Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Can innate immunity be enhanced to treat microbial infections?

Abstract

Innate immunity is a highly effective set of conserved mechanisms used by multicellular organisms to recognize and counter the constant threat of microbial infections. There is evidence to indicate that innate responses are key to controlling most infections, as well as contributing to inflammatory responses that are central components of disease. In addition to Toll-like-receptor-mediated effects, many other mechanisms are used to recognize and respond to microbial threats. Natural molecules such as CpG DNA and small cationic peptides trigger innate responses that help to control infection. This indicates there is potential to utilize such compounds to activate or enhance innate responses as antimicrobials. Harnessing this activity, without associated harmful inflammatory responses, is the main challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generalized major signal transduction pathway of TLR4.
Figure 2: Effects of cationic peptides on innate responses.
Figure 3: Effects mediated by CpG oligonucleotides.

Similar content being viewed by others

References

  1. Beutler, B. Innate immunity: an overview. Mol. Immunol. 40, 845–859 (2004).

    Article  CAS  Google Scholar 

  2. Janeway, C. A., Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  3. Athman, R. & Philpott, D. Innate immunity via Toll-like receptors and Nod proteins. Curr. Opin. Microbiol. 7, 25–32 (2004).

    Article  CAS  Google Scholar 

  4. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  Google Scholar 

  5. Serbina, N. V. et al. Sequential MyD88-independent and -dependent activation of innate immune responses to intracellular bacterial infection. Immunity 19, 891–901 (2003).

    Article  CAS  Google Scholar 

  6. Sugawara, I., Yamada, H., Mizuno, S., Takeda, K. & Akira, S. Mycobacterial infection in MyD88-deficient mice. Microbiol. Immunol. 47, 841–847 (2003).

    Article  CAS  Google Scholar 

  7. Shi, S. et al. MyD88 primes macrophages for full-scale activation by interferon-γ yet mediates few responses to Mycobacterium tuberculosis. J. Exp. Med. 198, 987–997 (2003).

    Article  CAS  Google Scholar 

  8. Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A. & Imler, J. L. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nature Immunol. 3, 91–97 (2002).

    Article  CAS  Google Scholar 

  9. Wells, C. A. et al. Genetic control of the innate immune response. BMC Immunol. 4, 5 (2003).

    Article  Google Scholar 

  10. He, Y. W. et al. The extracellular matrix protein mindin is a pattern-recognition molecule for microbial pathogens. Nature Immunol. 5, 88–97 (2004).

    Article  CAS  Google Scholar 

  11. Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    Article  CAS  Google Scholar 

  12. Medvedev, A. E. et al. Distinct mutations in IRAK-4 confer hyporesponsiveness to lipopolysaccharide and interleukin-1 in a patient with recurrent bacterial infections. J. Exp. Med. 198, 521–531 (2003).

    Article  CAS  Google Scholar 

  13. Kobayashi, K. S. & Flavell, R. A. Shielding the double-edged sword: negative regulation of the innate immune system. J. Leukoc. Biol. 75, 428–433 (2004).

    Article  CAS  Google Scholar 

  14. Holland, S. M. et al. Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon-γ. A preliminary report. N. Engl. J. Med. 330, 1348–1355 (1994).

    Article  CAS  Google Scholar 

  15. Hengge, U. R. & Cusini, M. Topical immunomodulators for the treatment of external genital warts, cutaneous warts and molluscum contagiosum. Br. J. Dermatol. 149, S15–S19 (2003).

    Article  Google Scholar 

  16. Persing, D. H. et al. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32–S37 (2002).

    Article  CAS  Google Scholar 

  17. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  Google Scholar 

  18. Hancock, R. E. W. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1, 156–164 (2001).

    Article  CAS  Google Scholar 

  19. Zasloff. M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  Google Scholar 

  20. Hancock, R. E. W. & Devine, D. (eds) in Mammalian Host Defence Peptides. (Cambridge Univ. Press, New York, in the press).

  21. Maxwell, A. I., Morrison, G. M. & Dorin, J. R. Rapid sequence divergence in mammalian β-defensins by adaptive evolution. Mol. Immunol. 40, 413–421 (2003).

    Article  CAS  Google Scholar 

  22. Lynn, D. J., Lloyd, A. T., Fares, M. A. & O'Farrelly, C. Evidence of positively selected sites in mammalian α-defensins. Mol. Biol. Evol. 21, 819–827 (2004).

    Article  CAS  Google Scholar 

  23. Emes, R. D., Goodstadt, L., Winter, E. E. & Ponting, C. P. Comparison of the genomes of human and mouse lays the foundation of genome zoology. Hum. Mol. Genetics 12, 701–709 (2003).

    Article  CAS  Google Scholar 

  24. Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001).

    Article  CAS  Google Scholar 

  25. Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003).

    Article  CAS  Google Scholar 

  26. Moser, C. et al. β-defensin 1 contributes to pulmonary innate immunity in mice. Infect. Immun. 70, 3068–3072 (2002).

    Article  CAS  Google Scholar 

  27. Rosenberger, C. M., Gallo, R. L. & Finlay, B. B. Interplay between antibacterial effectors: a macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl Acad. Sci. USA 101, 2422–2427 (2004).

    Article  CAS  Google Scholar 

  28. Zhang, L. & Falla, T. J. Cationic antimicrobial peptides — an update. Expert Opin. Investig. Drugs 13, 1–9 (2004).

    Article  Google Scholar 

  29. Scott, M. G., Davidson, D. J., Gold, M. R., Bowdish, D. & Hancock, R. E. W. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 169, 3883–3891 (2002).

    Article  CAS  Google Scholar 

  30. Rustici, A. et al. Molecular mapping and detoxification of the lipid A binding site by synthetic peptides. Science 259, 361–365 (1993).

    Article  CAS  Google Scholar 

  31. Gray, B. H. & Haseman, J. R. Bactericidal activity of synthetic peptides based on the structure of the 55-kilodalton bactericidal protein from human neutrophils. Infect. Immun. 62, 2732–2739 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hirata, M., Shimomura, Y., Yoshida, M., Wright, S. C. & Larrick, J. W. Endotoxin-binding synthetic peptides with endotoxin-neutralizing, antibacterial and anticoagulant activities. Progress Clin. Biol. Res. 388, 147–159 (1994).

    CAS  Google Scholar 

  33. Battafaraono, R. J. et al. Peptide derivatives of three distinct lipopolysaccharide binding proteins inhibit lipopolysaccharide-induced tumor necrosis factor-α secretion in vitro. Surgery 118, 318–324 (1995).

  34. Gough, M., Hancock, R. E. W. & Kelly, N. M. Anti-endotoxic potential of cationic peptide antimicrobials. Infect. Immun. 64, 4922–4927 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chan, C. C., Tuaillon, N., Li, Q. & Shen, D. F. Therapeutic applications of antiflammin peptides in experimental ocular inflammation. Ann. NY Acad. Sci. 923, 141–146 (2000).

    Article  CAS  Google Scholar 

  36. Tjabringa, G. S. et al. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J. Immunol. 171, 6690–6696 (2003).

    Article  CAS  Google Scholar 

  37. Scott, M. G., Rosenberger, C. M., Gold, M. R., Finlay, B. B. & Hancock, R. E. W. An α-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. J. Immunol. 165, 3358–3365 (2000).

    Article  CAS  Google Scholar 

  38. Hancock, R. E. W. & Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402–410 (2000).

    Article  CAS  Google Scholar 

  39. Gudmundsson, G. H. & Agerberth, B. Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system. J. Immunol. Methods 232, 45–54 (1999).

    Article  CAS  Google Scholar 

  40. Otte, J. M., Kiehne, K. & Herzig, K. H. Antimicrobial peptides in innate immunity of the human intestine. J. Gastroenterol. 38, 717–726 (2003).

    Article  CAS  Google Scholar 

  41. Gallo, R. L., Murakami, M., Ohtake, T. & Zaiou, M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol. 110, 823–831 (2002).

    Article  CAS  Google Scholar 

  42. Biragyn, A. et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science 298, 1025–1029 (2002).

    Article  CAS  Google Scholar 

  43. Davidson, D. J. et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J. Immunol. 172, 1146–1156 (2004).

    Article  CAS  Google Scholar 

  44. Bowdish, D. M. E., Davidson, D. J., Speert, D. P. & Hancock, R. E. W. The human cationic peptide LL-37 induces activation of the extracellular signal regulated kinase and p38 kinase pathways in primary human monocytes. J. Immunol. 172, 3758–3765 (2004).

    Article  CAS  Google Scholar 

  45. Dong, C., Davis, R. J. & Flavell, R. A. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    Article  CAS  Google Scholar 

  46. De, Y. et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 192, 1069–1074 (2000).

    Article  Google Scholar 

  47. Niyonsaba, F. et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology 106, 20–26 (2002).

    Article  CAS  Google Scholar 

  48. Oppenheim, J. J., Biragyn, A., Kwak, L. W. & Yang, D. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann. Rheum. Dis. 62, S17–S21 (2003).

    Article  Google Scholar 

  49. van Wetering, S., Mannesse-Lazeroms, S. P., van Sterkenburg, M. A. & Hiemstra, P. S. Neutrophil defensins stimulate the release of cytokines by airway epithelial cells: modulation by dexamethasone. Inflamm. Res. 51, 8–15 (2002).

    Article  CAS  Google Scholar 

  50. Yang, D. et al. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J. Leukoc. Biol. 74, 448–455 (2003).

    Article  CAS  Google Scholar 

  51. Dittmer, U. & Olbrich, A. R. Treatment of infectious diseases with immunostimulatory oligodeoxynucleotides containing CpG motifs. Curr. Opin. Microbiol. 6, 472–477 (2003).

    Article  CAS  Google Scholar 

  52. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  53. Liu, L., Zhou, X., Shi, J., Xie, X. & Yuan, Z. Toll-like receptor-9 induced by physical trauma mediates release of cytokines following exposure to CpG motif in mouse skin. Immunology 110, 341–347 (2003).

    Article  CAS  Google Scholar 

  54. Raghavan, S., Nystrom, J., Fredriksson, M., Holmgren, J. & Harandi, A. M. Orally administered CpG oligodeoxynucleotide induces production of CXC and CC chemokines in the gastric mucosa and suppresses bacterial colonization in a mouse model of Helicobacter pylori infection. Infect. Immun. 71, 7014–7022 (2003).

    Article  CAS  Google Scholar 

  55. Verthelyi, D. & Klinman, D. M. Immunoregulatory activity of CpG oligonucleotides in humans and nonhuman primates. Clin. Immunol. 109, 64–71 (2003).

    Article  CAS  Google Scholar 

  56. Zimmermann, S. et al. CpG oligodeoxynucleotides trigger protective and curative TH1 responses in lethal murine leishmaniasis. J. Immunol. 160, 3627–3630 (1998).

    CAS  Google Scholar 

  57. Dalpke, A., Zimmermann, S. & Heeg, K. CpG DNA in the prevention and treatment of infections. BioDrugs 16, 419–431 (2002).

    Article  CAS  Google Scholar 

  58. Elkins, K. L., Rhinehart-Jones, T. R., Stibitz, S., Conover, J. S. & Klinman, D. M. Bacterial DNA containing CpG motifs stimulates lymphocyte-dependent protection of mice against lethal infection with intracellular bacteria. J. Immunol. 162, 2291–2298 (1999).

    CAS  Google Scholar 

  59. Lee, C. H., Jeong, H. D., Chung, J. K., Lee, H. H. & Kim, K. H. CpG motif in synthetic ODN primes respiratory burst of olive flounder Paralichthys olivaceus phagocytes and enhances protection against Edwardsiella tarda. Dis. Aquat. Organ. 56, 43–48 (2003).

    Article  CAS  Google Scholar 

  60. Gomis, S. et al. Protection of chickens against Escherichia coli infections by DNA containing CpG motifs. Infect. Immun. 71, 857–863 (2003).

    Article  CAS  Google Scholar 

  61. Rosenberger, C. M. & Finlay, B. B. Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nature Rev. Mol. Cell Biol. 4, 385–396 (2003).

    Article  CAS  Google Scholar 

  62. Hornef, M. W., Wick, M. J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nature Immunol. 3, 1033–1040 (2002).

    Article  CAS  Google Scholar 

  63. Hackett, C. J. Innate immune activation as a broad-spectrum biodefense strategy: prospects and research challenges. J. Allergy Clin. Immunol. 112, 686–694 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.B.F. is a Howard Hughes Medical Institute (HHMI) International Research Scholar, a Canadian Institutes for Health Research (CIHR) Distinguished Investigator and the University of British Columbia Peter Wall Distinguished Professor. R.E.W.H. holds a Canada Research Chair. Operating grants from Genome Canada, with matching money from Inimex Pharmaceuticals, HHMI, CIHR, the Canadian Bacterial Diseases Network and the Canadian Cystic Fibrosis Foundation support work in their laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Brett Finlay.

Ethics declarations

Competing interests

The authors are co-founders of Inimex Pharmaceuticals Inc.

Related links

Related links

DATABASES

Entrez

Helicobacter pylori

Listeria monocytogenes

Mycobacterium tuberculosis

Staphylococcus aureus

Streptococcus pneumoniae

LocusLink

CXCR4

MyD88

SwissProt

CAP18

CRAMP

IRAK4

TLR3

TLR4

TLR7

FURTHER INFORMATION

B. Brett Finlay's laboratory

Robert E. W. Hancock's laboratory

Functional pathogenomics of mucosal immunity

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finlay, B., Hancock, R. Can innate immunity be enhanced to treat microbial infections?. Nat Rev Microbiol 2, 497–504 (2004). https://doi.org/10.1038/nrmicro908

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro908

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing