Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Bdellovibrio as therapeutic agents: a predatory renaissance?

Abstract

Bdellovibrio are predatory bacteria that invade the periplasm of other Gram-negative bacteria where they undergo a complex developmental cycle that culminates in killing of the prey cell. Their intracellular niche allows Bdellovibrio to feed without competition and their lytic action can rapidly reduce bacterial populations, including pathogens, making these predatory bacteria interesting potential candidates for therapeutic applications. With the complete genome sequence for one Bdellovibrio strain now available, researchers now have an opportunity to evaluate the therapeutic potential of these predatory bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The predatory life cycle of Bdellovibrio.

Similar content being viewed by others

References

  1. Varon, M. & Shilo, M. in Advances in Aquatic Microbiology, Vol. 2 (eds Droop, M. R. & Jannesch, H. W.) 1–41 (Academic Press, London, 1980).

    Google Scholar 

  2. Jurkevitch, E., Minz, D., Ramati, B. & Barel, G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibriospp. isolated on phytopathogenic bacteria. Appl. Environ. Microbiol. 66, 2365–2371 (2000).

    Article  CAS  Google Scholar 

  3. Schwudke, D., Strauch, E., Krueger, M. & Appel, B. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst. Appl. Microbiol. 24, 385–394 (2001).

    Article  CAS  Google Scholar 

  4. Straley, S. C. & Conti, S. F. Chemotaxis by Bdellovibrio bacteriovorus toward prey. J. Bacteriol. 132, 628–640 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lambert, C., Smith, M. C. M. & Sockett, R. E. A novel assay to monitor predator–prey interactions for Bdellovibrio bacteriovorus 109J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ. Microbiol. 5, 127–132 (2003).

    Article  CAS  Google Scholar 

  6. Kessel, M. & Shilo, M. Relationship of Bdellovibrio elongation and fission to host cell size. J. Bacteriol. 128, 477–480 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomashow, M. F. & Rittenberg, S. C. in Developmental Biology of Prokaryotes (ed. Parish, J. H.) (University of California Press, 1979).

    Google Scholar 

  8. Cotter, T. W. & Thomashow, M. F. A conjugation procedure for Bdellovibrio bacteriovorus and its use to identify DNA sequences that enhance the plaque-forming ability of a spontaneous host–independent mutant. J. Bacteriol. 174, 6011–6017 (1992).

    Article  CAS  Google Scholar 

  9. Cotter, T. W. & Thomashow, M. F. Identification of a Bdellovibrio bacteriovorus genetic locus, hit, associated with the host-independent phenotype. J. Bacteriol. 174, 6018–6024 (1992).

    Article  CAS  Google Scholar 

  10. Snyder, A. R., Williams, H. N., Baer, M. L., Walker, K. E. & Stine, O. C. 16S rDNA sequence analysis of environmental Bdellovibrio-and-like organisms (BALO) reveals extensive diversity. Int. J. Syst. Evol. Microbiol. 52, 2089–2094 (2002).

    CAS  PubMed  Google Scholar 

  11. Flannagan, R. S., Valvano, M. A. & Koval, S. F. Downregulation of the motA gene delays the escape of the obligate predator Bdellovibrio bacteriovorus 109J from bdelloplasts of bacterial prey cells. Microbiology 150, 649–656 (2004).

    Article  CAS  Google Scholar 

  12. Rendulic, S. et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303, 689–692 (2004).

    Article  CAS  Google Scholar 

  13. Ravenschlag, K., Sahm, K., Pernthaler, J. & Amann, R. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol. 65, 3982–3289 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Baer, M. L., Ravel, J., Chun, J., Hill, R. T. & Williams, H. N. A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int. J. Syst. Evol. Microbiol. 50, 219–224 (2000).

    Article  CAS  Google Scholar 

  15. Sacchi, L. et al. A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue Cell 36, 43–53 (2004).

    Article  CAS  Google Scholar 

  16. Tudor, J. J. & Conti, S. F. Characterization of bdellocysts of Bdellovibrio sp. J. Bacteriol. 131, 314–322 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rittenberg, S. C. & Hespell, R. B. Energy efficiency of intraperiplasmic growth of Bdellovibrio bacteriovorus. J. Bacteriol. 121, 1158–1165 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruby, E. G. & McCabe, J. B. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J. J. Bacteriol. 167, 1066–1070 (1986).

    Article  CAS  Google Scholar 

  19. Lambert, C. A genetic approach to predator–prey interactions in Bdellovibrio bacteriovorus. Ph.D. thesis Nottingham University (2002).

    Google Scholar 

  20. Roberts, R. C. & Ranu, R. S. Transfection of Bdellovibrio bacteriovorus with bacteriophage MAC-1 DNA. FEMS Microbiol. Lett. 43, 207–211 (1987).

    Article  CAS  Google Scholar 

  21. Abram, D., Castro e Melo, J. & Chou, D. Penetration of Bdellovibrio bacteriovorus into host cells. J. Bacteriol. 118, 663–680 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fackrell, H. B. & Robinson, J. Purification and characterization of a lytic peptidase produced by Bdellovibrio bacteriovorus 6-5-S. Can. J. Microbiol. 19, 659–666 (1973).

    Article  CAS  Google Scholar 

  23. Thomashow, M. F. & Rittenberg, S. C. Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: solubilization of Escherichia coli peptidoglycan. J. Bacteriol. 135, 998–1007 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomashow, M. F. & Rittenberg, S. C. Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: N-deacetylation of Escherichia coli peptidoglycan amino sugars. J. Bacteriol. 135, 1008–1014 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Matin, A. & Rittenberg, S. C. Kinetics of deoxyribonucleic acid destruction and synthesis during growth of Bdellovibrio bacteriovorus strain 109D on Pseudomonas putida and Escherichia coli. J. Bacteriol. 111, 664–673 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lederberg, J. Smaller fleas...ad infinitum: therapeutic bacteriophage redux. Proc. Natl Acad. Sci. USA 93, 3167–3168 (1996).

    Article  CAS  Google Scholar 

  27. Fratamico, P. M. & Cooke, P. H. Isolation of bdellovibrios that prey on Escherichia coli 0157:H7 and Salmonella species and application for removal of prey from stainless steel surfaces. J. Food Safety 16, 161–173 (1996).

    Article  Google Scholar 

  28. Richardson, I. R. The incidence of Bdellovibrio spp. in man-made water systems: co-existence with legionellas. J. Appl. Bacteriol. 69, 134–140 (1990).

    Article  CAS  Google Scholar 

  29. Fratamico, P. M. & Whiting, R. C. Ability of Bdellovibrio bacteriovorus 109J to lyse Gram-negative food-borne pathogenic and spoilage bacteria. J. Food Protect. 58, 160–164 (1995).

    Article  Google Scholar 

  30. Markelova, N. Y. Effect of toxic pollutants on Bdellovibrio. Process Biochem. 37, 1177–1181 (2002).

    Article  CAS  Google Scholar 

  31. Varon, M. & Shilo, M. Inhibition of the predatory activity of Bdellovibrio by various environmental pollutants. Microb. Ecol. 7, 107–111 (1981).

    Article  CAS  Google Scholar 

  32. Briggs Wehr, N. & Klein, D. A. Herbicide effects on Bdellovibrio bacteriovorus parasitism of a soil pseudomonad. Soil Biol. Biochem. 3, 143–149 (1971).

    Article  Google Scholar 

  33. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    Article  CAS  Google Scholar 

  34. Hall-Stoodley, L., Stoodley, P. & Costerton, J. W. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  Google Scholar 

  35. Williams, H. N., Kelley, J. I., Baer, M. L. & Turng, B. -F. The association of bdellovibrios with surfaces in the aquatic environment. Can. J. Microbiol. 41, 1142–1147 (1995).

    Article  CAS  Google Scholar 

  36. Koval, S. F. & Bayer, M. E. Bacterial capsules: no barrier against Bdellovibrio. Microbiology 143, 749–753 (1997).

    Article  CAS  Google Scholar 

  37. Koval, S. F. & Hynes, S. H. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J. Bacteriol. 173, 2244–2249 (1991).

    Article  CAS  Google Scholar 

  38. Westergaard, J. M. & Kramer, T. T. Bdellovibrio and the intestinal flora of vertebrates. Appl. Environ. Microbiol. 34, 506–511 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lenz, R. & Hespell, R. B. Attempts to grow bdellovibrios surgically injected into animal cells. Arch. Microbiol. 119, 245–248 (1978).

    Article  Google Scholar 

  40. Scherff, R. H. Control of bacterial blight of soybean by Bdellovibrio bacteriovorus. Phytopathology 63, 400–402 (1973).

    Article  Google Scholar 

  41. Varon, M. & Shilo, M. Attachment of Bdellovibrio bacteriovorus to cell-wall mutants of Salmonella spp. and Escherichia coli. J. Bacteriol. 97, 977–979 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Varon, M. Selection of predation-resistant bacteria in continuous culture. Nature 277, 386–388 (1979).

    Article  Google Scholar 

  43. Alexander, M. Why microbial predators and parasites do not eliminate their prey and hosts. Annu. Rev. Microbiol. 35, 113–133 (1981).

    Article  CAS  Google Scholar 

  44. Shemesh, Y. & Jurkevitch, E. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. 6, 12–18 (2004).

  45. Huang, S. S., Labus, B. J., Samuel, M. C., Wan, D. T. & Reingold, A. L. Antibiotic resistance patterns of bacterial isolates from blood in San Francisco County, California, 1996–1999. Emerg. Infect. Dis. 8, 195–201 (2002).

    Article  Google Scholar 

  46. Schwudke, D. et al. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing α-D-mannoses that replace phosphate residues: similarities and differences between the lipid As and the lipopolysaccharides of the wild-type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J. Biol. Chem. 278, 27502–27512 (2003).

    Article  CAS  Google Scholar 

  47. Wilkinson, M. H. F. Predation in the presence of decoys: an inhibitory factor on pathogen control of bacteriophages or bdellovibrios in dense and diverse ecosystems. J. Theor. Biol. 208, 27–36 (2001).

    Article  CAS  Google Scholar 

  48. Stolp, H. & Petzold, H. Untersuchungen uber einen obligat parasitischen Mikroorganismus mit lytischer aktivitat fur pseudomonas bakterien. Phytopathogishe Zeithschrift 45, 364–390 (1962).

    Article  Google Scholar 

  49. Stolp, H. & Starr, M. P. Bdellovibrio bacteriovorus gen. Et sp. N., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 29, 217–248 (1963).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Chaudhuri of Colibase, University of Birmingham, UK, for assistance with genome analysis. Their work is funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Elizabeth Sockett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bdellovibrio bacteriovorus HD100

Buchnera aphidicola

CAE77837

CAE78299

CAE78505

CAE78865

CAE78875

CAE79180

CAE79394

CAE79452

CAE79454

CAE80233

CAE80242

CAE80483

CAE80640

CAE81224

RadA

RecA

RecG

FURTHER INFORMATION

B. bacteriovorus strain W

Bacteriovorax marinus strain J

Bdellovibrio genome project

R. Elizabeth Sockett's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sockett, R., Lambert, C. Bdellovibrio as therapeutic agents: a predatory renaissance?. Nat Rev Microbiol 2, 669–675 (2004). https://doi.org/10.1038/nrmicro959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro959

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing