Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Whither or wither geomicrobiology in the era of 'community metagenomics'

Abstract

Molecular techniques are valuable tools that can improve our understanding of the structure of microbial communities. They provide the ability to probe for life in all niches of the biosphere, perhaps even supplanting the need to cultivate microorganisms or to conduct ecophysiological investigations. However, an overemphasis and strict dependence on such large information-driven endeavours as environmental metagenomics could overwhelm the field, to the detriment of microbial ecology. We now call for more balanced, hypothesis-driven research efforts that couple metagenomics with classic approaches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A classical approach to geomicrobiological investigations combined with modern methods.
Figure 2: A metagenomic approach to geomicrobiological investigations.

Similar content being viewed by others

References

  1. DeLong, E. A. Microbial population genomics and ecology: the road ahead. Environ. Microbiol. 6, 875–878 (2004).

    Article  Google Scholar 

  2. Croal, L. R., Gralnick, J. A., Malasarn, D. & Newman, D. K. The genetics of geochemistry. Annu. Rev. Genet. 38, 175–202 (2004).

    Article  CAS  Google Scholar 

  3. Doney, S. C., Abbott, M. R., Cullen, J. J., Karl, D. M. & Rothstein, L. From genes to ecosystems: the ocean's new frontier. Front. Ecol. Environ. 2, 457–466 (2004).

    Article  Google Scholar 

  4. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Article  CAS  Google Scholar 

  5. Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001).

    Article  CAS  Google Scholar 

  6. Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity — magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).

    Article  CAS  Google Scholar 

  7. Dykhuizen, D. E. Santa Rosalia revisited: why are there so many species of bacteria? Antonie van Leeuwenhoek 73, 25–33 (1998).

    Article  CAS  Google Scholar 

  8. Keller, M. & Zengler, K. Tapping into microbial diversity. Nature Rev. Microbiol. 2, 141–150 (2004).

    Article  CAS  Google Scholar 

  9. Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    Article  Google Scholar 

  10. Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).

    Article  Google Scholar 

  11. Eilers, H., Pernthaler, J., Glöckner, F. O. & Amann, R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044–3051 (2000).

    Article  CAS  Google Scholar 

  12. Kaeberlein, T., Lewis, K. & Epstein, S. S. Isolating 'uncultivable' microorganisms in pure culture in a simulated natural environment. Science 296, 1127–1129 (2002).

    Article  CAS  Google Scholar 

  13. Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M. & Sait, M. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391–2396 (2002).

    Article  CAS  Google Scholar 

  14. Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A. & Janssen, P. H. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69, 7210–7215 (2003).

    Article  CAS  Google Scholar 

  15. Button, D. K., Schut, F., Quang, P., Martin, R. & Roberston, B. R. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl. Environ. Microbiol. 59, 881–891 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Connon, S. A. & Giovannoni, S. J. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885 (2002).

    Article  CAS  Google Scholar 

  17. Rappé, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).

    Article  Google Scholar 

  18. Cho, J. -C., Vergin, K. L., Morris, R. M. & Giovannoni, S. J. Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environ. Microbiol. 6, 611–621 (2004).

    Article  CAS  Google Scholar 

  19. Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).

    Article  CAS  Google Scholar 

  20. Hungate, R. E. The Rumen and its Microbes (Academic Press, New York, 1966).

    Google Scholar 

  21. Oremland, R. S. & Capone, D. G. Use of 'specific inhibitors' in biogeochemistry and microbial ecology. Adv. Microb. Ecol. 10, 285–383 (1988).

    Article  CAS  Google Scholar 

  22. Dedysh, S. N., Derakshani, M. & Liesack, W. Detection and enumeration of methanotrophs in acidic Sphagnum peat by 16S rRNA fluorescence in situ hybridization, including use of newly developed oligonucleotide probes for Methylocella palustris. Appl. Environ. Microbiol. 67, 4850–4857 (2001).

    Article  CAS  Google Scholar 

  23. Dedysh, S. N. et al. Differential detection of type II methanotrophic bacteria in acidic peatland using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol. Ecol. 43, 299–308 (2003).

    Article  CAS  Google Scholar 

  24. Stevenson, B. S., Eichorst, S. A., Wertz, J. T., Schmidt, T. M. & Breznak, J. A. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70, 4748–4755 (2004).

    Article  CAS  Google Scholar 

  25. Wagner, M. Deciphering functions of uncultured microorganisms. ASM News 70, 63–70 (2004).

    Google Scholar 

  26. Fuhrman, J. A., McCallum, M. & Davis, A. A. Novel major archaebacterial group from marine plankton. Nature 356, 148–149 (1992).

    Article  CAS  Google Scholar 

  27. DeLong, E. F., Wu, K. Y., Prezlin, B. B. & Jovine, R. V. M. High abundance of archaea in Antarctic marine picoplankton. Nature 371, 695–697 (1994).

    Article  CAS  Google Scholar 

  28. Fuhrman, J. A. & Ouverney, C. C. Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting of native archaea with fluorescent single cell probes. Aquatic Ecol. 32, 3–15 (1998).

    Article  CAS  Google Scholar 

  29. Karner, M. B., DeLong, E. F. & Karl, D. M. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409, 507–510 (2001).

    Article  CAS  Google Scholar 

  30. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    Article  CAS  Google Scholar 

  31. Ouverney C. C. & Fuhrman, J. A. Marine planktonic Archaea take up amino acids. Appl. Environ. Microbiol. 66, 4829–4833 (2000).

    Article  CAS  Google Scholar 

  32. Hoefs, M. J. L. et al. Ether lipids of planktonic archaea in the marine water column. Appl. Environ. Microbiol. 63, 3090–3095 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kuypers, M. M. et al. Massive expansion of marine Archaea during a mid-Cretaceous oceanic anoxic event. Science 293, 92–94 (2001).

    Article  CAS  Google Scholar 

  34. Pearson, A., McNichol, A. P., Benitez-Nelson, B. C., Hayes, J. M. & Eglinton, T. I. Origins of lipid biomarkers in Santa Monica Basin surface sediment: a case study using compound-specific Δ14C analysis. Geochim. Cosmochim. Acta 65, 3123–3137 (2001).

    Article  CAS  Google Scholar 

  35. Wuchter, C., Schouten, S., Boschker, H. T. S. & Damsté, J. S. Bicarbonate uptake by marine Crenarchaeota. FEMS Microbiol. Lett. 219, 203–207 (2003).

    Article  CAS  Google Scholar 

  36. Venter, J. C. et al. Environmental shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  CAS  Google Scholar 

  37. Purdy, K. J., Creswell-Maynard, T., Harriman, N., Embley, T. M. & Nedwell, D. B. Isolation and characterization of non-extremophilic Archaea. Abstr. 10th Intl Symp. Microb. Ecol., 68 (2004).

  38. Yimga, M. T., Dunfield, P. F., Ricke, P., Heyer, J. & Liesack, W. Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl. Environ. Microbiol. 69, 5593–5602 (2003).

    Article  CAS  Google Scholar 

  39. Ricke, P., Erkel, C., Kube, M., Reinhardt, R. & Liesack, W. Comparative analysis of the conventional and novel pmo (particulate methane monooxygenase) operons from Methylocystis strain SC2. Appl. Environ. Microbiol. 70, 3055–3063 (2004).

    Article  CAS  Google Scholar 

  40. McDonald, I. R. et al. A review of bacterial methyl halide degradation: biochemistry, genetics, and molecular ecology. Appl. Microbiol. 4, 193–203 (2002).

    CAS  Google Scholar 

  41. Methè, B. A. et al. Genome of Geobacter sulfurreducens: metal reduction in subsurface sediments. Science 302, 1967–1969 (2003).

    Article  Google Scholar 

  42. Childers, S. E., Ciufo, S. & Lovley, D. R. Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416, 767–769 (2002).

    Article  CAS  Google Scholar 

  43. Lin, W. C., Coppi, M. V. & Lovley, D. R. Geobacter sulfurreducens can grow with oxygen as a terminal electron acceptor. Appl. Environ. Microbiol. 70, 2525–2528 (2004).

    Article  CAS  Google Scholar 

  44. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  CAS  Google Scholar 

  45. Sabehi, G. et al. Novel proteorhodopsin variants from the Mediterranean and Red Seas. Environ. Microbiol. 5, 842–849 (2003).

    Article  CAS  Google Scholar 

  46. Sabehi, G., Béjà, O., Suzuki, M. T., Oreston, C. M. & DeLong, E. F. Different SAR86 subgroups harbour divergent proteorhodopsins. Environ. Microbiol. 6, 903–910 (2004).

    Article  Google Scholar 

  47. Valentine, D. L. & Reeburgh, W. S. New perspectives on anaerobic methane oxidation. Environ. Microbiol. 2, 477–484 (2000).

    Article  CAS  Google Scholar 

  48. Hinrichs, K. -U. & Boetius, A. in Ocean Margin Systems (eds Wefer, G., Billet, D., Jørgensen, B. B., Schulter, M. & van Weering, T.) 457–477 (Springer, Heidelberg, 2002).

    Book  Google Scholar 

  49. Valentine, D. L. Biogeochemistry and microbial ecology of methane in anoxic environments: a review. Antonie van Leeuwenhoek 81, 271–282 (2002).

    Article  CAS  Google Scholar 

  50. Reeburgh, W. S. Global methane biogeochemistry. Treatise on Geochemistry 4, 1–25 (2003).

    Google Scholar 

  51. Strous, M. & Jetten, M. S. M. Anaerobic oxidation of methane and ammonium. Annu. Rev. Microbiol. 58, 99–117 (2004).

    Article  CAS  Google Scholar 

  52. Barnes, R. O. & Goldberg, E. D. Methane production and consumption in anaerobic sediments. Geology 4, 297–300 (1976).

    Article  CAS  Google Scholar 

  53. Reeburgh, W. S. Methane consumption in Cariaco Trench waters and sediments. Earth Planet. Sci. Lett. 28, 337–344 (1976).

    Article  CAS  Google Scholar 

  54. Martens, C. S. & Berner, R. A. Interstitial water chemistry of Long Island sound sediments: I. Dissolved gases. Limnol. Oceanogr. 22, 10–25 (1977).

    Article  CAS  Google Scholar 

  55. Iversen, N. I. & Jørgensen, B. B. Anaerobic methane oxidation rates at the sulfate–methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30, 944–955 (1985).

    Article  CAS  Google Scholar 

  56. Zehnder, A. J. B. & Brock, T. D. Methane formation and methane oxidation by methanogenic bacteria. J. Bacteriol. 137, 420–432 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen–sulfate-reducer consortium. Global Biogeochem. Cycles 8, 451–463 (1994).

    Article  CAS  Google Scholar 

  58. Hinrichs, K. -U., Hayes, J. M., Sylva, S. P., Brewer, P. G. & DeLong, E. F. Methane-consuming archaebacteria in marine sediments. Nature 398, 802–805 (1999).

    Article  CAS  Google Scholar 

  59. Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).

    Article  CAS  Google Scholar 

  60. Orphan, V. J., House, C. H., Hinrichs, K. -U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001).

    Article  CAS  Google Scholar 

  61. Orphan, V. J. et al. Multiple groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl Acad. Sci. USA 99, 7663–7668 (2002).

    Article  CAS  Google Scholar 

  62. Michaelis, W. et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297, 1013–1015 (2002).

    Article  CAS  Google Scholar 

  63. Krüger, M. et al. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature 426, 878–881 (2003).

    Article  Google Scholar 

  64. Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457–1462 (2004).

    Article  CAS  Google Scholar 

  65. Broda, E. Two kinds of lithotrophs missing in nature. Z. Allg. Mikrobiol. 17, 491–493 (1977).

    Article  CAS  Google Scholar 

  66. Bender, M., Ganning K. A., Froelich, P. M., Heath, G. R. & Maynard, V. Interstitial nitrate profiles and oxidation of sedimentary organic matter in the eastern equatorial Atlantic. Science 198, 605–609 (1977).

    Article  CAS  Google Scholar 

  67. Mulder, A., van de Graaf, A. A., Robertson, L. A. & Kuenen, J. G. Anaerobic ammonium oxidation in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177–184 (1995).

    Article  CAS  Google Scholar 

  68. van de Graaf, A. A. et al. Anaerobic oxidation of ammonium is a biologically mediated process. Appl. Environ. Microbiol. 61, 1246–1251 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Thamdrup, B. & Dalsgaard, T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl. Environ. Microbiol. 68, 1312–1318 (2002).

    Article  CAS  Google Scholar 

  70. Kuypers, M. M. et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422, 608–611 (2003).

    Article  CAS  Google Scholar 

  71. Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B. & Acuna-Gonzalez, J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608 (2003).

    Article  CAS  Google Scholar 

  72. Strous, M. et al. Missing lithotroph identified as new planctomycete. Nature 400, 446–449 (1999).

    Article  CAS  Google Scholar 

  73. Sinninghe Damsté, J. S. et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419, 708–712 (2002).

    Article  Google Scholar 

  74. Stolz, J. F. & Oremland, R. S. Bacterial respiration of selenium and arsenic. FEMS Microbiol. Rev. 23, 615–627 (1999).

    Article  CAS  Google Scholar 

  75. Oremland, R. S. & Stolz, J. F. The ecology of arsenic. Science 299, 939–944 (2003).

    Article  Google Scholar 

  76. Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003).

    Article  CAS  Google Scholar 

  77. Palenik, B. et al. The genome of a motile marine Synechococcus. Nature 424, 1037–1042 (2003).

    Article  CAS  Google Scholar 

  78. Dufresne, A. et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl Acad. Sci. USA 100, 10020–10025 (2003).

    Article  CAS  Google Scholar 

  79. Buckley, M. R. Systems microbiology: beyond microbial genomics. Amer. Acad. Microbiol. 15 (2004).

  80. Anonymous. News item. ASM News 70, 589 (2004).

Download references

Acknowledgements

This writing collaboration would not have been possible without the views, insights and criticisms of our colleague K. Zengler at Diversa Corporation. We thank M. Joye, L.M. Windham, J. Santini and two anonymous reviewers for their suggestions to improve an earlier draft of this manuscript. We are particularly grateful to J. Dileo at the US Geological Survey for her artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald S. Oremland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Geobacter metallireducens

Geobacter sulfurreducens

FURTHER INFORMATION

Genomes Online Database

The Scientific Committee on Problems in the Environment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oremland, R., Capone, D., Stolz, J. et al. Whither or wither geomicrobiology in the era of 'community metagenomics'. Nat Rev Microbiol 3, 572–578 (2005). https://doi.org/10.1038/nrmicro1182

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing