, 10977–10982 (2003).

    Article  CAS  Google Scholar 

  60. Lusso, P. et al. Cryptic nature of a conserved, CD4-inducible V3 loop neutralization epitope in the native envelope glycoprotein oligomer of CCR5-restricted, but not CXCR4-using, primary human immunodeficiency virus type 1 strains. J. Virol. 79, 6957–6968 (2005).

    Article  CAS  Google Scholar 

  61. Kuhmann, S. E. & Moore, J. P. The HIV-1 phenotype variants: deadly and deadlier. J. Vir. Entry 1, 4–16 (2005).

    Google Scholar 

  62. Penn, M. L., Grivel, J. C., Schramm, B., Goldsmith, M. A. & Margolis, L. CXCR4 utilization is sufficient to trigger CD4+ T cell depletion in HIV- 1-infected human lymphoid tissue. Proc. Natl Acad. Sci. USA 96, 663–668 (1999).

    Article  CAS  Google Scholar 

  63. Schutten, M. et al. Macrophage tropism of human immunodeficiency virus type 1 facilitates in vivo escape from cytotoxic T-lymphocyte pressure. J. Virol. 75, 2706–2709 (2001).

    Article  CAS  Google Scholar 

  64. David, S. A. et al. Selective transmission of R5-tropic HIV type 1 from dendritic cells to resting CD4+ T cells. AIDS Res. Hum. Retroviruses 17, 59–68 (2001).

    Article  CAS  Google Scholar 

  65. Ganesh, L. et al. Infection of specific dendritic cells by CCR5-tropic human immunodeficiency virus type 1 promotes cell-mediated transmission of virus resistant to broadly neutralizing antibodies. J. Virol. 78, 11980–11987 (2004).

    Article  CAS  Google Scholar 

  66. Hu, Q. et al. Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. J. Exp. Med. 199, 1065–1075 (2004).

    Article  CAS  Google Scholar 

  67. Veazey, R. S. et al. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus–cell fusion. Nature 11, 1293–1294 (2005).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome

HIV-1

SIV

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolis, L., Shattock, R. Selective transmission of CCR5-utilizing HIV-1: the 'gatekeeper' problem resolved?. Nat Rev Microbiol 4, 312–317 (2006). https://doi.org/10.1038/nrmicro1387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing