Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How retroviruses select their genomes

Key Points

  • All retroviruses — except spumaretroviruses — efficiently select and package two copies of their full-length RNA genomes as they assemble in infected cells.

  • The nucleocapsid (NC) domains of the assembling retroviral Gag polyproteins are primarily responsible for genome selection.

  • Upstream regions of the viral genomes, primarily located within 5′-untranslated regions (5′-UTRs), are essential for genome packaging and can independently direct the packaging of heterologous RNAs. In some cases, relatively small fragments of the UTRs can direct genome packaging, although not as efficiently as larger fragments or intact genomes.

  • Regions of retroviral genomes that promote genome packaging often overlap with segments that promote RNA dimerization, and there is mounting evidence that dimerization and packaging events are intimately coupled.

  • Except for the spumaretroviruses, all retroviral NC proteins contain one or two copies of a conserved zinc-knuckle motif that is crucial for packaging. The zinc knuckles generally contain a hydrophobic surface cleft, and in structurally characterized NC–RNA complexes the cleft serves as a binding site for exposed guanosine bases.

  • Structural studies of large portions of some retroviral UTRs, primarily using chemical and enzymatic protection experiments and phylogenetic analyses, indicate that RNA structural changes occur upon dimerization. It has been suggested that such changes may regulate translation and/or packaging.

  • High-resolution structural studies confirmed that fragments of the Moloney murine leukemia virus 5′-UTR undergo dimerization-dependent structural changes that regulate NC binding, consistent with the above proposal. It is currently unclear if other retroviruses, such as HIV, use similar mechanisms to selectively package a diploid genome.

  • Although good progress has been made over the past two decades to identify protein and RNA elements important for genome packaging, additional studies, possibly using combinations of high- and low-resolution technologies, are needed to determine how multiple elements interact to cooperatively promote genome packaging.

Abstract

As retroviruses assemble in infected cells, two copies of their full-length, unspliced RNA genomes are selected for packaging from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Understanding the molecular details of genome packaging is important for the development of new antiviral strategies and to enhance the efficacy of retroviral vectors used in human gene therapy. Recent studies of viral RNA structure in vitro and in vivo and high-resolution studies of RNA fragments and protein–RNA complexes are helping to unravel the mechanism of genome packaging and providing the first glimpses of the initial stages of retrovirus assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General features of the orthoretroviral replication cycle.
Figure 2: Structure of the HIV-1 nucleocapsid protein.
Figure 3: RNA secondary structures for Moloney murine leukaemia virus genome packaging.
Figure 4: Structure of the Moloney murine leukaemia virus nucleocapsid protein bound to the core-encapsidation RNA element.
Figure 5: Proposed model for specific packaging of a dimeric genome.
Figure 6: Model for dimeric genome recognition and the early stage of retrovirus assembly.
Figure 7: RNA elements and protein–RNA complexes associated with HIV-1 genome packaging.

Similar content being viewed by others

References

  1. Coffin, J. M., Hughes, S. H. & Varmus, H. E. Retroviruses (Cold Spring Harbor Laboratory Press, Plainview, 1997). A general reference on the structure, function, epidemiology and history of retroviruses.

    Google Scholar 

  2. Nelson, P. N. et al. Demystified. Human endogenous retroviruses. J. Clin. Pathol. Mol. Pathol. 56, 11–18 (2002).

    Article  Google Scholar 

  3. Bender, W. et al. High-molecular-weight RNAs of AKR, NZB and wild mouse viruses and avian reticuloendotheliosis virus all have similar dimer structures. J. Virol. 25, 888–896 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Murti, K. G., Bondurant, M. & Tereba, A. Secondary structural features in the 70S RNAs of Moloney murine leukemia and Rous sarcoma viruses as observed by electron microscopy. J. Virol. 37, 411–419 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Fu, W. & Rein, A. Maturation of dimeric viral RNA of Moloney murine leukemia virus. J. Virol. 67, 5443–5449 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Muriaux, D., Mirro, J., Harvin, D. & Rein, A. RNA is a structural element in retrovirus particles. Proc. Natl Acad. Sci. USA 98, 5246–5251 (2001). In addition to functioning as the genetic material for reverse transcription, the viral RNA has a structural role in mature retroviruses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu, W. S. & Temin, H. M. Retroviral recombination and reverse transcription. Science 250, 1227–1233 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Berkowitz, R., Fisher, J. & Goff, S. P. RNA packaging. Curr. Top. Microbiol. Immun. 214, 177–218 (1996).

    CAS  Google Scholar 

  9. Rein, A. Retroviral RNA packaging: a review. Arch. Virol. 9, 513–522 (1994).

    CAS  Google Scholar 

  10. Jewell, N. A. & Mansky, L. M. In the beginning: genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly. J. Gen. Virol. 81, 1889–1899 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Paillart, J. -C., Shehu-Xhilaga, M., Marquet, R. & Mak, J. Dimerization of retroviral RNA genomes: an inseparable pair. Nature Rev. Microbiol. 2, 461–472 (2004).

    Article  CAS  Google Scholar 

  12. Russell, R. S., Liang, C. & Wainberg, M. A. Is HIV-1 RNA dimerization a prerequisite for packaging? Yes, no, probably? Retrovirology 1, 23 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Greatorex, J. The retroviral RNA dimer linkage: different structures may reflect different roles. Retrovirology 1, 22 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berkowitz, R. D., Ohagen, A., Hoglund, S. & Goff, S. P. Retroviral nucleocapsid domains mediate the specific recognition of genomic viral RNAs by chimeric Gag polyproteins during RNA packaging in vivo. J. Virol. 69, 6445–6456 (1995). The chimeric HIV-1 Gag polyprotein containing the MoMuLV NC domain can specifically package the MoMuLV genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, Y. & Barklis, E. Nucleocapsid protein effects on the specificity of retrovirus RNA encapsidation. J. Virol. 69, 5716–5722 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dupraz, P. & Spahr, P. -F. Specificity of Rous sarcoma virus nucleocapsid protein in genomic RNA packaging. J. Virol. 66, 4662–4670 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rizvi, T. A. & Panganiban, A. T. Simian immunodeficiency virus RNA is efficiently encapsidate by human immunodeficiency virus type 1 particles. J. Virol. 67, 2681–2688 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yin, P. D. & Hu, W. -S. RNAs from genetically distinct retroviruses can copackage and exchange genetic information in vivo. J. Virol. 71, 6237–6242 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Certo, J. L., Shook, B. F., Yin, P. D., Snider, J. T. & Hu, W. -S. Nonreciprocal pseudotyping: murine leukemia virus proteins cannot efficiently package spleen necrosis virus-based vector RNA. J. Virol. 72, 5408–5413 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaye, J. F. & Lever, A. M. Nonreciprocal packaging of human immunodeficiency virus type 1 and type 2 RNA: a possible role for the p2 domain of gag in RNA encapsidation. J. Virol. 72, 5877–5885 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Poon, D. T. K., Li, g. & Aldovini, A. Nucleocapsid and matrix protein contributions to selective Human Immunodeficiency Virus Type 1 genomic RNA packaging. J. Virol. 72, 1983–1993 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, H., Norris, K. M. & Mansky, L. M. Involvement of the matrix and nucleocapsid domains of the bovine leukemia virus Gag polyprotein precursor in viral RNA packaging. J. Virol. 77, 9431–9438 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, E. -G., Yeo, A., Kraemer, B., Wickens, M. & Linial, M. L. The Gag domains required for avian retroviral RNA encapsidation determined by using two independent assays. J. Virol. 73, 6282–6292 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Henderson, L. E., Copeland, T. D., Sowder, R. C., Smythers, G. W. & Oroslzan, S. Primary structure of the low molecular weight nucleic acid-binding proteins of murine leukemia viruses. J. Biol. Chem. 256, 8400–8406 (1981).

    CAS  PubMed  Google Scholar 

  25. Green, L. M. & Berg, J. M. A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: spectroscopic studies and a proposed three-dimensional structure. Proc. Natl Acad. Sci. USA 86, 4047–4051 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Summers, M. F. et al. Nucleocapsid zinc fingers detected in retroviruses: EXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci. 1, 563–574 (1992). Direct detection of zinc and its coordination environment in intact retroviruses provided the first direct evidence that retroviral NC proteins contain zinc knuckles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Méric, C., Gouilloud, E. & Spahr, P. -F. Mutations in Rous sarcoma virus nucleocapsid protein p12 (NC): deletions of Cys-His Boxes. J. Virol. 62, 3328–3333 (1988).

    PubMed  PubMed Central  Google Scholar 

  28. Méric, C. & Goff, S. P. Characterization of Moloney murine leukemia virus mutants with single-amino-acid substitutions in the Cys-His box of the nucleocapsid protein. J. Virol. 63, 1558–1568 (1989).

    PubMed  PubMed Central  Google Scholar 

  29. Gorelick, R. J., Henderson, L. E., Hanser, J. P. & Rein, A. Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc. Natl Acad. Sci. USA 85, 8420–8424 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rice, W. G. et al. Inhibition of HIV-1 infectivity by zinc-ejecting aromatic C-nitroso compounds. Nature 361, 473–475 (1993). Compounds that eject zinc from the NC zinc knuckles have potent antiviral activity.

    Article  CAS  PubMed  Google Scholar 

  31. Morellet, N. et al. Determination of the structure of the nucleocapsid protein NCp7 from the human immunodeficiency virus type 1 by 1H NMR. EMBO J. 11, 3059–3065 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Summers, M. F., South, T. L., Kim, B. & Hare, D. R. High-resolution structure of an HIV zinc fingerlike domain via a new NMR-based distance geometry approach. Biochemistry 29, 329–340 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Newman, J. L., Butcher, E. W., Patel, D. T., Makhaylenko, Y. & Summers, M. F. Flexibility in the P2 domain of the HIV-1 Gag polyprotein. Protein Sci. 13, 2101–2107 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee, B. M., De Guzman, R. N., Turner, B. G., Tjandra, N. & Summers, M. F. Dynamical behavior of the HIV-1 nucleocapsid protein. J. Mol. Biol. 279, 633–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Banks, J. D. & Linial, M. L. Secondary structure analysis of a minimal avian leukosis-sarcoma virus packaging signal. J. Virol. 74, 456–464 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mann, R. & Baltimore, D. Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNA. J. Virol. 54, 401–407 (1985). The MoMuLV Ψ-site can direct packaging when relocated near the 3′ end of the genome, indicating that the residues function as an independent packaging domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Watanabe, S. & Temin, H. M. Encapsidation sequences for spleen necrosis virus, an avian retrovirus, are between the 5′ long terminal repeat and the start of the gag gene. Proc. Natl Acad. Sci. USA 79, 5986–5990 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lever, A. M. L., Göttlinger, H. G., Haseltine, W. A. & Sodroski, J. G. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J. Virol. 63, 4085–4087 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mansky, L. M., Krueger, A. E. & Temin, H. M. The bovine leukemia virus encapsidation signal is discontinuous and extends into the 5′ end of the gag gene. J. Virol. 69, 3282–3289 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Browning, M. T., Mustafa, F., Schmidt, R. D., Lew, K. A. & Rizvi, T. A. Delineation of sequences important for efficient packaging of feline immunodeficiency virus RNA. J. Gen. Virol. 84, 621–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Kaye, J. F. & Lever, A. M. Human innumodeficiency virus type-1 and 2 differ in the predominant mechanism used for selection of genomic RNA for encapsidation. J. Virol. 73, 3023–3031 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mustafa, F., Lew, K. A., Schmidt, R. D., Browning, M. T. & Rizvi, T. A. Mutational analysis of the predicted secondary RNA structure of the Mason–Pfizer monkey virus packaging signal. Virus Res. 99, 35–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Hayashi, T., Ueno, Y. & Okamoto, T. Elucidation of a conserved RNA stem-loop structure in the packaging signal of human immunodeficiency virus type 1. FEBS Lett. 327, 213–218 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Mougel, M. & Barklis, E. A role for two hairpin structures as a core RNA encapsidation signal in murine leukemia virus virions. J. Virol. 71, 8061–8065 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Adam, M. A. & Miller, A. D. Identification of a signal in a murine retrovirus that is sufficient for packaging of nonretroviral RNA into virions. J. Virol. 62, 3802–3806 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Aschoff, J. M., Foster, D. & Coffin, J. M. Point mutations in the avian sarcoma/leukosis virus 3′ untranslated region result in a packaging defect. J. Virol. 73, 7421–7429 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu, S. S., Kim, J. -M. & Kim, S. The 17 nucleotides downstream from the env gene stop codon are important for Murine Leukemia Virus packaging. J. Virol. 74, 8775–8780 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Peters, G. & Hu, J. Reverse transcriptase as the major determinant for selective packaging of tRNAs into avian sarcoma virus particles. J. Virol. 36, 692–700 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Katz, R. A., Terry, R. W. & Skalka, A. M. A conserved cis-acting sequence in the 5′ leader of avian sarcoma virus RNA is required for packaging. J. Virol. 59, 163–167 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Greatorex, J. & Lever, A. Retroviral RNA dimer linkage. J. Gen. Virol. 79, 2877–2882 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Paillart, J. -C., Marquet, R., Skripkin, E., Ehresmann, C. & Ehresmann, B. Dimerization of retroviral genomic RNAs: structural and functional implications. Biochimie 78, 639–653 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Berkhout, B. Structure and function of the human immunodeficiency virus leader RNA. Prog. Nucl. Acid Res. Mol. Biol. 54, 1–34 (1996).

    Article  CAS  Google Scholar 

  53. Laughrea, M. et al. Mutations in the kissing-loop hairpin of human immunodeficiency virus type 1 reduce viral infectivity as well as genomic RNA packaging and dimerization. J. Virol. 71, 3397–3406 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. McBride, M. S. & Panganiban, A. T. Position dependence of functional hairpins important for human immunodeficiency virus type 1 RNA encapsidation in vivo. J. Virol. 71, 2050–2058 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Levin, J. G., Grimley, P. M., Ramseur, J. M. & Berezesky, I. K. Deficiency of 60 to 70S RNA in murine leukemia virus particles assembled in cells treated with actinomycin D. J. Virol. 14, 152–161 (1974). MoMuLV particles contain two genomic RNA molecules, even when produced under conditions that inhibit mRNA production.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hibbert, C. S., Mirro, J. & Rein, A. mRNA molecules containing MLV packaging signals are encapsidated as dimers. J. Virol. 78, 10927–10938 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Housset, V., De Rocquigny, H., Roques, B. P. & Darlix, J. -L. Basic amino acids flanking the zinc finger of Moloney murine leukemia virus nucleocapsid protein NCp10 are critical for virus infectivity. J. Virol. 67, 2537–2545 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sakuragi, J. -I., Shioda, T. & Panganiban, A. T. Duplication of the primary encapsidation and dimer linkage region of human immunodeficiency virus type 1 RNA results in the appearance of monomeric RNA in virions. J. Virol. 75, 2557–2565 (2001). Mutant HIV-1 RNAs that contains two copies of the 5′-UTR can be efficiently packaged as monomers, indicating that the native genome is specifically recognized for packaging as a dimer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sakuragi, J. -I., Iwamoto, A. & Shioda, T. Dissociation of genome dimerization from packaging functions and virion maturation of Human Immunodeficiency Virus Type 1. J. Virol. 76, 959–967 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mann, R., Mulligan, R. C. & Baltimore, D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33, 153–159 (1983).

    Article  CAS  PubMed  Google Scholar 

  61. Schwartzberg, P., Colicelli, J., Gordon, M. L. & Goff, S. Mutations in the gag gene of Moloney murine leukemia virus: effects on production of virions and reverse transcriptase. J. Virol. 49, 918–924 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Murphy, J. E. & Goff, S. P. Construction and analysis of deletion mutations in the U5 region of Moloney murine leukemia virus: Effects on RNA packaging and reverse transcription. J. Virol. 63, 319–327 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bender, M. A., Palmer, T. D., Gelinas, R. E. & Miller, A. D. Evidence that the packaging signal of Moloney murine leukemia virus extends into the gag region. J. Virol. 61, 1639–1646 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tounekti, N. et al. Effect of dimerization on the conformation of the encapsidation Ψ domain of Moloney murine leukemia virus RNA. J. Mol. Biol. 223, 205–220 (1992). Chemical probing of the MoMuLV 5′-UTR provides evidence for dimerization-dependent structural changes, which could have a regulatory function.

    Article  CAS  PubMed  Google Scholar 

  65. Mougel, M. et al. Conformational analysis of the 5′ leader and the gag initiation site of Mo-MuLV RNA and allosteric transitions induced by dimerization. Nucleic Acids Res. 21, 4677–4684 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prats, A. -C. et al. cis elements and trans-acting factors involved in dimer formation of murine leukemia virus RNA. J. Virol. 64, 774–783 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Girard, P. -M., Bonnet-Mathoniere, B., Mauriaux, D. & Paoletti, J. A short autocomplementary sequence in the 5′ leader region is responsible for dimerization of MoMuLV genomic RNA. Biochemistry 34, 9785–9794 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. De Tapia, M., Metzler, V., Mougel, M., Ehresmann, B. & Ehresmann, C. Dimerization of MoMuLV genomic RNA: redefinition of the role of the palindromic stem-loop H1 (278–303) and new roles for stem-loops H2 (310–352) and H3 (355–374). Biochemistry 37, 6077–6085 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Ly, H. & Parslow, T. G. Bipartite signal for genomic RNA dimerization in the Moloney Murine Leukemia Virus. J. Virol. 76, 3135–3144 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oroudjev, E. M., Kang, P. C. E. & Kohlstaedt, L. A. An additional dimer linkage structure in Moloney Murine Leukemia Virus RNA. J. Mol. Biol. 291, 603–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Rein, A. Take two. Nature Struct. Mol. Biol. 11, 1034–1035 (2004).

    Article  CAS  Google Scholar 

  72. Fisher, J. & Goff, S. P. Mutational analysis of stem-loops in the RNA packaging signal of the moloney murine leukemia virus. Virology 244, 133–145 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Mougel, M., Zhang, Y. & Barklis, E. cis-active structural motifs involved in specific encapsidation of Moloney murine leukemia virus RNA. J. Virol. 70, 5043–5050 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Beasley, B. E. & Hu, W. S. cis-acting elements imporant for retroviral RNA packaging specificity. J. Virol. 76, 4950–4960 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Evans, M. J., Bacharach, E. & Goff, S. P. RNA sequences in the Moloney murine leukemia virus genome bound by the Gag precursor protein in the yeast three-hybrid system. J. Virol. 78, 7677–7684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. D'Souza, V. et al. Identification of a high-affinity nucleocapsid protein binding site within the Moloney Murine Leukemia Virus Ψ-RNA packaging signal. Implications for genome recognition. J. Mol. Biol. 314, 217–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, C. -H. & Tinoco Jr., I. A retroviral RNA kissing complex containing only two G-C base pairs. Proc. Natl Acad. Sci. USA 97, 9396–9401 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Oritz-Conde, B. A. & Hughes, S. H. Studies of the genomic RNA of leukosis viruses: implications for RNA dimerization. J. Virol. 73, 7165–7174 (1999).

    Google Scholar 

  79. Tchenio, T. & Heidmann, T. The dimerization/packaging sequence is dispensable for both the formation of high-molecular-weight RNA complexes within retroviral particles and the synthesis of provirus of normal structure. J. Virol. 69, 1079–1084 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Damgaard, C. K., Andersen, E. S., Knudsen, B., Gorodkin, J. & Kjems, J. RNA interactions in the 5′ region of the HIV-1 genome. J. Mol. Biol. 336, 369–379 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. D'Souza, V. & Summers, M. F. Structural basis for packaging the dimeric genome of Moloney Murine Leukaemia Virus. Nature 431, 586–590 (2004). NMR studies reveal that dimerization-dependent structural changes in the MoMuLV 5′-UTR can regulate high-affinity NC binding, indicating a mechanism for the selective packaging of a diploid genome.

    Article  CAS  PubMed  Google Scholar 

  82. Dey, A., York, D., Smalls-Mantey, A. & Summers, M. F. Position and sequence dependent binding of RNA to the nucleocapsid protein of Moloney Murine Leukemia Virus. Biochemistry (in the press).

  83. Darlix, J. -L., Lapadat-Tapolsky, M., de Rocquigny, H. & Roques, B. P. First glimpses at structure–function relationships of the nucleocapsid protein of retroviruses. J. Mol. Biol. 254, 523–537 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Aldovini, A. & Young, R. A. Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J. Virol. 64, 1920–1926 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Clavel, F. & Orenstein, J. M. A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology. J. Virol. 64, 5230–5234 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Poznansky, M., Lever, A. M. L., Bergeron, L., Haseltine, W. & Sodroski, J. Gene transfer into human lymphocytes by a defective human immunodeficiency virus type 1 vector. J. Virol. 65, 532–536 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. McBride, M. S. & Panganiban, A. T. The human immunodeficiency virus type 1 encapsidation site is a multipartite RNA element composed of functional hairpin structures. J. Virol. 70, 2963–2973 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Harrison, G. P., Miele, G., Hunter, E. & Lever, A. M. L. Functional analysis of the core human immunodeficiency virus type 1 packaging signal in a permissive cell line. J. Virol. 72, 5886–5896 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim, H. -J., Lee, K. & O'Rear, J. J. A short sequence upstream of the 5′ major splice site is important for encapsidation of HIV-1 genomic RNA. Virology 198, 336–340 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Luban, J. & Goff, S. P. Mutational analysis of cis-acting packaging signals in human immunodeficiency virus type 1 RNA. J. Virol. 68, 3784–3793 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Buchschacher, J., G. L. & Panganiban, A. T. Human immunodeficiency virus vectors for inducible expresson of foreign genes. J. Virol. 66, 2731–2739 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Parolin, C., Dorfman, t., Palu, G., Gottlinger, H. G. & Sodroski, J. Analysis in human immunodeficiency virus type 1 vectors of cis-acting sequences that affect gene transfer into human lymphocytes. J. Virol. 68, 3888–3895 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Clever, J. L., Miranda, J., D. & Parslow, T. G. RNA structure and packaging signals in the 5′ leader region of the human immunodeficiency virus type 1 genome. J. Virol. 76, 12381–12387 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Russell, R. S., Hu, J., Laughrea, M., Wainberg, M. A. & Liang, C. Deficient dimerization of human immunodeficiency virus type 1 RNA caused by mutations of the U5 RNA sequences. Virology 303, 152–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Helga-Maria, C., Hammarskjold, M. -L. & Rekosh, D. An intact TAR element and cytoplasmic localization are necessary for efficient packaging of human immunodeficiency virus type-1 genomic RNA. J. Virol. 73, 4127–4135 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hayashi, T., Shioda, T., Iwakura, Y. & Shibuta, H. RNA packaging signal of human immunodeficiency virus type 1. Virology 188, 590–599 (1992).

    Article  CAS  PubMed  Google Scholar 

  97. Berkowitz, R. D., Hammarskjold, M. -L., Helga-Maria, C., Rekosh, D. & Goff, S. P. 5′ regions of HIV-1 RNAs are not sufficient for encapsidation: implications for the HIV-1 packaging signal. Virology 212, 718–723 (1995). Unlike results obtained for MoMuLV, relatively large fragments of the HIV-1 5′-UTR are not sufficient to independently direct RNA packaging.

    Article  CAS  PubMed  Google Scholar 

  98. McBride, M. S., Schwartz, M. D. & Panganiban, A. T. Efficient encapsidation of human immunodeficiency virus type 1 vectors and further characterization of cis elements required for encapsidation. J. Virol. 71, 4544–4554 (1997). The intact HIV-1 5′-UTR and residues of the gag open reading frame are capable of directing RNA packaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Baudin, F. et al. Functional sites in the 5′ region of human immunodeficiency virus type 1 RNA form defined structural domains. J. Mol. Biol. 229, 382–397 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Skripkin, E., Paillart, J. C. & Marquet, R., Ehresmann, B., Ehresmann, C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc. Natl Acad. Sci. USA 91, 4945–4949 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Clever, J., Sassetti, C. & Parslow, T. G. RNA secondary structure and binding sites for gag gene products in the 5′ packaging signal of Human Immunodeficiency Virus Type 1. J. Virol. 69, 2101–2109 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Clever, J. L. & Parslow, T. G. Mutant Human Immunodeficiency Virus type 1 genomes with defects in RNA dimerization or encapsidation. J. Virol. 71, 3407–3414 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sakaguchi, K. et al. Identification of a binding site for the human immunodeficiency virus type 1 nucleocapsid protein. Proc. Natl Acad. Sci. USA 90, 5219–5223 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dannull, J., Surovoy, A., Jung, G. & Moelling, K. Specific binding of HIV-1 nucleocapsid protein to Ψ RNA in vitro requires N-terminal zinc finger and flanking basic amino acid residues. EMBO J. 13, 1525–1533 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Berkowitz, R. D. & Goff, S. P. Analysis of binding elements in the human immunodeficiency virus type 1 genomic RNA and nucleocapsid protein. Virology 202, 233–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. De Guzman, R. N. et al. Structure of the HIV-1 nucleocapsid protein bound to the SL3 Ψ-RNA recognition element. Science 279, 384–388 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Amarasinghe, G. K., De Guzman, R. N., Turner, R. B. & Summers, M. F. NMR structure of stem loop SL2 of the HIV-1 Ψ-RNA packaging signal reveals a novel A-U-A base triple platform. J. Mol. Biol. 299, 145–156 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Paillart, J. -C., Skripkin, E., Ehresmann, B., Ehresmann, C. & Marquet, R. A loop–loop “kissing” complex is the essential part of the dimer linkage of genomic HIV-1 RNA. Proc. Natl Acad. Sci. USA 93, 5572–5577 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Clever, J. L., Wong, M. L. & Parslow, T. G. Requirements for kissing-loop-mediated dimerization of human immunodeficiency virus RNA. J. Virol. 70, 5902–5908 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Laughrea, M. & Jette, L. A 19-nucleotide sequence upstream of the 5′ major splice donor is part of the dimerization domain of human immunodeficiency virus 1 genomic RNA. Biochemistry 33, 13464–13474 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Takahashi, K. -I. et al. NMR analysis of intra- and inter-molecular stems in dimerization initiation site. J. Biochem. 127, 681–686 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Lawrence, D. C., Stover, C. C., Noznitsky, J., Wu, Z. -R. & Summers, M. F. Structure of the intact stem and bulge of HIV-1 Ψ-RNA stem loop SL1. J. Mol. Biol. 326, 529–542 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Darlix, J. -L., Gabus, C., Nugeyre, M. -T., Clavel, F. & Barre-Sinoussi, F. cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. J. Mol. Biol. 216, 689–699 (1990). HIV-1 NC has chaperone activity that can catalyse dimerization of the viral RNA.

    Article  CAS  PubMed  Google Scholar 

  114. Feng, Y. -X. et al. HIV-1 nucleocapsid protein induces “maturation” of dimeric retroviral RNA in vitro. Proc. Natl Acad. Sci. USA 93, 7577–7581 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mihailescu, M. -R. & Marino, J. P. A proton-coupled dynamic conformational switch in the HIV-1 dimerization initiation site kissing complex. Proc. Natl Acad. Sci. USA 101, 1189–1194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Amarasinghe, G. K. et al. NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the Ψ-RNA packaging signal. J. Mol. Biol. 301, 491–511 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. South, T. L. & Summers, M. F. Zinc- and sequence-dependent binding to nucleic acids by the N-terminal zinc finger of the HIV-1 nucleocapsid protein: NMR structure of the complex with the Ψ-site analog, dACGCC. Protein Sci. 2, 3–19 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Clever, J. L., Taplitz, R. A., Lochrie, M. A., Polisky, B. & Parslow, T. G. A heterologous, high-affinity RNA ligand for human immunodeficiency virus Gag protein has RNA packaging activity. J. Virol. 74, 541–546 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Russell, R. S. et al. Sequences downstream of the 5′ splice donor site are required for both packaging and dimerization of human immunodeficiency virus type-1 RNA. J. Virol. 77, 84–96 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Amarasinghe, G. K. et al. Stem-loop SL4 of the HIV-1 Ψ-RNA packaging signal exhibits weak affinity for the nucleocapsid protein. Structural studies and implications for genome recognition. J. Mol. Biol. 314, 961–969 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Yu, E. & Fabris, D. Direct probing of RNA structures and RNA–protein interactions in the HIV-1 packaging signal by chemical modification and electrospray ionization–Fourier transform mass spectrometry. J. Mol. Biol. 330, 211–223 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Shubsda, M. F., Paoletti, A. C., Hudson, B. S. & Borer, P. N. Affinities of packaging domain loops in HIV-1 RNA for the nucleocapsid protein. Biochemistry 41, 5276–5282 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Hagan, N. & Fabris, D. Direct mass spectrometric determination of the stoichiometry and binding affinity of the complexes between nucleocapsid protein and RNA stem-loop hairpins of the HIV-1 Ψ-recognition element. Biochemistry 42, 10736–10745 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Berkhout, B. & Van Wamel, J. L. B. The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. RNA 6, 282–295 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huthoff, H. & Berkhout, B. Two alternating structures of the HIV-1 leader RNA. RNA 7, 143–157 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Berkhout, B. et al. In vitro evidence that the untranslated leader of the HIV-1 genome is an RNA checkpoint that regulates multiple functions through conformational changes. J. Biol. Chem. 277, 19967–19975 (2002).

    Article  CAS  PubMed  Google Scholar 

  127. Ooms, M., Huthoff, H., Russell, R., Liang, C. & Berkhout, B. A riboswitch regulates RNA dimerization and packaging in human immunodeficiency virus type 1 virions. J. Virol. 78, 10814–10819 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Paillart, J. C. et al. First snapshots of the HIV-1 RNA structure in infected cells and in virions. J. Biol. Chem. 279, 48397–48403 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Paillart, J. C., Skripkin, E., Ehresmann, B., Ehresmann, C. & Marquet, R. In vitro evidence for a long range pseudoknot in the 5′-untranslated and matrix coding regions of the HIV-1 genomic RNA. J. Biol. Chem. 277, 5995–6004 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Abbink, T. E. M. & Berkhout, B. A novel long distance base-pairing interaction in Human Immunodeficiency Virus Type 1 RNA occludes the Gag start codon. J. Biol. Chem. 278, 11601–11611 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. McCann, E. M. & Lever, A. M. Location of cis-acting signals important for RNA encapsidation in the leader sequence of human immunodeficiency virus type 2. J. Virol. 71, 4544–4554 (1997).

    Google Scholar 

  132. Griffin, S. D. C., Allen, J. F. & Lever, A. M. The major human immunodeficiency virus type 2 (HIV-2) packaging signal is present on all HIV-2 RNA species: cotranslational RNA encapsidation and limitation of Gag protein confer specificity. J. Virol. 75, 12058–12069 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Arya, S. K., M., Z. & Kundra, P. Human immunodeficiency virus type 2 lentivirus for gene transfer: expression and potential for helper virus-free packaging. Hum. Gene Ther. 9, 1371–1380 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Poeschla, E. et al. Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of non-dividing cells by HIV-2-based lentivirus vectors. J. Virol. 72, 6527–6536 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Dirac, A. M. G., Huthoff, H., Kjems, J. & Berkhout, B. The dimer initiation site hairpin mediates dimerization of the human immunodeficiency virus, type 2 RNA genome. J. Biol. Chem. 276, 32345–32352 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Lanchy, J. -M. & Lodmell, J. S. Alternate usage of two dimerization initiation sites in HIV-2 RNA in vitro. J. Mol. Biol. 319, 637–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Jossinet, F., Lodmell, J. S., Ehressmann, C., Ehresmann, B. & Marquet, R. Identification of the in vitro HIV-2/SIV RNA dimerization site reveals striking differences with HIV-1. J. Biol. Chem. 276, 5598–5604 (2001).

    Article  CAS  PubMed  Google Scholar 

  138. Lanchy, J. -M., Rentz, C. A., Ivanovitch, J. D. & Lodmell, J. S. Elements located upstream and downstream of the major splice donor site influence the ability of HIV-2 leader RNA to dimerize in vitro. Biochemistry 42, 2634–2642 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Dirac, A. M. G., Huthoff, H., Kjems, J. & Berkhout, B. Regulated HIV-2 RNA dimerization by means of alternative RNA conformations. Nucleic Acids Res. 30, 2647–2655 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Damgaard, C. K., Dyhr-Mikkelsen, H. & Kjems, J. Mapping the RNA binding sites for human immunodeficiency virus type-1 Gag and NC proteins within the complete HIV-1 and HIV-2 untranslated leader regions. Nucleic Acids Res. 26, 3667–3676 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Banks, J. D., Yeo, A., Green, K., Cepeda, F. & Linial, M. L. A minimal avian retroviral packaging sequence has a complex structure. J. Virol. 72, 6190–6194 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Banks, J. D., Kealoha, B. O. & Linial, M. L. An MΨ containing heterologous RNA, but not env mRNA, is efficiently packaged into avian retroviral particles. J. Virol. 73, 8926–8933 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Doria-Rose, N. A. & Vogt, V. M. In vivo selection of Rous sarcoma virus mutants with randomized sequences in packaging signals. J. Virol. 72, 8073–8082 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lee, E. -G. & Linial, M. L. Yeast three-hybrid screening of Rous sarcoma virus mutants with randomly mutagenized minimal packaging signals reveals regions important for Gag interactions. J. Virol. 74, 9167–9174 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fosse, P. et al. A short autocomplementary sequence plays an essential role in avian sarcoma-leukosis virus RNA dimerization. Biochemistry 35, 16601–16609 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Lear, A. L., Haddrick, M. & Heaply, S. A study of the dimerization of the Rous sarcoma virus RNA in vitro and in vivo. Virology 212, 47–57 (1995).

    Article  CAS  PubMed  Google Scholar 

  147. Bieth, E., Gabus, C. & Darlix, J. -L. A study of the dimer formation of Rous sarcoma virus RNA and of its effect on viral protein synthesis in vitro. Nucleic Acids Res. 18, 119–127 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Parent, L. J. et al. RNA dimerization defect in a Rous sarcoma virus matrix mutant. J. Virol. 74, 164–172 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Garbitt, R. A., Albert, J. A., Kessler, M. D. & Parent, L. J. trans-acting inhibition of genomic RNA dimerization by Rous sarcoma virus matrix mutants. J. Virol. 75, 260–268 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kemler, I., Barraza, R. & Poeschla, E. Mapping of the encapsidation determinants of feline immunodeficiency virus. J. Virol. 76, 11889–11903 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mansky, L. M. & Gajary, L. C. The primary nucleotide sequence of the bovine leukemia virus RNA packaging signal can influence efficient RNA packaging and virus replication. J. Virol. 301, 272–280 (2002).

    Article  CAS  Google Scholar 

  152. Katoh, I., Kyushiki, H., Sakamoto, Y., Ikawa, Y. & Yoshinaka, Y. Bovine leukemia virus matrix-associated protein MA(p15): further processing and formation of a specific complex with the dimer of the 5′-terminal genomic RNA fragment. J. Virol. 65, 6845–6855 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Vile, R. G., Ali, M., Hunter, e. & McClure, M. O. Identification of a generalized packaging sequence for D-type retroviruses and generation of a D-type retroviral vector. Virology 189, 786–791 (1992).

    Article  CAS  PubMed  Google Scholar 

  154. Harrison, G. P., Hunter, E. & Lever, A. M. L. Secondary structure model of the Mason–Pfizer monkey virus 5′ leader sequence: identification of a structural motif common to a variety of retroviruses. J. Virol. 69, 2175–2186 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Schmidt, R. D., Mustafa, F., KLew, K. A., Browning, M. T. & Rizvi, T. A. Sequences both within the 5′ untranslated region and the gag gene are important for efficient encapsidation of Mason–Pfizer monkey virus RNA. Virology 309, 166–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Ma, Y. M. & Vogt, V. M. Nucleic acid binding-induced Gag dimerization in the assembly of Rous sarcoma virus particles in vitro. J. Virol. 78, 52–60 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yu, F. et al. Characterization of Rous sarcoma virus Gag particles assembled in vitro. J. Virol. 75, 2753–2764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Muriaux, D., Mirro, J., Nagashima, K., Harvin, D. & Rein, A. Murine leukemia virus nucleocapsid mutant particles lacking viral RNA encapsidate ribosomes. J. Virol. 76, 11405–11413 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Aronoff, R. & Linial, M. Specificity of retroviral RNA packaging. J. Virol. 65, 71–80 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Linial, M., Medeiros, E. & Hayward, W. S. An avian oncovirus mutant (SE 21Q1b) deficient in genomic RNA: biological and biochemical characterization. Cell 15, 1371–1381 (1978).

    Article  CAS  PubMed  Google Scholar 

  161. Dupont, S. et al. A novel nuclear export activity in HIV-1 matrix protein required for viral replication. Nature 402, 681–685 (1999).

    Article  CAS  PubMed  Google Scholar 

  162. Scheifele, L. Z., Garbitt, R. A., Rhoads, J. D. & Parent, L. J. Nuclear entry and CRM1-dependent nuclear export of the Rous sarcoma virus Gag polyprotein. Proc. Natl Acad. Sci. USA 99, 3944–3949 (2002). Mutations in RSV MA that inhibit nuclear export of Gag lead to accumulation of Gag and viral RNA in the nucleus and to the production of genome-deficient virus particles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Callahan, E. M. & Wills, J. W. Link between genome packaging and rate of budding for Rous Sarcoma Virus. Virology 77, 9388–9398 (2003).

    Article  CAS  Google Scholar 

  164. Nash, M. A., Meyer, M. K., Decker, G. L. & Arlinghaus, R. B. A subset of Pr65gag is nucleus associated in Murine Leukemia Virus-infected cells. J. Virol. 67, 1350–1356 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Basyuk, E. et al. Retroviral genomic RNAs are transported to the plasma membrane by endosomal vesicles. Dev. Cell 5, 161–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. D'Souza, V., Dey, A., Habib, D. & Summers, M. F. NMR structure of the 101 nucleotide core encapsidation signal of the Moloney Murine Leukemia Virus. J. Mol. Biol. 337, 427–442 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support from the NIH is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Summers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

avian leukosis virus

bovine leukaemia virus

feline immunodeficiency virus

HIV-1

HIV-2

Mason–Pfizer monkey virus

Moloney murine leukaemia virus

mouse mammary tumour virus

Rous sarcoma virus

CDC Infectious disease information

AIDS

FURTHER INFORMATION

Victoria D'Souza and Michael Summers' homepage

Glossary

GERM LINE

The cells that are in a direct mitotic line of descent from the zygote to its gametes, as distinct from somatic cells.

CONFORMER

One of many conformations that a protein or other molecule can adopt. For each molecule, the usual conformation that is adopted will be at energy minima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Souza, V., Summers, M. How retroviruses select their genomes. Nat Rev Microbiol 3, 643–655 (2005). https://doi.org/10.1038/nrmicro1210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1210

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing