Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral modulation of NK cell immunity

Key Points

  • In this review, the authors provide an overview of natural killer (NK) cell functions with the emphasis on their role in the standoff between viruses and hosts during infection, including NK cell receptors, the mode of NK cell activation and NK cell effector functions.

  • Murine cytomegalovirus (MCMV) encodes a ligand for an activating NK cell receptor that confers resistance to MCMV in selected mouse strains.

  • Cytomegaloviruses encode proteins that are homologous to MHC class I antigens and which might function to engage inhibitory receptors on NK cells and other circulating leukocytes.

  • Herpesvirus modulation of MHC class I expression is one mechanism by which these viruses evade recognition by cytotoxic T cells, but it might also render virus-infected cells susceptible to NK cell attack.

  • Cytomegaloviruses downregulate NKG2D ligands, which enables CMV-infected cells to avoid NK cell detection.

  • Modulation of NK cell function by other viruses such as hepatitis C, HIV, molluscum contagiosum virus, ectromelia virus and herpes simplex virus are also discussed.

Abstract

Natural killer (NK) cells have been implicated in innate immune responses against viruses such as herpesviruses, which cause persistent infections in the host. In response to the selective pressure that is exerted by NK cells, many viruses have evolved strategies either to evade detection by NK cells or to modulate the activity of NK cells. Here, we review the unique relationship that exists between NK cells and viruses, with a focus on herpesviruses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NK cell recognition of MCMV-infected cells.
Figure 2: UL40 impairs NK cell recognition of HCMV-infected cells.
Figure 3: Modulation of MHC class I antigen presentation by cytomegalovirus proteins.
Figure 4: Downregulation of NKG2D ligands by HCMV UL16.

Similar content being viewed by others

References

  1. Lanier, L. L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Lanier, L. L. NK cell recognition. Annu. Rev. Immunol. 23, 2005 (in the press).

  3. Vilches, C. & Parham, P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu. Rev. Immunol. 20, 217–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, S. K., Ortaldo, J. R. & McVicar, D. W. The ever-expanding Ly49 gene family: repertoire and signaling. Immunol. Rev. 181, 79–89 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Braud, V. M. & McMichael, A. J. Regulation of NK cell functions through interaction of the CD94/NKG2 receptors with the nonclassical class I molecule HLA-E. Curr. Top. Microbiol. Immunol. 244, 85–95 (1999).

    CAS  PubMed  Google Scholar 

  6. Ljunggren, H. -G. & Karre, K. Host resistance directed selectively against H-2-deficient lymphoma variants: analysis of the mechanism. J. Exp. Med. 162, 1745–1759 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Lanier, L. L. On guard — activating NK cell receptors. Nature Immunol. 2, 23–27 (2001).

    Article  CAS  Google Scholar 

  8. Krug, A. et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103, 1433–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004). References 8 and 9 show that Toll-like receptors initiate interferon secretion in response to viral infection, which in turn stimulates an NK cell response.

    Article  CAS  PubMed  Google Scholar 

  10. Tay, C. H. & Welsh, R. M. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J. Virol. 71, 267–275 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, R. K., Spielman, J., Zhao, D. Y., Olsen, K. J. & Podack, E. R. Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells. J. Immunol. 157, 1919–1925 (1996).

    CAS  PubMed  Google Scholar 

  12. Sutton, V. R. et al. Initiation of apoptosis by granzyme B requires direct cleavage of Bid, but not direct granzyme B-mediated caspase activation. J. Exp. Med. 192, 1403–1414 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pinkoski, M. J. et al. Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway. J. Biol. Chem. 276, 12060–12067 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Reddehase, M. J. Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nature Rev. Immunol. 2, 831–844 (2002).

    Article  CAS  Google Scholar 

  15. Mocarski, E. S. Immune escape and exploitation strategies of cytomegaloviruses: impact on and imitation of the major histocompatibility system. Cell. Microbiol. 6, 707–717 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Biron, C. A., Byron, K. S. & Sullivan, J. L. Severe herpesvirus infections in an adolescent without natural killer cells. N. Eng. J. Med. 320, 1731–1735 (1989). First report that humans without NK cells are particularly susceptible to herpesvirus infections.

    Article  CAS  Google Scholar 

  17. Bukowski, J. F., Warner, J. F., Dennert, G. & Welsh, R. M. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J. Exp. Med. 161, 40–52 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Cerwenka, A. & Lanier, L. L. Natural killer cells, viruses and cancer. Nature Rev. Immunol. 1, 41–49 (2001).

    Article  CAS  Google Scholar 

  19. Scalzo, A. A., Fitzgerald, N. A., Simmons, A., La Vista, A. B. & Shellam, G. R. Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J. Exp. Med. 171, 1469–1483 (1990). Provides evidence that resistance to MCMV is conferred by a dominant gene in mice.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, H. -S. et al. Susceptibility to mouse cytomegalovirus is associated with depletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nature Genet. 28, 42–45 (2001).

    CAS  PubMed  Google Scholar 

  21. Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Daniels, K. A. et al. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med. 194, 29–44 (2001). References 20–22 implicate the Ly49H receptor in resistance to MCMV.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, K. M., Wu, J., Bakker, A. B. H., Phillips, J. H. & Lanier, L. L. Cutting edge: Ly49D and Ly49H associate with mouse DAP12 and form activating receptors. J. Immunol. 161, 7–10 (1998).

    CAS  PubMed  Google Scholar 

  24. Sjolin, H. et al. Pivotal role of KARAP/DAP12 adaptor molecule in the natural killer cell-mediated resistance to murine cytomegalovirus infection. J. Exp. Med. 195, 825–834 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, S. H. et al. Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J. Exp. Med. 197, 515–526 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Smith, H. R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl Acad. Sci. USA 99, 8826–8831 (2002). References 26 and 27 identify the ligand of Ly49H as a viral glycoprotein with homology to MHC class I.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Voigt, V. et al. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc. Natl Acad. Sci. USA 100, 13483–13488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. French, A. R. et al. Escape of mutant double-stranded DNA virus from innate immune control. Immunity 20, 747–56 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Pereira, R. A., Scalzo, A. & Simmons, A. Cutting edge: a NK complex-linked locus governs acute versus latent herpes simplex virus infection of neurons. J. Immunol. 166, 5869–5873 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Beck, S. & Barrell, B. G. Human cytomegalovirus encodes a glycoprotein homologous to MHC class I antigens. Nature 331, 269–272 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Fahnestock, M. L. et al. The MHC class I homolog encoded by human cytomegalovirus binds endogenous peptides. Immunity 3, 583–590 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Farrell, H. E. et al. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386, 510–514 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Reyburn, H. T. et al. The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 386, 514–517 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Leong, C. C. et al. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: The role of endogenous class I MHC and a viral class I homolog. J. Exp. Med. 187, 1681–1687 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cosman, D. et al. A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7, 273–282 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Chapman, T. L., Heikeman, A. P. & Bjorkman, P. J. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11, 603–613 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Cretney, E. et al. m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell-mediated rejection. J. Exp. Med. 190, 435–444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tomasec, P. et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 287, 1031–1033 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Braud, V., Jones, E. Y. & McMichael, A. The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9. Eur. J. Immunol. 27, 1164–1169 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–798 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Ulbrecht, M. et al. Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J. Immunol. 164, 5019–5022 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, E. C. et al. UL40-mediated NK evasion during productive infection with human cytomegalovirus. Proc. Natl Acad. Sci. USA 99, 7570–7575 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cerboni, C. et al. Synergistic effect of IFN-γ and human cytomegalovirus protein UL40 in the HLA-E-dependent protection from NK cell-mediated cytotoxicity. Eur. J. Immunol. 31, 2926–2935 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Falk, C. S. et al. NK cell activity during human cytomegalovirus infection is dominated by US2–11-mediated HLA class I down-regulation. J. Immunol. 169, 3257–3266 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Wiertz, E. J. H. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Wiertz, E. J. H. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Barel, M. T. et al. Human cytomegalovirus-encoded US2 differentially affects surface expression of MHC class I locus products and targets membrane-bound, but not soluble HLA-G1 for degradation. J. Immunol. 171, 6757–6765 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Jones, T. R. et al. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc. Natl Acad. Sci. USA 93, 11327–11333 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gruhler, A., Peterson, P. A. & Fruh, K. Human cytomegalovirus immediate early glycoprotein US3 retains MHC class I molecules by transient association. Traffic 1, 318–325 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Ahn, K. et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613–621 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Hengel, H. et al. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623–632 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Wagner, M., Gutermann, A., Podlech, J., Reddehase, M. J. & Koszinowski, U. H. Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J. Exp. Med. 196, 805–816 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kleijnen, M. F. et al. A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J. 16, 685–694 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kavanagh, D. G., Koszinowski, U. H. & Hill, A. B. The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J. Immunol. 167, 3894–3902 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Holtappels, R. et al. The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J. Virol. 74, 1871–1884 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reusch, U. et al. A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J. 18, 1081–1091 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Oliveira, S. A., Park, S. H., Lee, P., Bendelac, A. & Shenk, T. E. Murine cytomegalovirus m02 gene family protects against natural killer cell-mediated immune surveillance. J. Virol. 76, 885–894 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ziegler, H. et al. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6, 57–66 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Kavanagh, D. G., Gold, M. C., Wagner, M., Koszinowski, U. H. & Hill, A. B. The multiple immune-evasion genes of murine cytomegalovirus are not redundant. M4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J. Exp. Med. 194, 967–978 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ishido, S. et al. Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity 13, 365–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Coscoy, L. & Ganem, D. Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl Acad. Sci. USA 97, 8051–8056 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Coscoy, L. & Ganem, D. A viral protein that selectively downregulates ICAM-1 and B7-2 and modulates T cell costimulation. J. Clin. Invest. 107, 1599–1606 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Azuma, M., Cayabyab, M., Buck, D., Phillips, J. H. & Lanier, L. L. Involvement of CD28 in major histocompatibility complex-unrestricted cytotoxicity mediated by a human NK leukemia cell line. J. Immunol. 149, 1115–1123 (1992).

    CAS  PubMed  Google Scholar 

  65. Nagler, A., Lanier, L. L., Cwirla, S. & Phillips, J. H. Comparative studies of human FcRIII-positive and negative NK cells. J. Immunol. 143, 3183–3191 (1989).

    CAS  PubMed  Google Scholar 

  66. Fruh, K. et al. A viral inhibitor of peptide transporters for antigen presentation. Nature 375, 415–418 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Huard, B. & Fruh, K. A role for MHC class I down-regulation in NK cell lysis of herpes virus-infected cells. Eur. J. Immunol. 30, 509–515 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Shimizu, Y. & DeMars, R. Demonstration by class I gene transfer that reduced susceptibility of human cells to natural killer cell-mediated lysis is inversely correlated with HLA class I antigen expression. Eur. J. Immunol. 19, 447–451 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Storkus, W. J., Alexander, J., Payne, J. A., Dawson, J. R. & Cresswell, P. Reversal of natural killing susceptibility in target cells expressing transfected class I HLA genes. Proc. Natl Acad. Sci. USA 86, 2361–2364 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bauer, S. et al. Activation of natural killer cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–730 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Jamieson, A. M. et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17, 19–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Radosavljevic, M. & Bahram, S. In vivo immunogenetics: from MIC to RAET1 loci. Immunogenetics 55, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  73. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001). First evidence that an HCMV-encoded protein, UL16, binds to ligands for the activating NKG2D receptor.

    Article  CAS  PubMed  Google Scholar 

  74. Chalupny, J. N., Sutherland, C. L., Lawrence, W. A., Rein-Weston, A. & Cosman, D. ULBP4 is a novel ligand for human NKG2D. Biochem. Biophys. Res. Commun. 305, 129–135 (2003).

    Article  PubMed  CAS  Google Scholar 

  75. Groh, V. et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nature Immunol. 2, 255–260 (2001).

    Article  CAS  Google Scholar 

  76. Welte, S. A. et al. Selective intracellular retention of virally induced NKG2D ligands by the human cytomegalovirus UL16 glycoprotein. Eur. J. Immunol. 33, 194–203 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Wu, J. et al. Intracellular retention of the MHC class I-related chain B ligand of NKG2D by the human cytomegalovirus UL16 glycoprotein. J. Immunol. 170, 4196–4200 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Dunn, C. et al. Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J. Exp. Med. 197, 1427–1439 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rolle, A. et al. Effects of human cytomegalovirus infection on ligands for the activating NKG2D receptor of NK cells: up-regulation of UL16-binding protein (ULBP)1 and ULBP2 is counteracted by the viral UL16 protein. J. Immunol. 171, 902–908 (2003). References 76–79 indicate that HCMV UL16 retains selected human NKG2D ligand proteins intracellularly.

    Article  PubMed  Google Scholar 

  80. Krmpotic, A. et al. MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nature Immunol. 3, 529–535 (2002). References 80, 85, 87 and 90 show that MCMV encodes viral proteins that affect the expression of ligands for the mouse NKG2D receptor, and which therefore function as virulence factors.

    Article  CAS  Google Scholar 

  81. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  83. Carayannopoulos, L. N., Naidenko, O. V., Fremont, D. H. & Yokoyama, W. M. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J. Immunol. 169, 4079–4083 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Diefenbach, A., Hsia, J. K., Hsiung, M. Y. & Raulet, D. H. A novel ligand for the NKG2D receptor activates NK cells and macrophages and induces tumor immunity. Eur. J. Immunol. 33, 381–391 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Lodoen, M. et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J. Exp. Med. 197, 1245–1253 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ziegler, H., Muranyi, W., Burgert, H. G., Kremmer, E. & Koszinowski, U. H. The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J. 19, 870–881 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lodoen, M. et al. The cytomegalovirus m155 gene product subverts NK cell antiviral protection by disruption of H60-NKG2D interactions. J. Exp. Med. 200, 1075–1081 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lorenzo, M. E., Jung, J. U. & Ploegh, H. L. Kaposi's sarcoma-associated herpesvirus K3 utilizes the ubiquitin-proteasome system in routing class major histocompatibility complexes to late endocytic compartments. J. Virol. 76, 5522–5531 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhan, X. et al. Mutagenesis of murine cytomegalovirus using a Tn3-based transposon. Virology 266, 264–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Abenes, G. et al. Murine cytomegalovirus with a transposon insertional mutation at open reading frame m155 is deficient in growth and virulence in mice. J. Virol. 78, 6891–6899 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schwartz, O., Marechal, V., Le Gall, S., Lemonnier, F. & Heard, J. -M. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nature Med. 2, 338–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Le Gall, S. et al. Nef interacts with the μ subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8, 483–495 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Le Gall, S. et al. Distinct trafficking pathways mediate Nef-induced and clathrin-dependent major histocompatibility complex class I down-regulation. J. Virol. 74, 9256–9266 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cohen, G. B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Martin, M. P. et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nature Genet. 31, 429–434 (2002). Epidemiological studies implicate KIR and HLA-B genes in protection against progression to AIDS.

    Article  CAS  PubMed  Google Scholar 

  96. Flores-Villanueva, P. O. et al. Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc. Natl Acad. Sci. USA 98, 5140–5145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xiang, Y. & Moss, B. IL-18 binding and inhibition of interferon-γ induction by human poxvirus-encoded proteins. Proc. Natl Acad. Sci. USA 96, 11537–11542 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Born, T. L. et al. A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J. Immunol. 164, 3246–3254 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Wallace, G. D., Buller, R. M. & Morse, H. C. Genetic determinants of resistance to ectromelia (mousepox) virus-induced mortality. J. Virol. 55, 890–891 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Delano, M. L. & Brownstein, D. G. Innate resistance to lethal mousepox is genetically linked to the NK gene complex on chromosome 6 and correlates with early restriction of virus replication by cells with an NK phenotype. J. Virol. 69, 5875–5877 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Jacoby, R. O., Bhatt, P. N. & Brownstein, D. G. Evidence that NK cells and interferon are required for genetic resistance to lethal infection with ectromelia virus. Arch. Virol. 108, 49–58 (1989).

    Article  CAS  PubMed  Google Scholar 

  102. Chaudhri, G. et al. Polarized type 1 cytokine response and cell-mediated immunity determine genetic resistance to mousepox. Proc. Natl Acad. Sci. USA 101, 9057–9062 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 282, 938–941 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Wack, A. et al. Binding of the hepatitis C virus envelope protein E2 to CD81 provides a co-stimulatory signal for human T cells. Eur. J. Immunol. 31, 166–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Tseng, C. T., Miskovsky, E. & Klimpel, G. R. Crosslinking CD81 results in activation of TCRγδ T cells. Cell. Immunol. 207, 19–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Tseng, C. T. & Klimpel, G. R. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med. 195, 43–49 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Crotta, S. et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J. Exp. Med. 195, 35–41 (2002). References 106 and 107 indicate that HCV inhibits NK cell functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Khakoo, S. I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004). Epidemiological studies that implicate KIR and HLA genes in protective immune responses to HCV.

    Article  CAS  PubMed  Google Scholar 

  109. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  CAS  PubMed  Google Scholar 

  110. Tortorella, D., Gewurz, B. E., Furman, M. H., Schust, D. J. & Ploegh, H. L. Viral subversion of the immune system. Annu. Rev. Immunol. 18, 861–926 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L.L.L. is an American Cancer Society Research Professor and is funded by the National Institutes of Health. Thanks to J. Ryan and J. Bechtel for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis L. Lanier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

cmv1

IFN-γ

KIR2DL3

Ly49H

MICA

MICB

rhs1

TLR9

UL18

UL40

US2

US11

UL16

ULBP1

ULBP2

Glossary

CLONAL EXPANSION

When T-cell or B-cell clones that express a unique antigen receptor encounter a cognate ligand, these lymphocytes rapidly divide to increase the number of cells that express an identical antigen receptor. This is referred to as clonal expansion.

SYNAPSE

The area of contact between the outer cell membrane of an NK cell and a target cell is known as the NK synapse. NK receptors and their cognate ligands on the target cells are concentrated in this region, which allows signalling and activation of the NK cell.

SERIAL PASSAGE

Isolated virus from one infected host is used to infect another host in a process known as serial passage of the virus. During this process, viral genes might be mutated during the replication cycle unless they have an essential function for viral replication.

CONGENIC

When a polymorphic locus that is present in one strain of mice is introduced into another strain of mice by breeding the mice and selecting for the trait of interest, the newly derived mouse strain is referred to as a congenic strain. It differs from the original parental mouse strain by having a part of its genome that is derived from another strain.

MONOMORPHIC

When genes or proteins in different individuals of a species are invariant they are referred to as monomorphic, and are distinguished from other genes or proteins (polymorphic) that show variation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lodoen, M., Lanier, L. Viral modulation of NK cell immunity. Nat Rev Microbiol 3, 59–69 (2005). https://doi.org/10.1038/nrmicro1066

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing