Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Opinion

Can landscape ecology untangle the complexity of antibiotic resistance?

A Corrigendum to this article was published on 01 January 2007

Abstract

Bacterial resistance to antibiotics continues to pose a serious threat to human and animal health. Given the considerable spatial and temporal heterogeneity in the distribution of resistance and the factors that affect its evolution, dissemination and persistence, we argue that antibiotic resistance must be viewed as an ecological problem. A fundamental difficulty in assessing the causal relationship between antibiotic use and resistance is the confounding influence of geography: the co-localization of resistant bacterial species with antibiotic use does not necessarily imply causation and could represent the presence of environmental conditions and factors that have independently contributed to the occurrence of resistance. Here, we show how landscape ecology, which links the biotic and abiotic factors of an ecosystem, might help to untangle the complexity of antibiotic resistance and improve the interpretation of ecological studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A hypothetical agricultural ecosystem to explore the relationship between antibiotic use in animal agriculture and antibiotic resistance.

Similar content being viewed by others

References

  1. Salyers, A. A. & Amabile-Cuevas, C. F. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41, 2321–2325 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Salyers, A. A., Shoemaker, N. B. & Bonheyo, G. T. in Bacterial Resistance to Antimicrobials (eds Lewis, K., Salyers, A. A., Taber, H. W. & Wax, R. G.) 1–18 (Marcel Dekker, New York, 2002).

    Google Scholar 

  3. Summers, A. O. Generally overlooked fundamentals of bacterial genetics and ecology. Clin. Infect. Dis. 34, (Suppl. 3), S85–S92 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Aarestrup, F. M., Kruse, H., Tast, E., Hammerum, A. M. & Jensen, L. B. Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb. Drug Resist. 6, 63–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Aarestrup, F. M. et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45, 2054–2059 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Casewell, M., Friis, C., Marco, E., McMullin, P. & Phillips, I. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 52, 159–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Heuer, O. E., Pedersen, K., Andersen, J. S. & Madsen, M. Vancomycin-resistant enterococci (VRE) in broiler flocks 5 years after the avoparcin ban. Microb. Drug Resist. 8, 133–138 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Heuer, O. E., Pedersen, K., Jensen, L. B., Madsen, M. & Olsen, J. E. Persistence of vancomycin-resistant enterococci (VRE) in broiler houses after the avoparcin ban. Microb. Drug Resist. 8, 355–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Phillips, I. et al. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 53, 28–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Practical Streptomyces Genetics (John Innes Centre, Norwich, UK, 2000).

    Google Scholar 

  11. Waksman, S. The role of antibiotics in nature. Perspect. Biol. Med. 4, 271–287 (1961).

    Article  Google Scholar 

  12. Yim, G., Wang, H. H. & Davies, J. The truth about antibiotics. Int. J. Med. Microbiol. 296, 163–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. D'Costa, V. M., McGrann, K. M., Hughes, D. W. & Wright, G. D. Sampling the antibiotic resistome. Science 311, 374–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Davies, J. Are antibiotics naturally antibiotics? J. Ind. Microbiol. Biotechnol. 33, 496–499 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Schmitt, H., Stoob, K., Hamscher, G., Smit, E. & Seinen, W. Tetracyclines and tetracycline resistance in agricultural soils: microcosm and field studies. Microb. Ecol. 51, 267–276 (2006).

    Article  PubMed  Google Scholar 

  16. Kummerer, K. Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources — a review. Chemosphere 45, 957–969 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Kummerer, K. & Henninger, A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin. Microbiol. Infect. 9, 1203–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Kolpin, D. W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Schrag, S. J., Perrot, V. & Levin, B. R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. Biol. Sci. 264, 1287–1291 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Lenski, R. E. Bacterial evolution and the cost of antibiotic resistance. Int. Microbiol. 1, 265–270 (1998).

    CAS  PubMed  Google Scholar 

  22. Sorum, M. et al. Prevalence, persistence, and molecular characterization of glycopeptide-resistant enterococci in Norwegian poultry and poultry farmers 3 to 8 years after the ban on avoparcin. Appl. Environ. Microbiol. 72, 516–521 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khachatryan, A. R., Hancock, D. D., Besser, T. E. & Call, D. R. Role of calf-adapted Escherichia coli in maintenance of antimicrobial drug resistance in dairy calves. Appl. Environ. Microbiol. 70, 752–757 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khachatryan, A. R., Hancock, D. D., Besser, T. E. & Call, D. R. Antimicrobial drug resistance genes do not convey a secondary fitness advantage to calf-adapted Escherichia coli. Appl. Environ. Microbiol. 72, 443–448 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo, N., Sahin, O., Lin, J., Michel, L. O. & Zhang, Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob. Agents Chemother. 47, 390–394 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sander, P. et al. Fitness cost of chromosomal drug resistance-conferring mutations. Antimicrob. Agents Chemother. 46, 1204–1211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154, 985–997 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Forman, R. T. T. Land Mosaics: The Ecology of Landscapes and Regions (Cambridge University Press, Cambridge UK, 1995).

    Book  Google Scholar 

  29. Martiny, J. B. et al. Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol. 4, 102–112 (2006).

    Article  CAS  Google Scholar 

  30. Pavlovsky, E. N. Natural Nidality of Transmissible Diseases: With Special Reference to the Landscape Ecology of Zooanthroponoses. (University of Illinois Press, Urbana Illinois, 1966).

    Book  Google Scholar 

  31. Kitron, U. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J. Med. Entomol. 35, 435–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Reisen, W. K., Lothrop, H. D., Presser, S. B., Hardy, J. L. & Gordon, E. W. Landscape ecology of arboviruses in southeastern California: temporal and spatial patterns of enzootic activity in Imperial Valley, 1991–1994. J. Med. Entomol. 34, 179–188 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Guerra, M. et al. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg. Infect. Dis. 8, 289–297 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pei, R., Kim, S. C., Carlson, K. H. & Pruden, A. Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 40, 2427–2435 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Unicomb, L. E. et al. Low-level fluoroquinolone resistance among Campylobacter jejuni isolates in Australia. Clin. Infect. Dis. 42, 1368–1374 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Davelos, A. L., Kinkel, L. L. & Samac, D. A. Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl. Environ. Microbiol. 70, 1051–1058 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Swaminathan, B., Barrett, T. J. & Fields, P. Surveillance for human Salmonella infections in the United States. J. AOAC Int. 89, 553–559 (2006).

    CAS  PubMed  Google Scholar 

  38. Zhao, S. et al. Antimicrobial resistance and genetic relatedness among Salmonella from retail foods of animal origin: NARMS retail meat surveillance. Foodborne. Pathog. Dis. 3, 106–117 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Lipsitch, M. & Samore, M. H. Antimicrobial use and antimicrobial resistance: a population perspective. Emerg. Infect. Dis. 8, 347–354 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harris, A. D. et al. Control-group selection importance in studies of antimicrobial resistance: examples applied to Pseudomonas aeruginosa, Enterococci, and Escherichia coli. Clin. Infect. Dis. 34, 1558–1563 (2002).

    Article  PubMed  Google Scholar 

  41. Lipsitch, M. Measuring and interpreting associations between antibiotic use and penicillin resistance in Streptococcus pneumoniae. Clin. Infect. Dis. 32, 1044–1054 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Rubin, D. B. Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688–701 (1974).

    Article  Google Scholar 

  43. Hofler, M. Causal inference based on counterfactuals. BMC. Med. Res. Methodol. 5, 28 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maldonado, G. & Greenland, S. Estimating causal effects. Int. J. Epidemiol. 31, 422–429 (2002).

    Article  PubMed  Google Scholar 

  45. McGowan, J. E. Jr. Antimicrobial resistance in hospital organisms and its relation to antibiotic use. Rev. Infect. Dis. 5, 1033–1048 (1983).

    Article  PubMed  Google Scholar 

  46. Alonso, A., Sanchez, P. & Martinez, J. L. Environmental selection of antibiotic resistance genes. Environ. Microbiol. 3, 1–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Borgen, K., Sorum, M., Wasteson, Y., Kruse, H. & Oppegaard, H. Genetic linkage between erm(B) and vanA in Enterococcus hirae of poultry origin. Microb. Drug Resist. 8, 363–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Sander, J. E., Hofacre, C. L., Cheng, I. H. & Wyatt, R. D. Investigation of resistance of bacteria from commercial poultry sources to commercial disinfectants. Avian Dis. 46, 997–1000 (2002).

    Article  PubMed  Google Scholar 

  49. Sidhu, M. S., Sorum, H. & Holck, A. Resistance to quaternary ammonium compounds in food-related bacteria. Microb. Drug Resist. 8, 393–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Sidhu, M. S., Heir, E., Leegaard, T., Wiger, K. & Holck, A. Frequency of disinfectant resistance genes and genetic linkage with β-lactamase transposon Tn552 among clinical staphylococci. Antimicrob. Agents Chemother. 46, 2797–2803 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sidhu, M. S., Heir, E., Sorum, H. & Holck, A. Genetic linkage between resistance to quaternary ammonium compounds and β-lactam antibiotics in food-related Staphylococcus spp. Microb. Drug Resist. 7, 363–371 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Guerra, B., Soto, S., Helmuth, R. & Mendoza, M. C. Characterization of a self-transferable plasmid from Salmonella enterica serotype typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob. Agents Chemother. 46, 2977–2981 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baker-Austin, C., Wright, M. S., Stepanauskas, R. & McArthur, J. V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Stepanauskas, R. et al. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ. Microbiol. 8, 1510–1514 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Barkay, T., Miller, S. M. & Summers, A. O. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27, 355–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Wireman, J., Liebert, C. A., Smith, T. & Summers, A. O. Association of mercury resistance with antibiotic resistance in the Gram-negative fecal bacteria of primates. Appl. Environ. Microbiol. 63, 4494–4503 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Liebert, C. A., Hall, R. M. & Summers, A. O. Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63, 507–522 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bass, L. et al. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob. Agents Chemother. 43, 2925–2929 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Berg, J., Tom-Petersen, A. & Nybroe, O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett. Appl. Microbiol. 40, 146–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Hasman, H. & Aarestrup, F. M. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob. Agents Chemother. 46, 1410–1416 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hasman, H. & Aarestrup, F. M. Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob. Agents Chemother. 49, 454–456 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sarmah, A. K., Meyer, M. T. & Boxall, A. B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65, 725–759 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Rooklidge, S. J. Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways. Sci. Total Environ. 325, 1–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Chander, Y., Kumar, K., Goyal, S. M. & Gupta, S. C. Antibacterial activity of soil-bound antibiotics. J. Environ. Qual. 34, 1952–1957 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Clay, S. A., Liu, Z., Thaler, R. & Kennouche, H. Tylosin sorption to silty clay loam soils, swine manure, and sand. J. Environ. Sci. Health B 40, 841–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Aga, D. S. et al. Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. J. Agric. Food Chem. 53, 7165–7171 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kumar, K., Gupta, S. C., Baidoo, S. K., Chander, Y. & Rosen, C. J. Antibiotic uptake by plants from soil fertilized with animal manure. J. Environ. Qual. 34, 2082–2085 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Kummerer, K. Resistance in the environment. J. Antimicrob. Chemother. 54, 311–320 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Novais, C., Coque, T. M., Ferreira, H., Sousa, J. C. & Peixe, L. Environmental contamination with vancomycin-resistant enterococci from hospital sewage in Portugal. Appl. Environ. Microbiol. 71, 3364–3368 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lewis, D. J. et al. Linking on-farm dairy management practices to storm-flow fecal coliform loading for California coastal watersheds. Environ. Monit. Assess. 107, 407–425 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Rodgers, P., Soulsby, C., Hunter, C. & Petry, J. Spatial and temporal bacterial quality of a lowland agricultural stream in northeast Scotland. Sci. Total Environ. 314–316, 289–302 (2003).

    Article  PubMed  CAS  Google Scholar 

  72. Moore, J. A. Surface transport of microorganisms by water. Biotechnology 15, 41–55 (1991).

    CAS  PubMed  Google Scholar 

  73. Gibbs, S. G., Green, C. F., Tarwater, P. M. & Scarpino, P. V. Airborne antibiotic resistant and nonresistant bacteria and fungi recovered from two swine herd confined animal feeding operations. J. Occup. Environ. Hyg. 1, 699–706 (2004).

    Article  PubMed  Google Scholar 

  74. Chapin, A., Rule, A., Gibson, K., Buckley, T. & Schwab, K. Airborne multidrug-resistant bacteria isolated from a concentrated swine feeding operation. Environ. Health Perspect. 113, 137–142 (2005).

    Article  PubMed  Google Scholar 

  75. Elliott, P., Wakefield, J., Best, N. & Briggs, D. Spatial epidemiology: Methods and Applications. (Oxford University Press, Oxford, 2000).

    Google Scholar 

  76. Lawson, A. B. Statistical Methods in Spatial Epidemiology. (John Wiley, Chichester 2001).

    Google Scholar 

  77. Hendrickx, G. et al. The spatial pattern of trypanosomosis prevalence predicted with the aid of satellite imagery. Parasitology 120, 121–134 (2000).

    Article  PubMed  Google Scholar 

  78. Kitron, U. & Kazmierczak, J. J. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am. J. Epidemiol. 145, 558–566 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Chadee, D. D. & Kitron, U. Spatial and temporal patterns of imported malaria cases and local transmission in Trinidad. Am. J. Trop. Med. Hyg. 61, 513–517 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Kleinschmidt, I., Sharp, B., Mueller, I. & Vounatsou, P. Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am. J. Epidemiol. 155, 257–264 (2002).

    Article  PubMed  Google Scholar 

  81. Ali, M., Emch, M., Yunus, M. & Sack, R. B. Are the environmental niches of Vibrio cholerae O139 different from those of Vibrio cholerae O1 El Tor? Int. J. Infect. Dis. 5, 214–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Ali, M., Emch, M., Donnay, J. P., Yunus, M. & Sack, R. B. The spatial epidemiology of cholera in an endemic area of Bangladesh. Soc. Sci. Med. 55, 1015–1024 (2002).

    Article  PubMed  Google Scholar 

  83. Myaux, J., Ali, M., Felsenstein, A., Chakraborty, J. & De Francisco, A. Spatial distribution of watery diarrhoea in children: identification of 'risk areas' in a rural community in Bangladesh. Health Place. 3, 181–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Cifuentes, E., Mazari-Hiriart, M., Carneiro, F., Bianchi, F. & Gonzalez, D. The risk of enteric diseases in young children and environmental indicators in sentinel areas of Mexico City. Int. J. Environ. Health Res. 12, 53–62 (2002).

    Article  PubMed  Google Scholar 

  85. Njemanze, P. C., Anozie, J., Ihenacho, J. O., Russell, M. J. & Uwaeziozi, A. B. Application of risk analysis and geographic information system technologies to the prevention of diarrheal diseases in Nigeria. Am. J. Trop. Med. Hyg. 61, 356–360 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geograph. 46, 234–240 (1970).

    Article  Google Scholar 

  87. Singer, R. S., Case, J. T., Carpenter, T. E., Walker, R. L. & Hirsh, D. C. Assessment of spatial and temporal clustering of ampicillin- and tetracycline-resistant strains of Pasteurella multocida and P. haemolytica isolated from cattle in California. J. Am. Vet. Med. Assoc. 212, 1001–1005 (1998).

    CAS  PubMed  Google Scholar 

  88. Metlay, J. P., Branas, C. C. & Fishman, N. O. Hospital-reported pneumococcal susceptibility to penicillin. Emerg. Infect. Dis. 10, 54–59 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ward, M. P. & Carpenter, T. E. Techniques for analysis of disease clustering in space and in time in veterinary epidemiology. Prev. Vet. Med. 45, 257–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Singer, R. S., Reid-Smith, R. & Sischo, W. M. Stakeholder position paper: Epidemiological perspectives on antibiotic use in animals. Prev. Vet. Med. 73, 153–161 (2006).

    Article  PubMed  Google Scholar 

  91. Diez-Roux, A. V. Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am. J. Public Health 88, 216–222 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dohoo, I. R., Martin, S. W. & Strynh, H. in Veterinary Epidemiologic Research. (Atlantic Veterinary College Inc., 2003).

    Google Scholar 

  93. Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nature Rev. Microbiol. 3, 722–732 (2005).

    Article  CAS  Google Scholar 

  94. Gogarten, J. P. & Townsend, J. P. Horizontal gene transfer, genome innovation and evolution. Nature Rev. Microbiol. 3, 679–687 (2005).

    Article  CAS  Google Scholar 

  95. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev. Microbiol. 3, 711–721 (2005).

    Article  CAS  Google Scholar 

  96. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Riesenfeld, C. S., Goodman, R. M. & Handelsman, J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 6, 981–989 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Franklin, R. B. & Mills, A. L. Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol. Ecol. 44, 335–346 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Yu, Z., Michel, F. C. Jr, Hansen, G., Wittum, T. & Morrison, M. Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl. Environ. Microbiol. 71, 6926–6933 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Smith, M. S. et al. Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Appl. Environ. Microbiol. 70, 7372–7377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hayes, J. R., Wagner, D. D., English, L. L., Carr, L. E. & Joseph, S. W. Distribution of streptogramin resistance determinants among Enterococcus faecium from a poultry production environment of the USA. J. Antimicrob. Chemother. 55, 123–126 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tim Boyer, Janet Anderson and the reviewers for many helpful suggestions in improving the manuscript. We also thank Jeffrey Bender for supplying the Minnesota STEC dataset that was used in this manuscript. R.S.S. was partially supported by a United States Department of Agriculture National Research Initiative Competitive Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall S. Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Genome Project

Enterococcus faecium

Escherichia coli

FURTHER INFORMATION

Randall S. Singer's homepage

Michael P. Ward's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, R., Ward, M. & Maldonado, G. Can landscape ecology untangle the complexity of antibiotic resistance?. Nat Rev Microbiol 4, 943–952 (2006). https://doi.org/10.1038/nrmicro1553

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing