Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypovirulence: Mycoviruses at the fungal–plant interface

Key Points

  • This review provides an overview of the mycoviruses that are associated with the attenuation of fungal pathogenesis that is known as hypovirulence.

  • The taxonomy and genome organization of hypoviruses are outlined. These viruses are in the taxonomic family Hypoviridae, which cause hypovirulence of the chestnut blight fungus Cryphonectria parasitica.

  • The development of hypovirus reverse genetics systems is described.

  • Hypovirus diversity has been exploited to identify symptom determinants and modulate fungal–plant pathogenic interactions.

  • Potentially, mycoviruses could be used to explore the origins, evolution and functions of RNA silencing in fungi. These viruses could also be used to probe the signal transduction pathways that underpin fungal pathogenesis.

  • Hypovirus-mediated modulation of the host transcriptome has been analysed using microarrays, which has confirmed hypovirus-mediated alterations of host functions including G-protein signalling, and has revealed a link between mitochondrial and viral hypovirulence.

  • Finally, the prospects for engineering hypoviruses to improve their suitability for biological control of fungal diseases of plants are discussed.

Abstract

Whereas most mycoviruses lead 'secret lives', some reduce the ability of their fungal hosts to cause disease in plants. This property, known as hypovirulence, has attracted attention owing to the importance of fungal diseases in agriculture and the limited strategies that are available for the control of these diseases. Using one pathogen to control another is appealing, both intellectually and ecologically. The recent development of an infectious cDNA-based reverse genetics system for members of the Hypoviridae mycovirus family has enabled the analysis of basic aspects of this fascinating virus–fungus–plant interaction, including virus–host interactions, the mechanisms underlying fungal pathogenesis, fungal signalling pathways and the evolution of RNA silencing. Such systems also provide a means for engineering mycoviruses for enhanced biocontrol potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Taxonomic families and primary modes of hypovirulence-associated mycovirus transmission.
Figure 2: Genetic organization and basic expression strategy for prototypic hypovirus CHV1-EP713.
Figure 3: Hypovirus reverse genetics.
Figure 4: Effect of hypovirus infection on Cryphonectria parasitica colony and canker morphologies.
Figure 5: Hypovirus symptom determinants and modulation of fungal–plant interactions.

Similar content being viewed by others

References

  1. Buck, K. W. in Fungal Virology (ed. Buck, K. W.) 2–84 (CRC, Boca Raton, 1986).

    Google Scholar 

  2. Anagnostakis, S. L. Biological control of chestnut blight. Science 215, 466–471 (1982). One of the first reviews of the use of hypovirulence as a biological control strategy and one of the best descriptions of the North American chestnut blight epidemic.

    Article  CAS  PubMed  Google Scholar 

  3. Brasier, C. M., in The Elms: Breeding, Conservation and Disease Management (ed. Dunn, C. P.) 61–72 (Kluwer, Boston, 2000). Excellent source for information on Dutch elm disease and the hypovirulence-associated viruses of O. ulmi and O. novo-ulmi.

    Book  Google Scholar 

  4. Ghabrial, S. A., Soldevila, A. I. & Havens, W. M. in Molecular Biology of double-stranded RNA: Concepts and Applications in Agriculture, Forestry and Medicine (ed. Tavantzis, S.) 213–236 (CRC, Boca Raton, 2002).

    Google Scholar 

  5. Wei, C. Z., Osaki, H., Iwanami, T., Matsumoto, N. & Ohtsu, Y. Molecular characterization of dsRNA segments 2 and 5 and electron microscopy of a novel reovirus from a hypovirulent isolate, W370, of the plant pathogen Rosellina necatrix. J. Gen. Virol. 84, 2431–2437 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki, N., Supyani, S., Maruyama, K. & Hillman, B. I. Complete genome sequence of Mycoreovirus-1/Cp9B21, a member of a novel genus within the family Reoviridae, isolated from the chestnut blight fungus Cryphonectria parasitica. J. Gen. Virol. 85, 3437–3448 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Wickner, R. B., Wang, C. C. & Patterson, J. L. in Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses (eds Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A.) 571–580 (Elsevier, London, 2005).

    Google Scholar 

  8. Ghabrial, S. A., Jiang, D. & Caston, J. R. in Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses (eds Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A.) 591–595 (Elsevier, London, 2005).

    Google Scholar 

  9. Mertens, P. P. C., Hillman, B. I., & Suzuki, N. in Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses (eds Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U. & Ball, L. A.) (in the press) (Elsevier, London, 2005).

    Google Scholar 

  10. Wickner, R. B., Esteban, R. & Hillman, B. I. in Virus Taxonomy: VIIth report of the International Committee on Taxonomy of Viruses. (eds Van Regenmortel, M. H. et al.) 651–656 (Academic, San Diego, 2000).

    Google Scholar 

  11. Polashock, J. J. & Hillman, B. I. A small mitochondrial double-stranded (ds) RNA element associated with a hypovirulent strain of the chestnut blight fungus and ancestrally related to yeast cytoplasmic T and W dsRNAs. Proc. Natl Acad. Sci. USA 91, 566–571 (1994).

    Article  Google Scholar 

  12. Hong, Y., Dover, S. L., Cole, T. E., Brasier, C. M. & Buck, K. W. Multiple mitochondrial viruses in an isolate of the Dutch elm disease fungus Ophiostoma novo-ulmi. Virology 246, 158–169 (1999).

    Article  Google Scholar 

  13. Deng, F., Xu, R. & Boland, G. J. Hypovirulence-associated double-stranded RNA from Sclerotinia homoeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathology 93, 1407–1414 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Cole, T. E., Hong, Y., Brasier, C. M. & Buck, K. W. Detection of an RNA-dependent RNA polymerase in mitochondria from a mitovirus-infected isolate of the Dutch Elm Disease fungus Ophiostoma novo-ulmi. Virology 268, 239–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Shapira, R., Choi, G. H. & Nuss, D. L. Virus-like genetic organization and expression strategy for a double-stranded RNA genetic element associated with biological control of chestnut blight. EMBO J. 10, 731–739 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hillman, B. I., Tian, Y., Bedker, P. J. & Brown, M. P. A North American hypovirulent isolate of the chestnut blight fungus with European isolate-related dsRNA. J. Gen. Virol. 73, 681–686 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, B. & Nuss, D. L. Infectious cDNA clone of hypovirus CHV1/Euro7: a comparative virology approach to investigate virus-mediated hypovirulence of the chestnut blight fungus Cryphonectria parasitica. J. Virol. 73, 985–992 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Smart, C. D. et al. Cryphonectria hypovirus 3, a virus in the family Hypoviridae with a single open reading frame. Virology 265, 66–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Linder-Basso, D., Dynek, J. & Hillman, B. I. Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America. Virology (in the press).

  20. Preisig, O., Moleleki, N., Smit, W. A., Wingfield, B. D. & Wingfield, M. J. A novel RNA mycovirus in a hypovirulent isolate of the plant pathogen Diaporthe ambigua. J. Gen. Virol. 81, 3107–3114 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Lakshman, D. K., Jian, J. & Tavantzis, S. M. A double-stranded RNA element from a hypovirulent strain of Rhizoctonia solani occurs in DNA form and is genetically related to the pentafunctional AROM protein of the shikimate pathway. Proc. Natl Acad. Sci. USA 95, 6425–6429 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chu, Y. -M. et al. Double-stranded RNA mycovirus from Fusarium graminearum. Appl. Environ. Microbiol. 68, 2529–2534 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Buck, K. W. in Molecular Variability of Fungal Pathogens (eds Bridge, P. D., Couteaudier, Y. & Clarkson, J. M.) 53–72 (CAB International, Wallingford, 1998). This review provides an excellent overview of the genome organization and expression strategies of fungal viruses.

    Google Scholar 

  24. Ghabrial, S. A. Origin, adaptation and evolutionary pathways of fungal viruses. Virus Genes 16, 119–131 (1998). Provides perspectives on the origin and evolution of fungal viruses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Castro, M., Kramer, K., Valdivia, L., Ortiz, S. & Castillo, A. A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. FEMS Microbiol. Lett. 228, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Hillman, B. I. & Suzuki, N. Viruses of the chestnut blight fungus. Adv. Virus Res. 63, 423–472 (2004). A recent and comprehensive review of viruses associated with the chestnut blight fungus C. parasitica.

    Article  CAS  PubMed  Google Scholar 

  27. Koonin, E. V., Choi, G. H., Nuss, D. L., Shapira, R. & Carrington, J. C. Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proc. Natl Acad. Sci. USA 88, 10647–10651 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, B., Choi, G. H. & Nuss, D. L. Attenuation of fungal virulence by synthetic infectious hypovirus transcripts. Science 264, 1762–1764 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Racaniello, V. R. & Baltimore, D. Cloned poliovirus cDNA is infectious in mammalian cells. Science 214, 916–919 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Ahlquist, P., French, R., Janda, M. & Loesch-Fries, L. S. Multicomponent RNA plant virus infection derived from cloned viral cDNA. Proc. Natl Acad. Sci. USA 81, 7066–7070 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi, G. H. & Nuss, D. L. Hypovirulence of chestnut blight fungus conferred by an infectious viral cDNA. Science 257, 800–803 (1992). Describes the construction of an infectious hypovirus cDNA, which established the first mycovirus reverse genetics system.

    Article  CAS  PubMed  Google Scholar 

  32. Moleleki, N., van Heerden, S. W., Wingfield, M. J., Wingfield, B. D. & Preisig, O. Transfection of Diaporthe perjuncta with Diaporthe RNA virus. Appl. Environ. Microbiol. 69, 3952–3956 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Churchill, A. C. L., Ciufetti, L. M., Hansen, D. R., Van Etten, H. D. & Van Alfen, N. K. Transformation of the fungal pathogen Cryphonectria parasitica with a variety of heterologous plasmids. Curr. Genet. 17, 25–31 (1990).

    Article  CAS  Google Scholar 

  34. Sasaki, A. et al. Extending chestnut blight hypovirus host range within diaporthales by biolistic delivery of viral cDNA. Mol. Plant. Microb. Interact. 15, 780–789 (2002).

    Article  CAS  Google Scholar 

  35. Chen, B., Craven, M. G., Choi, G. H. & Nuss, D. L. cDNA-derived hypovirus RNA in transformed chestnut blight fungus is spliced and trimmed of vector nucleotides. Virology 202, 441–448 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. van Heerden, S. W. et al. Characterization of South African Cryphonectria cubensis isolates infected with a C. parasitica hypovirus. Phytopathology 91, 628–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Elliston, J. E. Characterization of dsRNA-free and dsRNA-containing strains of Endothia parasitica in relation to hypovirulence. Phytopathology 75, 151–158 (1985).

    Article  Google Scholar 

  38. Anagnostakis, S. L. & Day, P. R. Hypovirulence conversion in Endothia parasitica. Phytopathology 69, 1226–1229 (1979).

    Article  CAS  Google Scholar 

  39. Anagnostakis, S. L. in The Ecology and Physiology of the Fungal mycelium (eds Jennings, D. H. & Rayner, A. D. M.) 353–366 (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  40. Peever, T. L., Liu, Y. -C. & Milgroom, M. G. Incidence and diversity of hypoviruses and other double-stranded RNAs occurring in the chestnut blight fungus Cryphonectria parasitica, in China and Japan. Phytopathology 88, 811–17 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Allemann, C., Hoegger, P., Heiniger, U. & Rigling, D. Genetic variation of Cryphonectria hypoviruses (CHV1) in Europe, assessed using restriction fragment length polymorphism (RFLP) markers. Mol. Ecol. 8, 843–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Chung, P., Bedker, P. J. & Hillman, B. I. Diversity of Cryphonectria parasitica hypovirulence-associated double-stranded RNAs within a chestnut population in New Jersey. Phytopathology 84, 984–990 (1994).

    Article  CAS  Google Scholar 

  43. Enebak, S. A., MacDonald, W. L. & Hillman, B. I. Effect of dsRNA associated with isolates of Cryphonectria parasitica from the central Appalachians and their relatedness to other dsRNAs from North America and Europe. Phytopathology 84, 528–534 (1994).

    Article  CAS  Google Scholar 

  44. Peever, T. L., Liu, Y. -C. & Milgroom, M. G. Diversity of hypoviruses and other double-stranded RNAs in Cryphonectria parasitica in North America. Phytopathology 87, 1026–1033 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, B., Geletka, L. M. & Nuss, D. L. Using chimeric hypoviruses to fine-tune the interaction between a pathogenic fungus and its plant host. J. Virol. 74, 7562–7567 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suzuki, N., Geletka, L. M. & Nuss, D. L. Essential and dispensible virus-encoded replication elements revealed by efforts to develop hypoviruses as gene expression vectors. J. Virol. 74, 7568–7577 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Craven, M. G., Pawlyk, D. M., Choi, G. H. & Nuss, D. L. Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus. J. Virol. 67, 6513–6521 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki, N., Chen, B. & Nuss, D. L. Mapping of a hypovirus p29 protease symptom determinant domain with sequence similarity to potyvirus HC-Pro protease. J. Virol. 73, 9478–9484 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Suzuki, N. & Nuss, D. L. The contribution of protein p40 to hypovirus-mediated modulation of fungal host phenotype and viral RNA accumulation. J. Virol. 76, 7747–7759 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suzuki, N., Maruyama, K., Moriyama, M. & Nuss, D. L. Hypovirus papain-like protease p29 functions in trans to enhance viral double-stranded RNA accumulation and vertical transmission. J. Virol. 77, 11697–11707 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chalocone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. van der Krol, A. R., Mur, L. A., Beld, M., Mol, J. N. & Stuitje, A. R. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to suppression of gene expression. Plant Cell 2, 291–299 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Romano, N. & Macino, G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343–3345 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Fire, A. RNA-triggered gene silencing. Trends Genet. 15, 358–363 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Voinnet, O. RNA silencing as a plant immune system against viruses. Trends Genet. 17, 449–459 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Li, H. W., Li, W. X. & Ding, S. W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Silhavy, D. & Burgyan, J. Effects and side-effects of viral RNA silencing suppressors on short RNAs. Trends Plant Sci. 9, 76–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Choi, G. H., Pawlyk, D. M., & Nuss, D. L. The autocatalytic protease p29 encoded by a hypovirulence-associated virus of the chestnut blight fungus resembles the potyvirus-encoded protease HC-Pro. Virology 183, 747–752 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Choi, G. H., Shapira, R. & Nuss, D. L. Co-translational autoproteolysis involved in gene expression from a double-stranded RNA genetic element associated with hypovirulence of the chestnut blight fungus. Proc. Natl Acad. Sci. USA 88, 1167–1171 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brigneti, G. O. et al. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17, 6739–6746 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Kasschau, K. D. et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and mRNA function. Dev. Cell. 4, 205–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Catalanotto, C. et al. Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Mol. Cell. Biol. 24, 2536–2545 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chicas, A. & Macino, G. Characteristics of post-transcriptional gene silencing. EMBO Rep. 2, 992–996 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cogoni, C. Homology-dependent gene silencing mechanisms in fungi. Annu. Rev. Microbiol. 55, 381–406 (2001). Includes description of the elements of RNA silencing in fungi.

    Article  CAS  PubMed  Google Scholar 

  66. Dawe, A. L. et al. An ordered collection of expressed sequences from Cryphonectria parasitica and evidence of genomic microsynteny with Neurospora crassa and Magnaporthe grisea. Microbiology 149, 2373–2384 (2003). Emphasizes the concept of using mycoviruses to understand and manage fungal virulence.

    Article  CAS  PubMed  Google Scholar 

  67. Larson, T. G., Choi, G. H. & Nuss, D. L. Regulatory pathways governing modulation of fungal gene expression by a virulence-attenuating mycovirus. EMBO J. 11, 4539–4548 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Larson, T. G. & Nuss, D. L. Altered transcriptional response to nutrient availability in hypovirus-infected chestnut blight fungus. EMBO J. 13, 5616–5623 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Park, S. M. et al. Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasitica and evidence for hypovirus-mediated perturbation of its phosphorylation in response to hypertonic stress. Mol. Microbiol. 51, 1267–1277 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, M. J. et al. Characterization of a fungal protein kinase from Cryphonectria parasitica and its transcriptional upregulation by hypovirus. Mol. Microbiol. 45, 933–941 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Choi, G. H., Chen, B. & Nuss, D. L. Virus-mediated or transgenic suppression of a G-protein α subunit and attenuation of fungal virulence. Proc. Natl Acad. Sci. USA 92, 305–309 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dawe, A. L., Segers, G. C., Allen, T. D., McMains, V. C. & Nuss, D. L. Microarray analysis of Cryphonectria parasitica Gα and Gβγ-signalling pathways reveals extensive modulation by hypovirus infection. Microbiology 150, 4033–4043 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Gao, S. & Nuss, D. L. Distinct roles for two G protein α subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc. Natl Acad. Sci. USA 93, 14122–14127 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nuss, D. L. Using hypoviruses to probe and perturb signal transduction processing underlying fungal pathogenesis. Plant Cell 8, 1845–1853 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dawe, A. L. & Nuss, D. L. Hypoviruses and chestnut blight: exploiting viruses to understand and modulate fungal pathogenesis. Annu. Rev. Genet. 35, 1–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Allen, T. D., Dawe, A. L. & Nuss, D. L. Use of cDNA microarrays to monitor transcriptional responses of the chestnut blight fungus Cryphonectria parasitica to infection by virulence-attenuating hypoviruses. Eukaryotic Cell 2, 1253–1265 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Soanes, D. M., Skinner, W., Keon, J., Hargraves, J. & Talbot, N. J. Genomics of phytopathogenic fungi and the development of bioinformatics resources. Mol. Plant Microbe Interact. 15, 421–427 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Kang, H. -S. et al. Ordered differential display from Cryphonectria parasitica. Plant Pathol. J. 16, 142–146 (2000).

    Google Scholar 

  79. Kasahara, S., Wang, P. & Nuss, D. L. Identification of bdm-1, a gene involved in G-protein β-subunit function and α-subunit accumulation. Proc. Natl Acad. Sci. USA 97, 412–17 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, Q., Poole, S. I. & Borkovich, K. A. A G-protein β subunit required for sexual and vegetative development and maintenance of normal Gα protein levels in Neurospora crassa. Eukaryotic Cell 1, 378–390 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Parsley, T. B., Segers, G. C., Nuss, D. L. & Dawe, A. L. Analysis of altered G-protein subunit accumulation in Cryphonectria parasitica reveals a third G α homologue. Curr. Genet. 43, 24–33 (2003).

    CAS  PubMed  Google Scholar 

  82. Monteiro-Vitorello, C. B., Bell, J. A., Fullbright, D. W. & Bertrand, H. A cytoplasmically transmissible hypovirulence phenotype associated with mitochondrial DNA mutations in the chestnut blight fungus Cryphonectria parasitica. Proc. Natl Acad. Sci. USA 92, 5935–5939 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fulbright, D. W. A cytoplasmic hypovirulent strain of Endothia parasitica without double-stranded RNA. Phytopathology 75, 1328 (1985).

    Google Scholar 

  84. Mahanti, N., Bertrand, H., Monteiro-Vitorello, C. & Fulbright, D. W. Elevated mitochondrial alternative oxidase activity in dsRNA-free, hypovirulent isolates of Cryphonectria parasitica. Physiol. Mol. Plant Pathol. 42, 455–463 (1993).

    Article  CAS  Google Scholar 

  85. Griffiths, A. J. F. Mitochondrial inheritance in filamentous fungi. J. Genet. 75, 403–414 (1996).

    Article  CAS  Google Scholar 

  86. Allen, T. D. & Nuss, D. L. Linkage between mitochondrial hypovirulence and viral hypovirulence in the chestnut blight fungus revealed by cDNA microarray analysis. Eukaryotic Cell 3, 1227–1232 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Burtrand, H. Role of mitochondrial DNA in the senescence and hypovirulence of fungi and potential for plant disease control. Annu. Rev. Phytopathol. 38, 397–422 (2000). Excellent review of the relationship between mitochondrial dysfunction and the attenuation of fungal virulence known as mitochondrial hypovirulence.

    Article  Google Scholar 

  88. Dementhon, K. et al. Rapamycin mimics the incompatibility reaction in the fungus Podospora anserina. Eukaryotic Cell 2, 238–246 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dennis, P. et al. Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Desai, B., Myers, B. & Schreiber, S. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl Acad. Sci. USA 99, 4319–4324 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Biraghi, A. Possible active resistance to Endothia parasitica in Castanea sativa in Rep. Congr. Int. Union For. Res. Org. 11th. 149–157 (International Union of Forest Research Organization, Rome, 1953).

  92. Grente, J. & Berthelay-Sauret, S. in Proceedings of the American Chestnut Symposium, (eds MacDonald, W. L., Cech, F. C., Luchok, J. & Smith, C.) 30–34 (West Virginia University, Morgantown, 1978).

    Google Scholar 

  93. Day, P. R., Dodds, J. A., Elliston, J. E., Jaynes, R. A., & Anagnostakis, S. L. Double-stranded RNA in Endothia parasitica. Phytopathology 68, 1391–1396 (1977).

    Google Scholar 

  94. Heiniger, U., & Rigling, D. Biological control of chestnut blight in Europe. Annu. Rev. Phytopathol. 32, 581–599 (1994). Excellent review of the history and current picture of chestnut blight and hypovirulence in Europe.

    Article  Google Scholar 

  95. Griffin, G. J. Chestnut blight and its control. Hortic. Rev. 8, 291–336 (1986).

    Google Scholar 

  96. MacDonald, W. L. & Fulbright, D. W. Biological control of chestnut blight: use and limitation of transmissible hypovirulence. Plant Dis. 75, 656–661 (1991). This review provides an excellent perspective on the importance of balancing the effects of hypovirus infection on ecological fitness and virulence attenuation for successful hypovirulence-mediated biological control.

    Article  Google Scholar 

  97. Fulbright, D. W., Weidlich, W. H., Haufler, Z., Thomas, C. S. & Paul, C. P. Chestnut blight and recovering American chestnut trees in Michigan. Can. J. Bot. 61, 3144–3171 (1983).

    Article  Google Scholar 

  98. Milgroom, M. G. & Cortesi, P. Biological control of chestnut blight with hypovirulence: a critical analysis. Annu. Rev. Phytopathol. 42, 311–338 (2004). Recent critical assessment of the effectiveness of hypovirulence in the management of chestnut blight.

    Article  CAS  PubMed  Google Scholar 

  99. Cortesi, P. & Milgroom, M. G. Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl. Environ. Microbiol. 64, 2988–2994 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, Y. -C. & Milgroom, M. G. Correlation between hypovirus transmission and the number of vegetative incompatibility (vic) genes different among isolates from natural populations of Cryphonectria parasitica. Phytopathology 86, 79–86 (1996).

    Article  Google Scholar 

  101. Cortesi, P., McCulloch, C. E., Song, H., Lin, H. & Milgroom, M. G. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics 159, 107–118 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Anagnostakis, S. L. & Kranz, J. Population dynamics of Cryphonectria parasitica in a mixed-hardwood forest in Connecticut. Phytopathology 77, 751–754 (1987).

    Article  Google Scholar 

  103. Bissegger, M., Rigling, D. & Heiniger, U. Population structure and disease development of Cryphonectria parasitica in European chestnut forests in the presence of natural hypovirulence. Phytopathology 87, 51–59 (1997).

    Article  Google Scholar 

  104. Chen, B., Chen, C. -H., Bowman, B. H. & Nuss, D. L. Phenotypic changes associated with wild-type and mutant hypovirus RNA transfection of plant pathogenic fungi phylogenetically related to Cryphonectria parasitica. Phytopathology 86, 301–310 (1996).

    Article  CAS  Google Scholar 

  105. Shain, L. & Miller, J. B. Movement of cytoplasmic hypovirulence agents in chestnut blight cankers. Can. J. Bot. 70, 557–561 (1992).

    Article  Google Scholar 

  106. Chen, B., Choi, G. H. & Nuss, D. L. Mitotic stability and nuclear inheritance of integrated viral cDNA in engineered hypovirulent strains of the chestnut blight fungus. EMBO J. 12, 2991–2998 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu, Y. -C., Durrett, R. & Milgroom, M. G. A spatially-structured stochastic model to simulate heterogeneous transmission of viruses in fungal populations. Ecol. Modell. 127, 291–308 (2000).

    Article  Google Scholar 

  108. Anagnostakis, S. L., Chen, B., Geletka, L. M. & Nuss, D. L. Hypovirus transmission to ascospore progeny by field-released transgenic hypovirulent strains of Cryphonectria parasitica. Phytopathology 88, 598–604 (1998).

    Article  CAS  PubMed  Google Scholar 

  109. Root, C., et al. Multiseasonal field release and spermatization of transgenic hypovirulent strains of Cryphonectria parasitica containing cDNA copies of the highly debilitating hypovirus CHV1-EP713. For. Pathol. (in the press).

  110. Gobbin, D., Hoegger, P. J., Heiniger, U. & Rigling, D. Sequence variation and evolution of Cryphonectria hypovirus 1 (CHV1) in Europe. Virus Res. 97, 39–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Graves, A. H. Relative blight resistance in species and hybrids of Castanea. Phytopathology 40, 1125–1131 (1950).

    Google Scholar 

  112. Hebard, F. V. Inheritance of juvenile leaf and stem morphological traits in crosses of Chinese and American chestnut. J. Hered. 85, 440–446 (1994).

    Article  Google Scholar 

  113. Connors, B. J., Laun, N. P., Maynard, C. A. & Powell, W. A. Molecular characterization of a gene encoding a cystatin expressed in the stems of American chestnut (Castanea dentate). Planta 3, 510–514 (2002).

    Article  CAS  Google Scholar 

  114. Jian, J. H., Lakshman, D. K. & Tavantzis, S. M. Association of distinct double-stranded RNAs with enhanced or diminished virulence in Rhizoctonia solani infecting potato. Mol. Plant Microbe Interact. 10, 1002–1009 (1997).

    Article  CAS  Google Scholar 

  115. Jian, J. H., Lakshman, D. K. & Tavantzis, S. M. A virulence-associated, 6.4-kb, double-stranded RNA from Rhizoctonia solani is phylogenetically related to plant bromoviruses and electron transport enzymes. Mol. Plant Microbe Interact. 11, 601–609 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Liu, C., Lakshman, D. K. & Tavantzis, S. M. Quinic acid induces hypovirulence and expression of a hypovirulence-associated double-stranded RNA in Rhizoctonia solani. Curr. Genet. 43, 103–111 (2003).

    CAS  PubMed  Google Scholar 

  117. Polashock, J. J., Bedker, P. J. & Hillman, B. I. Movement of a small mitochondrial double-stranded RNA element of Cryphonectria parasitica: ascospore inheritance and implications for mitochondrial recombination. Mol. Gen. Genet. 256, 566–571 (1997).

    Article  CAS  PubMed  Google Scholar 

  118. Shapira, R. & Nuss, D. L. Gene expression by a hypovirulence-associated virus of the chestnut blight fungus involves two papain-like protease activities. J. Biol. Chem. 266, 19419–19425 (1991).

    CAS  PubMed  Google Scholar 

  119. Nuss, D. L., Chen, B., Geletka, L. M., Parsley, T. B. & Suzuki, N. in Molecular Biology of double-stranded RNA: Concepts and Applications in Agriculture, Forestry and Medicine (ed. Tavantzis, S.) 145–163 (CRC, Boca Raton, 2002).

    Google Scholar 

  120. Buck, K. W. & Brasir, C. M. in Molecular Biology of double-stranded RNA: Concepts and Applications in Agriculture, Forestry and Medicine (ed. Tavantzis, S.) 165–190 (CRC, Boca Raton, 2002).

    Google Scholar 

  121. Jiang, D. & Ghabrial, S. A. Molecular characterization of Penicillium chrysogenum virus: reconsideration of the taxonomy of the genus Chrysovirus. J. Gen. Virol. 85, 2111–2121 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to T. Allen, F. Deng, L. Geletka & G. Segers for suggestions and corrections. This work was supported in part by a Public Health Service grant.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

Entrez Gene

CHV1-EP713

Hv145SV

Hv190SV

FURTHER INFORMATION

Donald L. Nuss' homepage

COGEME

Glossary

BIOCONTROL

The use of one species of organism to eliminate or control another through a biological mechanism.

ANASTOMOSIS

Fusion of somatic hyphae followed by exchange of cellular contents.

TRANSGENIC HYPOVIRULENCE

Virulence-attenuated fungal strains that contain a chromosomally-integrated, infectious hypovirus cDNA.

CONIDIA

Asexual spores.

cDNA MICROARRAY

A collection of cDNA clones spotted on a support media such as a micoscope slide, in a high-density ordered array that is suitable for hybridization to appropriate nucleic-acid probes.

EXPRESSED SEQUENCE TAG

(EST). A cloned cDNA copy of the mRNAs isolated from an organism. The combined collection (library) of EST clones represents the transcribed genes in that sample.

VEGETATIVE INCOMPATIBILITY

A genetic system that controls the ability of two fungal strains to anastomose. In C. parasitica, this system consists of at least six genetic loci, each containing two alleles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuss, D. Hypovirulence: Mycoviruses at the fungal–plant interface. Nat Rev Microbiol 3, 632–642 (2005). https://doi.org/10.1038/nrmicro1206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing