Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A comparative genomic view of clostridial sporulation and physiology

Key Points

  • The clostridia are Gram-positive, chemoorganotrophic, mainly obligate anaerobes that are found in a wide range of environments and can form heat-stable endospores. The genus includes important human pathogens, such as the food pathogen Clostridium botulinum and Clostridium difficile, a cause of healthcare-associated infections; cellulolytic strains, such as Clostridium thermocellum; and solventogenic strains such as Clostridium acetobutylicum.

  • The complete genome sequences for three clostridia species — C. acetobutylicum ATCC 824, Clostridium perfringens strain 13 and Clostridium tetani E88 — have been published, the genomes of two more — C. difficile strain 630 and Clostridium botulinum Hall strain A (ATCC 3502) — have been completed although the annotation has not been finished, and genome-sequence data from two additional C. perfringens strains in the form of contigs are also readily available. Here, we use these genome-sequence data and recent results from transcriptomics to give a comparative genomics perspective on clostridial physiology and sporulation, with reference to the model endospore-forming organism Bacillus subtilis.

  • In B. subtilis, the sporulation programme is initiated in response to various extracellular and intracellular signals. The signals are sensed by a phosphorelay system comprising five sensory histidine kinases (KinA–KinE), which phosphorylate the sporulation initiation phosphotransferase Spo0F, the response regulator Spo0B and the master regulator Spo0A, in turn. The genome-sequence data indicate that, with some exceptions, the clostridia largely share the key genes downstream of Spo0A, but there is little conservation of the genes involved in the upper part of the sporulation cascade (the sensory histidine kinases through the phosphorelay).

  • This leads to the question of how Spo0A is phosphorylated in the clostridia. Three different, and not necessarily mutually exclusive, models have been proposed. These are all considered in light of the available genomic and transcriptomic data, and plausible candidate kinases are identified.

  • The stress response is also considered. B. subtilis contains four classes of stress proteins; the available genomic data indicate that the clostridia contain only classes I, III and IV, and not class II, and DNA microarray studies have also indicated that stress-gene expression might not be necessary for sporulation.

  • In B. subtilis, motility and chemotaxis show reciprocal regulation with sporulation, and the same appears to be true in the clostridia species analysed. The interesting observation that asporogenous, non-solventogenic mutants of C. acetobutylicum have impaired or no motility has led to the suggestion that Spo0A could directly or indirectly regulate glycosytransferases, and this is an interesting area for further study.

  • To date, progress in clostridial genetics and genomics has been much slower than in the bacilli. However, this article demonstrates the insights that can be gained by using the publicly available genome-sequence data. Additionally, recent publications (mostly on bacilli, but a few on clostridia) have demonstrated that DNA microarrays and other transcriptomic analyses such as ChIP-on-chip studies can also be used to great effect. The small size of the clostridial research community has been a disadvantage in the past. As this analysis has shown that the pathogenic and non-pathogenic clostridia have much in common, perhaps now it can be turned to an advantage, and clostridial researchers from different fields can come together to form research consortia and useful databases that will allow a detailed description of the regulatory network in a model clostridium to be delineated.

Abstract

Clostridia are anaerobic, endospore-forming prokaryotes that include strains of importance to human and animal health and physiology, cellulose degradation, solvent production and bioremediation. Their differentiation and related developmental programmes are not well understood at the molecular level. Recent genome sequencing and transcriptional-profiling studies have offered a glimpse of their inner workings and indicate that a better understanding of the orchestration of the molecular events that underlie their unique physiology, capabilities and diversity will pay major dividends.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The number of putative orthologous genes in different clostridia.
Figure 2: The sporulation cascade in Bacillus subtilis and selected clostridia.
Figure 3: Time-course profiles of Bacillus and clostridial kinases.
Figure 4: Analysis of gene expression in clostridia.

Similar content being viewed by others

References

  1. Cato, E. P., George, W. L. & Finegold, S. M. in Bergey's Manual of Systematic Bacteriology (eds Sneath, H. A., Mair, N. S., Sharpe, M. E. & Holt, J. G.) 1141–1200 (Williams & Wilkins, Baltimore, 1986).

    Google Scholar 

  2. Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. & Flint, H. J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217, 133–139 (2002).

    CAS  PubMed  Google Scholar 

  3. Collins, M. D. et al. The phylogeny of the genus Clostridium — proposal of 5 new genera and 11 new species combinations. Int. J. Syst. Bacteriol. 44, 812–826 (1994).

    CAS  PubMed  Google Scholar 

  4. Battistuzzi, F. U., Feijao, A. & Hedges, S. B. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4, 44 (2004).

    PubMed  PubMed Central  Google Scholar 

  5. Eichenberger, P. et al. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2, 1664–1683 (2004). A comprehensive paper about the B. subtilis mother-cell sporulation cascade, comprising its mapping, regulon discovery and main control loops. A milestone that must be read by anyone working on sporulation.

    CAS  Google Scholar 

  6. Hilbert, D. W. & Piggot, P. J. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68, 234–262 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Errington, J. Regulation of endospore formation in Bacillus subtilis. Nature Rev. Microbiol. 1, 117–126 (2003).

    CAS  Google Scholar 

  8. Piggot, P. J. & Hilbert, D. W. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7, 579–586 (2004).

    CAS  PubMed  Google Scholar 

  9. Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683–1701 (2003). The mapping of the Spo0A regulon using ChIP-on-chip and transcriptional profiling together with mobility-shift assays and bioinformatics. It shows how new technologies help unravel the mysteries of cell regulation.

    CAS  PubMed  Google Scholar 

  10. Steil, L., Serrano, M., Henriques, A. O. & Volker, U. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151, 399–420 (2005). Published shortly after reference 5, it uses a similar approach to elucidate members of the σF, σE, σG and σK regulons.

    CAS  PubMed  Google Scholar 

  11. Eichenberger, P. et al. The σE regulon and the identification of additional sporulation genes in Bacillus subtilis. J. Mol. Biol. 327, 945–972 (2003).

    CAS  PubMed  Google Scholar 

  12. Britton, R. A. et al. Genome-wide analysis of the stationary-phase σ factor (σ-H) regulon of Bacillus subtilis. J. Bacteriol. 184, 4881–4890 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sonenshein, A. L. in Regulation of Prokaryotic Development (eds Smith, I., Slepecky, R. A. & Setlow, P.) 109–130 (ASM Press, Washington DC, 1989).

    Google Scholar 

  14. Jones, D. T. & Woods, D. R. Acetone-butanol fermentation revisited. Microbiol. Rev. 50, 484–524 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Woods, D. R. The genetic engineering of microbial solvent production. Trends Biotechnol. 13, 259–264 (1995).

    CAS  PubMed  Google Scholar 

  16. Meyer, C. L. & Papoutsakis, E. T. Increased levels of Atp and Nadh are associated with increased solvent production in continuous cultures of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 30, 450–459 (1989).

    CAS  Google Scholar 

  17. Girbal, L. & Soucaille, P. Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol. 16, 11–16 (1998).

    CAS  Google Scholar 

  18. Hüsemann, M. H. W. & Papoutsakis, E. T. Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic-acid and proton concentrations. Biotechnol. Bioeng. 32, 843–852 (1988).

    PubMed  Google Scholar 

  19. Bahl, H., Muller, H., Behrens, S., Joseph, H. & Narberhaus, F. Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol. Rev. 17, 341–348 (1995). Excellent review about the stress-response genes in C. acetobutylicum and some hints about its relationship with solventogenesis and sporulation.

    CAS  PubMed  Google Scholar 

  20. Petit, L., Gibert, M. & Popoff, M. R. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7, 104–110 (1999).

    CAS  PubMed  Google Scholar 

  21. Rood, J. I. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52, 333–360 (1998).

    CAS  PubMed  Google Scholar 

  22. Rupnik, M. et al. Revised nomenclature of Clostridium difficile toxins and associated genes. J. Med. Microbiol. 54, 113–117 (2005).

    CAS  PubMed  Google Scholar 

  23. Ohtani, K., Hayashi, H. & Shimizu, T. The luxS gene is involved in cell–cell signalling for toxin production in Clostridium perfringens. Mol. Microbiol. 44, 171–179 (2002).

    CAS  PubMed  Google Scholar 

  24. Varga, J., Stirewalt, V. L. & Melville, S. B. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J. Bacteriol. 186, 5221–5229 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Raffestin, S., Dupuy, B., Marvaud, J. C. & Popoff, M. R. BotR/A and TetR are alternative RNA polymerase σ factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol. Microbiol. 55, 235–249 (2005).

    CAS  PubMed  Google Scholar 

  26. Ozutsumi, K., Sugimoto, N. & Matsuda, M. Rapid, simplified method for production and purification of tetanus toxin. Appl. Environ. Microbiol. 49, 939–943 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Harris, L. M., Welker, N. E. & Papoutsakis, E. T. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J. Bacteriol. 184, 3586–3597 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang, I. H., Waters, M., Grau, R. R. & Sarker, M. R. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol. Lett. 233, 233–240 (2004).

    CAS  PubMed  Google Scholar 

  29. Wilkinson, S. R., Young, D. I., Morris, J. G. & Young, M. Molecular genetics and the initiation of solventogenesis in Clostridium berijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052. FEMS Microbiol. Rev. 17, 275–285 (1995).

    CAS  PubMed  Google Scholar 

  30. Ravagnani, A. et al. Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol. Microbiol. 37, 1172–1185 (2000).

    CAS  PubMed  Google Scholar 

  31. Nölling, J. et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183, 4823–4838 (2001).

    PubMed  PubMed Central  Google Scholar 

  32. Stragier, P. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 519–525 (ASM Press, Washington DC, 2002).

    Google Scholar 

  33. Dürre, P. & Hollergschwandner, C. Initiation of endospore formation in Clostridium acetobutylicum. Anaerobe 10, 69–74 (2004). A complete review of the early sporulation events in C. acetobutylicum.

    PubMed  Google Scholar 

  34. Shimizu, T. et al. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl Acad. Sci. USA 99, 996–1001 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brüggemann, H. & Gottschalk, G. Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 10, 53–68 (2004). An in-depth study of the genomic content, including toxin production and general metabolism, in view of the fully sequenced C. tetani genome.

    PubMed  Google Scholar 

  36. Stephenson, K. & Hoch, J. A. Evolution of signalling in the sporulation phosphorelay. Mol. Microbiol. 46, 297–304 (2002). Studies the high conservation of the phosphorylating domains and the low conservation of the sensing domains involved in the Bacillus sporulation phosphorelay. The common mechanism has been adapted to initiate sporulation according to different signals present in each specific Bacillus species' environment.

    CAS  PubMed  Google Scholar 

  37. Stephenson, K. & Lewis, R. J. Molecular insights into the initiation of sporulation in Gram-positive bacteria: new technologies for an old phenomenon. FEMS Microbiol. Rev. 29, 281–301 (2005). An excellent and rigorous review of the sporulation phosphorelay and the beginnings of the sporulation process.

    CAS  PubMed  Google Scholar 

  38. Zhao, Y. S., Tomas, C. A., Rudolph, F. B., Papoutsakis, E. T. & Bennett, G. N. Intracellular butyryl phosphate and acetyl phosphate concentrations in Clostridium acetobutylicum and their implications for solvent formation. Appl. Environ. Microbiol. 71, 530–537 (2005). Introduces the idea that butyryl phosphate has a key role in the change from acidogenesis to solventogenesis in C. acetobutylicum.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lukat, G. S., McCleary, W. R., Stock, A. M. & Stock, J. B. Phosphorylation of bacterial response regulator proteins by low-molecular-weight phospho-donors. Proc. Natl Acad. Sci. USA 89, 718–722 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Trach, K. A. & Hoch, J. A. Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol. Microbiol. 8, 69–79 (1993).

    CAS  PubMed  Google Scholar 

  41. Fabret, C., Feher, V. A. & Hoch, J. A. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J. Bacteriol. 181, 1975–1983 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Perego, M. & Hoch, J. A. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 473–481 (ASM Press, Washington DC, 2002).

    Google Scholar 

  43. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    CAS  PubMed  Google Scholar 

  44. Alsaker, K. V. & Papoutsakis, E. T. The transcriptional program of early sporulation and stationary phase events in Clostridium acetobutylicum. J. Bacteriol. 187, 7103–7118 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wolfe, A. J. The acetate switch. Microbiol. Mol. Biol. Rev. 69, 12–50 (2005). A thorough review of how acetate phosphate (and, therefore, a switch between acetate assimilation and dissimilation) acts as a global switch of gene expression in E. coli.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Green, E. M. et al. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142, 2079–2086 (1996).

    CAS  PubMed  Google Scholar 

  47. Harris, L. M., Desai, R. P., Welker, N. E. & Papoutsakis, E. T. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol. Bioeng. 67, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  48. Clark, S. W., Bennett, G. N. & Rudolph, F. B. Isolation and characterization of mutants of Clostridium acetobutylicum ATCC 824 deficient in acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A transferase (EC 2.8.3.9) and in other solvent pathway enzymes. Appl. Environ. Microbiol. 55, 970–976 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mavrovouniotis, M. L. Estimation of standard Gibbs energy changes of biotransformations. J. Biol. Chem. 266, 14440–14445 (1991).

    CAS  PubMed  Google Scholar 

  50. Mavrovouniotis, M. L. Group contributions for estimating standard Gibbs energies of formation of biochemical-compounds in aqueous solution. Biotechnol. Bioeng. 36, 1070–1082 (1990).

    CAS  PubMed  Google Scholar 

  51. Heyde, M., Laloi, P. & Portalier, R. Involvement of carbon source and acetyl phosphate in the external-pH-dependent expression of porin genes in Escherichia coli. J. Bacteriol. 182, 198–202 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nyström, T. The glucose-starvation stimulon of Escherichia coli: induced and repressed synthesis of enzymes of central metabolic pathways and role of acetyl phosphate in gene expression and starvation survival. Mol. Microbiol. 12, 833–843 (1994).

    PubMed  Google Scholar 

  53. McCleary, W. R., Stock, J. B. & Ninfa, A. J. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 175, 2793–2798 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Prüß, B. M. & Wolfe, A. J. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol. Microbiol. 12, 973–984 (1994).

    PubMed  Google Scholar 

  55. Wolfe, A. J. et al. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol. Microbiol. 48, 977–988 (2003).

    CAS  PubMed  Google Scholar 

  56. Strauch, M. A. & Hoch, J. A. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene-expression. Mol. Microbiol. 7, 337–342 (1993).

    CAS  PubMed  Google Scholar 

  57. Piggot, P. J. & Losick, R. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 483–517 (ASM Press, Washington DC, 2002).

    Google Scholar 

  58. Onyenwoke, R. U., Brill, J. A., Farahi, K. & Wiegel, J. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Arch. Microbiol. 182, 182–192 (2004).

    CAS  PubMed  Google Scholar 

  59. Santangelo, J. D., Kuhn, A., Treuner-Lange, A. & Dürre, P. Sporulation and time course expression of σ-factor homologous genes in Clostridium acetobutylicum. FEMS Microbiol. Lett. 161, 157–164 (1998).

    CAS  PubMed  Google Scholar 

  60. Weir, J., Predich, M., Dubnau, E., Nair, G. & Smith, I. Regulation of spo0H, a gene coding for the Bacillus subtilis σ-H factor. J. Bacteriol. 173, 521–529 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Resnekov, O., Driks, A. & Losick, R. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J. Bacteriol. 177, 5628–5635 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zuber, P. & Losick, R. Role of AbrB in Spo0A-dependent and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis. J. Bacteriol. 169, 2223–2230 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Long, S., Jones, D. T. & Woods, D. R. Initiation of solvent production, clostridial stage and endospore formation in Clostridium acetobutylicum P262. Appl. Microbiol. Biotechnol. 20, 256–261 (1984).

    CAS  Google Scholar 

  64. Jones, D. T. et al. Solvent production and morphological changes in Clostridium acetobutylicum. Appl. Environ. Microbiol. 43, 1434–1439 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. York, K. et al. Spo0A controls the σA-dependent activation of Bacillus subtilis sporulation-specific transcription unit spoIIE. J. Bacteriol. 174, 2648–2658 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Scotcher, M. C. & Bennett, G. N. SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824. J. Bacteriol. 187, 1930–1936 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Stragier, P., Kunkel, B., Kroos, L. & Losick, R. Chromosomal rearrangement generating a composite gene for a developmental transcription factor. Science 243, 507–512 (1989).

    CAS  PubMed  Google Scholar 

  68. Haraldsen, J. D. & Sonenshein, A. L. Efficient sporulation in Clostridium difficile requires disruption of the σK gene. Mol. Microbiol. 48, 811–821 (2003).

    CAS  PubMed  Google Scholar 

  69. Scotcher, M. C., Rudolph, F. B. & Bennett, G. N. Expression of abrB310 and sinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71, 1987–1995 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mandic-Mulec, I., Doukhan, L. & Smith, I. The Bacillus subtilis SinR protein is a repressor of the key sporulation gene spo0A. J. Bacteriol. 177, 4619–4627 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bai, U., Mandic-Mulec, I. & Smith, I. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein–protein interaction. Genes Dev. 7, 139–148 (1993).

    CAS  PubMed  Google Scholar 

  72. Schumann, W., Hecker, M. & Msadek, T. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 359–368 (ASM Press, Washington DC, 2002).

    Google Scholar 

  73. Pich, A., Narberhaus, F. & Bahl, H. Induction of heat shock proteins during the initiation of solvent formation in Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 33, 697–704 (1990).

    CAS  Google Scholar 

  74. Sauer, U. & Dürre, P. Differential induction of genes related to solvent formation during the shift from acidogenesis to solventogenesis in continuous culture of Clostridium acetobutylicum. FEMS Microbiol. Lett. 125, 115–120 (1995).

    CAS  Google Scholar 

  75. Schaffer, S., Isci, N., Zickner, B. & Dürre, P. Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum. Electrophoresis 23, 110–121 (2002). First publication on proteomic profiling in C. acetobutylicum and the transition from acidogenic and solventogenic conditions.

    CAS  PubMed  Google Scholar 

  76. Terracciano, J. S., Rapaport, E. & Kashket, E. R. Stress and growth-phase associated proteins of Clostridium acetobutylicum. Appl. Environ. Microbiol. 54, 1989–1995 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Walter, K. A., Mermelstein, L. D. & Papoutsakis, E. T. Host–plasmid interactions in recombinant strains of Clostridium acetobutylicum ATCC 824. FEMS Microbiol. Lett. 123, 335–342 (1994).

    CAS  Google Scholar 

  78. Tomas, C. A., Welker, N. E. & Papoutsakis, E. T. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and large changes in the cell's transcriptional program. Appl. Environ. Microbiol. 69, 4951–4965 (2003). First clostridial transcriptional microarray platform, it includes the profiling of C. acetobutylicum wild-type and non-solventogenic, asporogenous strains.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tomas, C. A., Beamish, J. A. & Papoutsakis, E. T. Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J. Bacteriol. 186, 2006–2018 (2003).

    Google Scholar 

  80. Alsaker, K. V., Spitzer, T. R. & Papoutsakis, E. T. Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell's response to butanol stress. J. Bacteriol. 186, 1959–1971 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hüsemann, M. H. & Papoutsakis, E. T. Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum. Appl. Environ. Microbiol. 56, 1497–1500 (1990).

    PubMed  PubMed Central  Google Scholar 

  82. Fond, O., Matta-Ammouri, G., Petitdemange, H. & Engasser, J. M. The role of acids on the production of acetone and butanol by Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 22, 195–200 (1985).

    CAS  Google Scholar 

  83. Huang, L., Forsberg, C. W. & Gibbens, L. N. Influence of external pH and fermentation products on Clostridium acetobutylicum intracellular pH and cellular distribution of fermentation products. Appl. Environ. Microbiol. 51, 1230–1234 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Terracciano, J. S. & Kashket, E. R. Intracellular conditions required for the initiation of solvent production by Clostridium acetobutylicum. Appl. Environ. Microbiol. 52, 86–91 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gottwald, M. & Gottschalk, G. The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation. Arch. Microbiol. 143, 42–46 (1985).

    CAS  Google Scholar 

  86. George, H. A. & Chen, J. -S. Acidic conditions are not obligatory for onset of butanol formation by Clostridium beijerinckii (synonym C. butylicum). Appl. Environ. Microbiol. 46, 321–327 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Aizawa, S. -I., Zhulin, I. B., Márquez-Magaña, L. & Ordal, G. W. in Bacillus subtilis and its Closest Relatives (eds Sonenshein, A. L., Hoch, J. A. & Losick, R.) 437–452 (ASM Press, Washington DC, 2002).

    Google Scholar 

  88. Estacio, W., Santa Anna-Arriola, S., Adedipe, M. & Marquez-Magana, L. M. Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis. J. Bacteriol. 180, 3548–3555 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Tomas, C. A. et al. DNA-array based transcriptional analysis of asporogenous, non-solventogenic Clostridium acetobutylicum strains SKO1 and M5. J. Bacteriol. 185, 4539–4547 (2003). Transcriptional profiling and Western blot analysis of a C. acetobutylicum strain overexpressing the groESL operon. The strain shows important variations in butanol tolerance, solvent production, cell division and sporulation, showing the complex relationships between these processes in C. acetobutylicum.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cornillot, E., Nair, R. V., Papoutsakis, E. T. & Soucaille, P. The genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 reside on a large plasmid whose loss leads to degeneration of the strain. J. Bacteriol. 179, 5442–5447 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Stim-Herndon, K. P., Nair, R., Papoutsakis, E. T. & Bennett, G. N. Analysis of degenerate variants of Clostridium acetobutylicum ATCC 824. Anaerobe 2, 11–18 (1996).

    CAS  Google Scholar 

  92. Petersen, D. J. & Bennett, G. N. Enzymatic characterization of a nonmotile, nonsolventogenic Clostridium acetobutylicum ATCC824 mutant. Curr. Microbiol. 23, 253–258 (1991).

    CAS  Google Scholar 

  93. Gutierrez, N. A. & Maddox, I. S. Isolation and partial characterization of a non-motile mutant of Clostridium acetobutylicum. Biotechnol. Lett. 12, 853–856 (1990).

    CAS  Google Scholar 

  94. Lyristis, M. et al. Cloning, sequencing, and characterization of the gene encoding flagellin, flaC, and the post-translational modification of flagellin, FlaC, from Clostridium acetobutylicum ATCC824. Anaerobe 6, 69–79 (2000).

    CAS  Google Scholar 

  95. Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257–266 (2002).

    CAS  PubMed  Google Scholar 

  96. Dworkin, J. & Losick, R. Developmental commitment in a bacterium. Cell 121, 401–409 (2005).

    CAS  PubMed  Google Scholar 

  97. Baptista, C. S. et al. DNA microarrays for comparative genomics and analysis of gene expression in Trypanosoma cruzi. Mol. Biochem. Parasitol. 138, 183–194 (2004).

    CAS  PubMed  Google Scholar 

  98. Cassat, J. E. et al. Comparative genomics of Staphylococcus aureus musculoskeletal isolates. J. Bacteriol. 187, 576–592 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).

    CAS  PubMed  Google Scholar 

  100. Paredes, C. J., Rigoutsos, I. & Papoutsakis, E. T. Transcriptional organization of the Clostridium acetobutylicum genome. Nucleic Acids Res. 32, 1973–1981 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl Acad. Sci. USA 95, 5857–5864 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Letunic, I. et al. SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, D142–D144 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mulder, N. J. et al. InterPro, progress and status in 2005. Nucleic Acids Res. 33, D201–D205 (2005).

    CAS  PubMed  Google Scholar 

  105. Steen, H. & Pandey, A. Proteomics goes quantitative: measuring protein abundance. Trends Biotechnol. 20, 361–364 (2002).

    CAS  PubMed  Google Scholar 

  106. Lin, D., Tabb, D. L. & Yates, J. R. Large-scale protein identification using mass spectrometry. Biochim. Biophys. Acta 1646, 1–10 (2003).

    CAS  PubMed  Google Scholar 

  107. Brüggemann, H. et al. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl Acad. Sci. USA 100, 1316–1321 (2003).

    PubMed  PubMed Central  Google Scholar 

  108. Hoch, J. A. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol. 47, 441–465 (1993).

    CAS  PubMed  Google Scholar 

  109. Sonenshein, A. L. Control of sporulation initiation in Bacillus subtilis. Curr. Opin. Microbiol. 3, 561–566 (2000).

    CAS  PubMed  Google Scholar 

  110. Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. & Lipman, D. J. Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  111. Jiang, M., Shao, W. L., Perego, M. & Hoch, J. A. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38, 535–542 (2000).

    CAS  PubMed  Google Scholar 

  112. Dartois, V., Djavakhishvili, T. & Hoch, J. A. Identification of a membrane protein involved in activation of the KinB pathway to sporulation in Bacillus subtilis. J. Bacteriol. 178, 1178–1186 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. LeDeaux, J. R. & Grossman, A. D. Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J. Bacteriol. 177, 166–175 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation (USA) grants, a US Department of Energy grant and an NIH/NIGMS Biotechnology Training Grant fellowship to K.V.A. C. difficile and C. botulinum sequence data were generated by the Wellcome Trust Sanger Institute Pathogen Sequencing Unit, and can be obtained from http://www.sanger.ac.uk/Projects/C_difficile and http://www.sanger.ac.uk/Projects/C_botulinum. We thank M. Jankowski from V. Hatzimanikatis' group at Northwestern University from his calculations on the ΔGo of hydrolysis of BuP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftherios T. Papoutsakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacillus anthracis

Bacillus halodurans

Bacillus subtilis

C. acetobutylicum ATCC 824

C. botulinum Hall strain A

C. difficile strain 630

C. perfringens strain 13

C. perfringens strain ATCC 13124

C. perfringens strain SM101

C. tetani E88

Escherichia coli

pSol1

Swiss-Prot

CAC0323

CAC0437

CAC0903

CAC2186

CAC2172

CAC2176

CAC2220

CAC2730

CAC3319

CheY

CPE0207

CPE0870

CPE0951

CPE1316

CPE1512

CPE1757

CPE1986

CPE1987

CTC00084

CTC00456

CTC00715

KinA

KinB

KinC

KinE

NarL

OmpR

PhoB

PhoP

FURTHER INFORMATION

E. Terry Papoutsakis' homepage

Clostridia.net

The Institute for Genomic Research

NCBI

Wellcome Trust Sanger Institute

Microscopic images of C. acetobutylicum sporulation

Glossary

ANTI-σ FACTOR

A negative transcriptional regulator that acts by binding to a σ factor and inhibiting its activity. An anti-anti-σ factor, in turn, counteracts the action of an anti-σ factor.

FORESPORE

A small compartment that is formed after asymmetric division. It is sometimes used specifically for the small compartment after completion of engulfment.

MOTHER CELL

The large compartment in which the spore develops.

Z RING

The ring-shaped structure that is formed from FtsZ polymers during cell division. The Z ring recruits proteins that are required for septal-wall synthesis and cell division.

PRESPORE

Equivalent to the forespore, but sometimes used specifically for the small compartment before completion of engulfment.

CHIP-ON-CHIP

The combination of chromatin immunoprecipitation (ChIP) with microarray (DNA 'chip') analysis for the high-throughput detection of immunoprecipitated DNA fragments. This method has been applied to the determination of the DNA-binding sites of a transcription factor at the genome level.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paredes, C., Alsaker, K. & Papoutsakis, E. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 3, 969–978 (2005). https://doi.org/10.1038/nrmicro1288

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing