Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Modelling infectious disease — time to think outside the box?

Abstract

Models occupy an essential position in the study of infectious disease as a result of the ethical problems of exposing humans to potentially lethal agents. Deliberately induced infections in well-defined animal models provide much useful information about disease processes in an approximation of their natural context. Despite this, animal models are not the natural disease process, and recent experimental advances show, perhaps not unsurprisingly, that there are large differences between natural infections and animal models. Focusing on mouse models of bacterial pathogens, we discuss some of these discrepancies and suggest ways of improving model systems in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo infection models.

Similar content being viewed by others

References

  1. Anon. Scaling up the response to infectious disease [online] <http://www.who.int/infectious-disease-report/2002> (2002).

  2. Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1992).

    Google Scholar 

  3. Matthews, L. & Woolhouse, M. New approaches to quantifying the spread of infection. Nature Rev. Microbiol. 3, 529–536 (2005).

    Article  CAS  Google Scholar 

  4. Haque, A. et al. Early interactions of Salmonella enterica serovar Typhimurium with human small intestinal epithelial explants. Gut 53, 1424–1430 (2004).

    Article  CAS  Google Scholar 

  5. Gravato-Nobre, M. J. & Hodgkin, J. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell. Microbiol. 7, 741–751 (2005).

    Article  CAS  Google Scholar 

  6. Garcia-Lara, J., Needham, A. J. & Foster, S. J. Invertebrates as animal models for Staphylococcus aureus pathogenesis: a window into host–pathogen interaction. FEMS Immunol. Med. Microbiol. 43, 311–323 (2005).

    Article  CAS  Google Scholar 

  7. Pradel, E. & Ewbank, J. J. Genetic models in pathogenesis. Annu. Rev. Genet. 38, 347–363 (2004).

    Article  CAS  Google Scholar 

  8. Steinert, M., Leippe, M. & Roeder, T. Surrogate hosts: protozoa and invertebrates as models for studying pathogen–host interactions. Int. J. Med. Microbiol. 293, 321–332 (2003).

    Article  Google Scholar 

  9. Sifri, C. D., Begun, J. & Ausubel, F. M. The worm has turned — microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 13, 119–127 (2005).

    Article  CAS  Google Scholar 

  10. Miller, J. D. & Neely, M. N. Zebrafish as a model host for streptococcal pathogenesis. Acta Trop. 91, 53–68 (2004).

    Article  Google Scholar 

  11. Steinert, M. & Heuner, K. Dictyostelium as host model for pathogenesis. Cell. Microbiol. 7, 307–314 (2005).

    Article  CAS  Google Scholar 

  12. Wade, C. M. & Daly, M. J. Genetic variation in laboratory mice. Nature Genet. 37, 1175–1180 (2005).

    Article  CAS  Google Scholar 

  13. Committee for laboratory animal care and use. The numbers of live animals used in experiments in 2001— results of a survey. Exp. Anim. 52, 143 (2003).

  14. The Commission to the Council and the European Parliament. Fourth report on the statistics on the number of animals used for experimental and other scientific purposes in the member states of the European Union [online] <http://europa.eu.int/comm/environment/chemicals/lab_animals/pdf/ com_2005_7_en.pdf> (2005).

  15. Matsuda, Y. Recent trends in the number of laboratory animals used in Japan ATLA 32 (suppl. 1), 299–301 (2004)

    CAS  PubMed  Google Scholar 

  16. Home Office. Statistics of Scientific Procedures on Living Animals Great Britain 2003 (HMSO, London, 2004).

  17. Vazquez-Boland, J. A. et al. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14, 584–640 (2001).

    Article  CAS  Google Scholar 

  18. Okamoto, M., Nakane, A. & Minagawa, T. Host resistance to an intragastric infection with Listeria monocytogenes in mice depends on cellular immunity and intestinal bacterial flora. Infect. Immun. 62, 3080–3085 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Marco, A. J. et al. A microbiological, histopathological and immunohistological study of the intragastric inoculation of Listeria monocytogenes in mice. J. Comp. Pathol. 107, 1–9 (1992).

    Article  CAS  Google Scholar 

  20. Conlan, J. W. & North, R. J. Neutrophil-mediated dissolution of infected host cells as a defense strategy against a facultative intracellular bacterium. J. Exp. Med. 174, 741–744 (1991).

    Article  CAS  Google Scholar 

  21. Mengaud, J., Ohayon, H., Gounon, P., Mege, R. M. & Cossart, P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84, 923–932 (1996).

    Article  CAS  Google Scholar 

  22. Lecuit, M. et al. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18, 3956–3963 (1999).

    Article  CAS  Google Scholar 

  23. Lecuit, M. et al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725 (2001).

    Article  CAS  Google Scholar 

  24. Schlievert, P. M., Assimacopoulos, A. P. & Cleary, P. P. Severe invasive group A streptococcal disease: clinical description and mechanisms of pathogenesis. J. Lab. Clin. Med. 127, 13–22 (1996).

    Article  CAS  Google Scholar 

  25. Sriskandan, S., Unnikrishnan, M., Krausz, T. & Cohen, J. Molecular analysis of the role of streptococcal pyrogenic exotoxin A (SPEA) in invasive soft-tissue infection resulting from Streptococcus pyogenes. Mol. Microbiol. 33, 778–790 (1999).

    Article  CAS  Google Scholar 

  26. Sriskandan, S. et al. Enhanced susceptibility to superantigen-associated streptococcal sepsis in human leukocyte antigen-DQ transgenic mice. J. Infect. Dis. 184, 166–173 (2001).

    Article  CAS  Google Scholar 

  27. Scaramuzzino, D. A., McNiff, J. M. & Bessen, D. E. Humanized in vivo model for streptococcal impetigo. Infect. Immun. 68, 2880–2887 (2000).

    Article  CAS  Google Scholar 

  28. Sun, H. et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305, 1283–1286 (2004).

    Article  CAS  Google Scholar 

  29. Garmendia, J., Frankel, G. & Crepin, V. F. Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect. Immun. 73, 2573–2585 (2005).

    Article  CAS  Google Scholar 

  30. Mundy, R., Macdonald, T. T., Dougan, G., Frankel, G. & Wiles, S. Citrobacter rodentium of mice and man. Cell. Microbiol. 7, 1697–1706 (2005).

    Article  CAS  Google Scholar 

  31. Chen, H. D. & Frankel, G. Enteropathogenic Escherichia coli: unravelling pathogenesis. FEMS Microbiol. Rev. 29, 83–98 (2005).

    Article  Google Scholar 

  32. Thorpe, C. M. Shiga toxin-producing Escherichia coli infection. Clin. Infect. Dis. 38, 1298–1303 (2004).

    Article  Google Scholar 

  33. Truman, R. W. & Krahenbuhl, J. L. Viable M. leprae as a research reagent. Int. J. Lepr. Other Mycobact. Dis. 69, 1–12 (2001).

    CAS  PubMed  Google Scholar 

  34. Truman, R. Leprosy in wild armadillos. Lepr. Rev. 76, 198–208 (2005).

    PubMed  Google Scholar 

  35. Dean, G. S. et al. Minimum infective dose of Mycobacterium bovis in cattle. Infect. Immun. 73, 6467–6471 (2005).

    Article  CAS  Google Scholar 

  36. Buddle, B. M., Wedlock, D. N., Denis, M. & Skinner, M. A. Identification of immune response correlates for protection against bovine tuberculosis. Vet. Immunol. Immunopathol. 108, 45–51 (2005).

    Article  CAS  Google Scholar 

  37. Head, N. E. & Yu, H. Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa: biofilm formation, virulence, and genome diversity. Infect. Immun. 72, 133–144 (2004).

    Article  CAS  Google Scholar 

  38. Cooper, T. F., Rozen, D. E. & Lenski, R. E. Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc. Natl Acad. Sci. USA 100, 1072–1077 (2003).

    Article  CAS  Google Scholar 

  39. Somerville, G. A. et al. Synthesis and deformylation of Staphylococcus aureus δ-toxin are linked to tricarboxylic acid cycle activity. J. Bacteriol. 185, 6686–6694 (2003).

    Article  CAS  Google Scholar 

  40. Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl Acad. Sci. USA 99, 17020–17024 (2002).

    Article  CAS  Google Scholar 

  41. Andersen, P. & Doherty, T. M. The success and failure of BCG — implications for a novel tuberculosis vaccine. Nature Rev. Microbiol. 3, 656–662 (2005).

    Article  CAS  Google Scholar 

  42. Merrell, D. S. et al. Host-induced epidemic spread of the cholera bacterium. Nature 417, 642–645 (2002).

    Article  CAS  Google Scholar 

  43. Wiles, S., Dougan, G. & Frankel, G. Emergence of a 'hyperinfectious' bacterial state after passage of Citrobacter rodentium through the host gastrointestinal tract. Cell. Microbiol. 7, 1163–1172 (2005).

    Article  CAS  Google Scholar 

  44. Alam, A. et al. Hyperinfectivity of human-passaged Vibrio cholerae can be modeled by growth in the infant mouse. Infect. Immun. 73, 6674–6679 (2005).

    Article  CAS  Google Scholar 

  45. Rasmussen, M. A. et al. Exposure to rumen protozoa leads to enhancement of pathogenicity of and invasion by multiple-antibiotic-resistant Salmonella enterica bearing SGI1. Infect. Immun. 73, 4668–4675 (2005).

    Article  CAS  Google Scholar 

  46. Cirillo, J. D., Falkow, S. & Tompkins, L. S. Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect. Immun. 62, 3254–3261 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cirillo, J. D., Falkow, S., Tompkins, L. S. & Bermudez, L. E. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect. Immun. 65, 3759–3767 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Perry, R. D. & Fetherston, J. D. Yersinia pestis — etiologic agent of plague. Clin. Microbiol. Rev. 10, 35–66 (1997).

    Article  CAS  Google Scholar 

  49. Jarrett, C. O. et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J. Infect. Dis. 190, 783–792 (2004).

    Article  Google Scholar 

  50. Jarrett, C. O., Sebbane, F., Adamovicz, J. J., Andrews, G. P. & Hinnebusch, B. J. Flea-borne transmission model to evaluate vaccine efficacy against naturally acquired bubonic plague. Infect. Immun. 72, 2052–2056 (2004).

    Article  CAS  Google Scholar 

  51. Yoshimatsu, T., Shirai, M., Nagata, K., Okita, K. & Nakazawa, T. Transmission of Helicobacter pylori from challenged to nonchallenged nude mice kept in a single cage. Dig. Dis. Sci. 45, 1747–1753 (2000).

    Article  CAS  Google Scholar 

  52. Wijburg, O. L. et al. Innate secretory antibodies protect against natural Salmonella typhimurium infection. J. Exp. Med. 203, 21–26 (2006).

    Article  CAS  Google Scholar 

  53. Lipsitch, M. & Moxon, E. R. Virulence and transmissibility of pathogens: what is the relationship? Trends Microbiol. 5, 31–37 (1997).

    Article  CAS  Google Scholar 

  54. Ebert, D. in Evolution in Health and Disease (ed. Stearns, S. C.) 161–172 (Oxford University Press, Oxford, 1999).

    Google Scholar 

  55. Watson, D. A. & Musher, D. M. A brief history of the pneumococcus in biomedical research. Semin. Respir. Infect. 14, 198–208 (1999).

    CAS  PubMed  Google Scholar 

  56. Hanage, W. P. et al. Invasiveness of serotypes and clones of Streptococcus pneumoniae among children in Finland. Infect. Immun. 73, 431–435 (2005).

    Article  CAS  Google Scholar 

  57. Brueggemann, A. B. et al. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J. Infect. Dis. 187, 1424–1432 (2003).

    Article  CAS  Google Scholar 

  58. Hanage, W. P. et al. Using multilocus sequence data to define the pneumococcus. J. Bacteriol. 187, 6223–6230 (2005).

    Article  CAS  Google Scholar 

  59. Yuk, M. H., Harvill, E. T., Cotter, P. A. & Miller, J. F. Modulation of host immune responses, induction of apoptosis and inhibition of NF-κB activation by the Bordetella type III secretion system. Mol. Microbiol. 35, 991–1004 (2000).

    Article  CAS  Google Scholar 

  60. Mouslim, C., Hilbert, F., Huang, H. & Groisman, E. A. Conflicting needs for a Salmonella hypervirulence gene in host and non-host environments. Mol. Microbiol. 45, 1019–1027 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the generous support of the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siouxsie Wiles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Citrobacter rodentium

Escherichia coli

Helicobacter pylori

Legionella pneumophila

Listeria monocytogenes

Mycobacterium avium

Mycobacterium bovis

Mycobacterium leprae

Pseudomonas aeruginosa

Salmonella enterica serovar Typhimurium

Streptococcus pyogenes

Vibrio cholerae

Yersinia pestis

FURTHER INFORMATION

William P. Hanage's homepage

Brian Robertson's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiles, S., Hanage, W., Frankel, G. et al. Modelling infectious disease — time to think outside the box?. Nat Rev Microbiol 4, 307–312 (2006). https://doi.org/10.1038/nrmicro1386

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing