Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The Trypanosoma cruzi–host-cell interplay: location, invasion, retention

Abstract

Chagas disease is a debilitating human illness caused by infection with the protozoan Trypanosoma cruzi. A capacity to invade and replicate within many different cell types is a cornerstone of the remarkable fitness of this parasite. Although invasion occurs independently of actin polymerization, the host cell still participates in the process, often in unexpected ways. Recent surprising findings indicate that host-cell lysosomes are indispensable, either by directly mediating invasion or by retaining these highly motile parasites inside cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trypanosoma cruzi life cycle.
Figure 2: Model of Trypanosoma cruzi invasion of non-professional phagocytic cells.

Similar content being viewed by others

References

  1. Schofield, C. J. & Dias, J. C. The Southern Cone Initiative against Chagas disease. Adv. Parasitol. 42, 1–27 (1999).

    Article  CAS  Google Scholar 

  2. Sarquis, O. et al. Epidemiology of Chagas disease in Jaguaruana, Ceara, Brazil. I. Presence of triatomines and index of Trypanosoma cruzi infection in four localities of a rural area. Mem. Inst. Oswaldo Cruz 99, 263–270 (2004).

    Article  Google Scholar 

  3. Dumonteil, E. & Gourbiere, S. Predicting Triatoma dimidiata abundance and infection rate: a risk map for natural transmission of Chagas disease in the Yucatan peninsula of Mexico. Am. J. Trop. Med. Hyg. 70, 514–519 (2004).

    Article  Google Scholar 

  4. Espinoza-Gomez, F., Maldonado-Rodriguez, A., Coll-Cardenas, R., Hernandez-Suarez, C. M. & Fernandez-Salas, I. Presence of triatominae (Hemiptera, Reduviidae) and risk of transmission of Chagas disease in Colima, Mexico. Mem. Inst. Oswaldo Cruz 97, 25–30 (2002).

    Article  Google Scholar 

  5. Nickerson, P., Orr, P., Schroeder, M. L., Sekla, L. & Johnston, J. B. Transfusion-associated Trypanosoma cruzi infection in a non-endemic area. Ann. Intern. Med. 111, 851–853 (1989).

    Article  CAS  Google Scholar 

  6. Kirchhoff, L. V. Is Trypanosoma cruzi a new threat to our blood supply? Ann. Intern. Med. 111, 773–775 (1989).

    Article  CAS  Google Scholar 

  7. Chagas, C. Nova trypanozomiaze humana. Mem. Inst. Oswaldo Cruz 1, 11–80 (1909).

    Article  Google Scholar 

  8. Dvorak, J. A. & Hyde, T. P. Trypanosoma cruzi: interaction with vertebrate cells in vitro. 1. Individual interactions at the cellular and subcellular levels. Exp. Parasitol. 34, 268–283 (1973).

    Article  CAS  Google Scholar 

  9. Zhang, L. & Tarleton, R. L. Parasite persistence correlates with disease severity and localization in chronic Chagas' disease. J. Infect. Dis. 180, 480–486 (1999).

    Article  CAS  Google Scholar 

  10. Prata, A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect. Dis. 1, 92–100 (2001).

    Article  CAS  Google Scholar 

  11. Cunha-Neto, E. et al. Autoimmunity in Chagas' disease. Identification of cardiac myosin-B13 Trypanosoma cruzi protein crossreactive T cell clones in heart lesions of a chronic Chagas' cardiomyopathy patient. J. Clin. Invest. 98, 1709–1712 (1996).

    Article  CAS  Google Scholar 

  12. Kierszenbaum, F. Chagas' disease and the autoimmunity hypothesis. Clin. Microbiol. Rev. 12, 210–223 (1999).

    Article  CAS  Google Scholar 

  13. Jones, E. M. et al. A Trypanosoma cruzi DNA sequence amplified from inflammatory lesions in human chagasic cardiomyopathy. Trans. Assoc. Am. Physicians 105, 182–189 (1992).

    CAS  PubMed  Google Scholar 

  14. Bellotti, G. et al. In vivo detection of Trypanosoma cruzi antigens in hearts of patients with chronic Chagas' heart disease. Am. Heart J. 131, 301–307 (1996).

    Article  CAS  Google Scholar 

  15. Vago, A. R., Macedo, A. M., Adad, S., Reis, D. A. & Correa-Oliveira, R. PCR detection of Trypanosoma cruzi DNA in esophageal tissues of patients with chronic digestive Chagas' disease. Lancet 348, 891–892 (1996).

    Article  CAS  Google Scholar 

  16. Vago, A. R. et al. Kinetoplast DNA signatures of Trypanosoma cruzi strains obtained directly from infected tissues. Am. J. Pathol. 149, 2153–2159 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tarleton, R. L., Zhang, L. & Downs, M. O. “Autoimmune rejection” of neonatal heart transplants in experimental Chagas disease is a parasite-specific response to infected host tissue. Proc. Natl Acad. Sci. USA 94, 3932–3937 (1997).

    Article  CAS  Google Scholar 

  18. Macedo, A. M., Machado, C. R., Oliveira, R. P. & Pena, S. D. Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of chagas disease. Mem. Inst. Oswaldo Cruz 99, 1–12 (2004).

    Article  CAS  Google Scholar 

  19. Andrade, L. O., Machado, C. R., Chiari, E., Pena, S. D. & Macedo, A. M. Trypanosoma cruzi: role of host genetic background in the differential tissue distribution of parasite clonal populations. Exp. Parasitol. 100, 269–275 (2002).

    Article  Google Scholar 

  20. Franco, D. J. et al. Trypanosoma cruzi: mixture of two populations can modify virulence and tissue tropism in rat. Exp. Parasitol. 104, 54–61 (2003).

    Article  CAS  Google Scholar 

  21. Vera-Cruz, J. M. et al. Molecular diagnosis of Chagas' disease and use of an animal model to study parasite tropism. Parasitol. Res. 89, 480–486 (2003).

    CAS  PubMed  Google Scholar 

  22. Andrade, L. O., Machado, C. R., Chiari, E., Pena, S. D. & Macedo, A. M. Differential tissue distribution of diverse clones of Trypanosoma cruzi in infected mice. Mol. Biochem. Parasitol. 100, 163–172 (1999).

    Article  CAS  Google Scholar 

  23. de Diego, J. A., Palau, M. T., Gamallo, C. & Penin, P. Relationships between histopathological findings and phylogenetic divergence in Trypanosoma cruzi. Trop. Med. Int. Health 3, 222–233 (1998).

    Article  CAS  Google Scholar 

  24. Vago, A. R. et al. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am. J. Pathol. 156, 1805–1809 (2000).

    Article  CAS  Google Scholar 

  25. Schijman, A. G. et al. Trypanosoma cruzi DNA in cardiac lesions of Argentinean patients with end-stage chronic Chagas heart disease. Am. J. Trop. Med. Hyg. 70, 210–220 (2004).

    Article  CAS  Google Scholar 

  26. Burleigh, B. A. & Andrews, N. W. The mechanisms of Trypanosoma cruzi invasion of mammalian cells. Annu. Rev. Microbiol. 49, 175–200 (1995).

    Article  CAS  Google Scholar 

  27. Dvorak, J. A. New in vitro approach to quantitation of Trypanosoma cruzi vertebrate cell interactions. New Approaches in American Trypanosomiasis Research (PAHO) Scientific Publication 318, 109–120 (1975).

    Google Scholar 

  28. Tanowitz, H., Wittner, M., Kress, Y. & Bloom, B. Studies of in vitro infection by Trypanosoma cruzi. I. Ultrastructural studies on the invasion of macrophages and L-cells. Am J. Trop. Med. Hyg. 24, 25–36 (1975).

    Article  CAS  Google Scholar 

  29. Nogueira, N. & Cohn, Z. Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J. Exp. Med. 143, 1402–1420 (1976).

    Article  CAS  Google Scholar 

  30. de Araujo-Jorge, T. C. The biology of Trypanosoma cruzi–macrophage interaction. Mem. Inst. Oswaldo Cruz 84, 441–462 (1989).

    Article  CAS  Google Scholar 

  31. Schenkman, S., Robbins, E. S. & Nussenzweig, V. Attachment of Trypanosoma cruzi to mammalian cells requires parasite energy, and invasion can be independent of the target cell cytoskeleton. Infect. Immun. 59, 645–654 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tardieux, I. et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71, 1117–1130 (1992).

    Article  CAS  Google Scholar 

  33. Tardieux, I., Nathanson, M. H. & Andrews, N. W. Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients. J. Exp. Med. 179, 1017–1022 (1994).

    Article  CAS  Google Scholar 

  34. Caler, E. V., Vaena de Avalos, S., Haynes, P. A., Andrews, N. W. & Burleigh, B. A. Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO J. 17, 4975–4986 (1998).

    Article  CAS  Google Scholar 

  35. Rodríguez, A., Martinez, I., Chung, A., Berlot, C. H. & Andrews, N. W. cAMP regulates Ca2+-dependent exocytosis of lysosomes and lysosome-mediated cell invasion by trypanosomes. J. Biol. Chem. 274, 16754–16759 (1999).

    Article  Google Scholar 

  36. Schenkman, S. & Mortara, R. Hela cells extend and internalize pseudopodia during active invasion by Trypanosoma cruzi trypomastigotes. J. Cell Sci. 101, 895–905 (1992).

    PubMed  Google Scholar 

  37. Woolsey, A. M. et al. Novel PI 3-kinase-dependent mechanisms of trypanosome invasion and vacuole maturation. J. Cell Sci. 116, 3611–3622 (2003).

    Article  CAS  Google Scholar 

  38. Woolsey, A. M. & Burleigh, B. A. Host cell actin polymerization is required for cellular retention of Trypanosoma cruzi and early association with endosomal/lysosomal compartments. Cell. Microbiol. 6, 829–838 (2004).

    Article  CAS  Google Scholar 

  39. Andrade, L. O. & Andrews, N. W. Lysosomal fusion is essential for the retention of Trypanosoma cruzi inside host cells. J. Exp. Med. 200, 1135–1143 (2004).

    Article  CAS  Google Scholar 

  40. Ley, V., Robbins, E. S., Nussenzweig, V. & Andrews, N. W. The exit of Trypanosoma cruzi from the phagosome is inhibited by raising the pH of acidic compartments. J. Exp. Med. 171, 401–413 (1990).

    Article  CAS  Google Scholar 

  41. Procopio, D. O., da Silva, S., Cunningham, C. C. & Mortara, R. A. Trypanosoma cruzi: effect of protein kinase inhibitors and cytoskeletal protein organization and expression on host cell invasion by amastigotes and metacyclic trypomastigotes. Exp. Parasitol. 90, 1–13 (1998).

    Article  CAS  Google Scholar 

  42. Matteoni, R. & Kreis, T. Translocation and clustering of endosomes and lysosomes depends on microtubules. J. Cell. Biol. 105, 1253–1265 (1987).

    Article  CAS  Google Scholar 

  43. Schroer, T. A. & Sheetz, M. P. Functions of microtubule-based motors. Annu. Rev. Physiol. 53, 629–652 (1991).

    Article  CAS  Google Scholar 

  44. Sibley, L. D. & Andrews, N. W. Cell invasion by un-palatable parasites. Traffic 1, 100–106 (2000).

    Article  CAS  Google Scholar 

  45. Dubremetz, J. F., Garcia-Reguet, N., Conseil, V. & Fourmaux, M. N. Apical organelles and host-cell invasion by Apicomplexa. Int. J. Parasitol. 28, 1007–1013 (1998).

    Article  CAS  Google Scholar 

  46. Mota, M. M. et al. Migration of Plasmodium sporozoites through cells before infection. Science 291, 141–144 (2001).

    Article  CAS  Google Scholar 

  47. Chobotar, B., Danforth, H. D. & Entzeroth, R. Ultrastructural observations of host-cell invasion by sporozoites of Eimeria papillata in vivo. Parasitol. Res. 79, 15–23 (1993).

    Article  CAS  Google Scholar 

  48. Hugel, F. U., Pradel, G. & Frevert, U. Release of malaria circumsporozoite protein into the host cell cytoplasm and interaction with ribosomes. Mol. Biochem. Parasitol. 81, 151–170 (1996).

    Article  CAS  Google Scholar 

  49. Shin, S. C., Vanderberg, J. P. & Terzakis, J. A. Direct infection of hepatocytes by sporozoites of Plasmodium berghei. J. Protozool. 29, 448–454 (1982).

    Article  CAS  Google Scholar 

  50. Meis, J. F., Verhave, J. P., Jap, P. H., Sinden, R. E. & Meuwissen, J. H. Malaria parasites — discovery of the early liver form. Nature 302, 424–426 (1983).

    Article  CAS  Google Scholar 

  51. Entzeroth, R., Mattig, F. R. & Werner-Meier, R. Structure and function of the parasitophorous vacuole in Eimeria species. Int. J. Parasitol. 28, 1015–1018 (1998).

    Article  CAS  Google Scholar 

  52. Speer, C. A., Dubey, J. P., Blixt, J. A. & Prokop, K. Time lapse video microscopy and ultrastructure of penetrating sporozoites, types 1 and 2 parasitophorous vacuoles, and the transformation of sporozoites to tachyzoites of the VEG strain of Toxoplasma gondii. J. Parasitol. 83, 565–574 (1997).

    Article  CAS  Google Scholar 

  53. Caler, E. V., Chakrabarti, S., Fowler, K. T., Rao, S. & Andrews, N. W. The exocytosis-regulatory protein Synaptotagmin VII mediates cell invasion by Trypanosoma cruzi. J. Exp. Med. 193, 1097–1104 (2001).

    Article  CAS  Google Scholar 

  54. Roy, D. et al. A process for controlling intracellular bacterial infections induced by membrane injury. Science 304, 1515–1518 (2004).

    Article  CAS  Google Scholar 

  55. Russell, R. G. & Blake, D. C. Jr. Cell association and invasion of Caco-2 cells by Campylobacter jejuni. Infect. Immun. 62, 3773–3779 (1994).

    CAS  PubMed  Google Scholar 

  56. Oelschlaeger, T. A., Guerry, P. & Kopecko, D. J. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc. Natl Acad. Sci. USA 90, 6884–6888 (1993).

    Article  CAS  Google Scholar 

  57. Andrade, S. G. & Andrade, Z. A. Comparative histopathological study of lesions produced by 2 strains of Trypanosoma cruzi. Hospital 70, 1267–1278 (1966).

    CAS  Google Scholar 

  58. Bice, D. E. & Zeledon, R. Comparison of infectivity of strains of Trypanosoma cruzi (Chagas, 1909). J. Parasitol. 56, 663–670 (1970).

    Article  CAS  Google Scholar 

  59. Andrade, S. G. Influence of Trypanosoma cruzi strain on the pathogenesis of chronic myocardiopathy in mice. Mem. Inst. Oswaldo Cruz 85, 17–27 (1990).

    Article  CAS  Google Scholar 

  60. Andrade, S. G., M. J. Caracterização de cepas do Trypanosoma cruzi isoladas do Recôncavo Baiano. Rev. Patol. Trop. 3, 65–121 (1974).

    Google Scholar 

  61. Andrade, S. G. & Magalhaes, J. B. Biodemes and zymodemes of Trypanosoma cruzi strains: correlations with clinical data and experimental pathology. Rev. Soc. Bras. Med. Trop. 30, 27–35 (1996).

    Article  Google Scholar 

  62. Andrade, S. G. Morphological and behavioral characterization of Trypanosoma cruzi strains. Brazilian J. Med. Biol. Res. 18, 499–506 (1985).

    CAS  Google Scholar 

  63. Tibayrenc, M. & Ayala, F. J. Trypanosoma cruzi populations: more clonal than sexual. Parasitol. Today 3, 189–190 (1987).

    Article  CAS  Google Scholar 

  64. Pena, S. D. et al. Sequence-specific “gene signatures” can be obtained by PCR with single specific primers at low stringency. Proc. Natl Acad. Sci. USA 91, 1946–1949 (1994).

    Article  CAS  Google Scholar 

  65. Schenkman, S. & Mortara, R. A. HeLa cells extend and internalize pseudopodia during active invasion by Trypanosoma cruzi trypomastigotes. J. Cell Sci. 101, 895–905 (1992).

    PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Andrews laboratory was supported by National Institutes of Health grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma W. Andrews.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Campylobacter jenuni

Trypanosoma cruzi

CDC Infectious Disease Information

Chagas disease

FURTHER INFORMATION

Norma W. Andrews' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, L., Andrews, N. The Trypanosoma cruzi–host-cell interplay: location, invasion, retention. Nat Rev Microbiol 3, 819–823 (2005). https://doi.org/10.1038/nrmicro1249

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing