Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The state of the prion

Key Points

  • Since the early 1950s researchers have been studying slow and invariably fatal diseases such as scrapie (sheep), Creutzfeldt–Jakob disease and kuru (humans), bovine spongiform encephalopathy (cattle and sheep) and chronic wasting disease (deer) that are now known to be caused by transmissible agents dubbed 'prions'. After decades of investigation the precise structure of the prion is still debated.

  • The 'protein-only' hypothesis posits that prions are congruent with PrPSc, a misfolded form of the naturally occurring 'cellular prion protein' (PrPC). PrPC is encoded by the Prnp locus and is normally attached to the cell surface by a glycosylphosphatidyl inositol (GPI) anchor. Replication of the prion is attributed to PrPSc-catalysed conversion of PrPC to PrPSc. The 'virus' and 'virino' hypotheses propose that the infectious agent contains an informational nucleic acid; however, despite the best efforts of many laboratories, no such molecule has been identified so far.

  • Infectivity purified from infected brain material contains aggregates of PrPSc as the major protein component, bundled together with other substances including glycosaminoglycans and polysaccharides. Solubilization of the aggregates by denaturants causes loss of infectivity, which so far is irreversible.

  • The replication of prions is discussed, together with experimental evidence obtained from whole organisms, cell lines and cell-free in vitro systems. Research into so-called 'yeast prions', self-propagating conformational isoforms of certain yeast proteins, has added experimental support to the protein-only hypothesis.

  • Differences in strains and factors that affect prion transmission are considered in light of the protein-only prion hypothesis. Expression of cellular PrP is essential for susceptibility to prion disease and for prion replication, but other genes also have a modulating role. The spread of prions within organisms also requires expression of the cellular form PrPC, both within and outside the central nervous system. Certain cells of the immune system serve as amplification sites in prion spread.

  • The origin and evolution of prions are considered. Misfolded PrP may have evolved to serve a useful purpose and at the same time acquired a pathogenic potential that, in early evolutionary times, when the human life span was short, did not confer a selective disadvantage. Alternatively, prions could be derived from ancient exogenous pathogens that are now fully integrated into host chromosomes. More trivially, prions are misfolded proteins that by coincidence have the ability to invade a host through the digestive tract, make their way into the lymphoreticular system where they are amplified and transfer themselves into the central nervous system, which they then destroy.

Abstract

There is little doubt that the main component of the transmissible agent of spongiform encephalopathies — the prion — is a conformational variant of the ubiquitous host protein PrPC, and that the differing properties of various prion strains are associated with different abnormal conformations of this protein. The precise structure of the prion is not yet known, nor are the mechanisms of infection, conformational conversion and pathogenesis understood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models for the propagation of the TSE agent (prion).
Figure 2: Models for the conversion of PrPC to PrPSc.
Figure 3: The dynamic susceptibility model for prion propagation.

Similar content being viewed by others

References

  1. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982). A historically important paper providing a major breakthrough in the understanding of spongiform encephalopathies.

    Article  CAS  PubMed  Google Scholar 

  2. Oesch, B. et al. A cellular gene encodes scrapie PrP 27-30 protein. Cell 40, 735–746 (1985). A historically important paper showing that the gene encoding what is believed to be the infectious molecule is encoded by the host.

    Article  CAS  PubMed  Google Scholar 

  3. Chesebro, B. et al. Identification of scrapie prion protein-specific messenger RNA in scrapie-infected and uninfected brain. Nature 315, 331–333 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Basler, K. et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46, 417–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Stahl, N. et al. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32, 1991–2002 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Prusiner, S. B. Prions causing degenerative neurological diseases. Annu. Rev. Med. 38, 381–398 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Hsiao, K. et al. Linkage of a prion protein missense variant to Gerstmann–Sträussler syndrome. Nature 338, 342–345 (1989). Established the first genetic link between a familial prion disease and the PrP gene.

    Article  CAS  PubMed  Google Scholar 

  8. Prusiner, S. B. et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990). First demonstration that susceptibility to prion disease is modulated by the sequence of the host PrP.

    Article  CAS  PubMed  Google Scholar 

  9. Büeler, H. et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356, 577–582 (1992).

    Article  PubMed  Google Scholar 

  10. Büeler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993). Proof that expression of PrP is essential for prion propagation and pathogenesis.

    Article  PubMed  Google Scholar 

  11. Wickner, R. B. et al. Yeast prions act as genes composed of self-propagating protein amyloids. Adv. Protein Chem. 57, 313–334 (2001). A review of the phenomenon of yeast prions by the person who discovered them.

    Article  CAS  PubMed  Google Scholar 

  12. Riesner, D. et al. Prions and nucleic acids: search for 'residual' nucleic acids and screening for mutations in the PrP gene. Dev. Biol. Stand. 80, 173–181 (1993).

    CAS  PubMed  Google Scholar 

  13. Chesebro, B. Prion protein and the transmissible spongiform encephalopathy diseases. Neuron 24, 503–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Manuelidis, L. Transmissible encephalopathies: speculations and realities. Viral Immunol. 16, 123–139 (2003). An overly critical assessment of the 'protein-only' hypothesis, but worth looking at.

    Article  CAS  PubMed  Google Scholar 

  15. Kimberlin, R. H. Scrapie agent: prions or virinos? Nature 297, 107–108 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. Griffith, J. S. Self-replication and scrapie. Nature 215, 1043–1044 (1967). First proposal of the 'protein-only' hypothesis.

    Article  CAS  PubMed  Google Scholar 

  17. Prusiner, S. B. Molecular biology of prion diseases. Science 252, 1515–1522 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Weissmann, C. A 'unified theory' of prion propagation. Nature 352, 679–683 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Meyer, R. K. et al. Separation and properties of cellular and scrapie prion proteins. Proc. Natl Acad. Sci. USA 83, 2310–2314 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Safar, J. et al. Eight prion strains have PrPSc molecules with different conformations. Nature Med. 4, 1157–1165 (1998). Provides evidence that different prion strains are associated with different PrP conformations.

    Article  CAS  PubMed  Google Scholar 

  21. Peretz, D. et al. Strain-specified relative conformational stability of the scrapie prion protein. Protein Sci. 10, 854–863 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neary, K., Caughey, B., Ernst, D., Race, R. E. & Chesebro, B. Protease sensitivity and nuclease resistance of the scrapie agent propagated in vitro in neuroblastoma cells. J. Virol. 65, 1031–1034 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McKinley, M. P., Bolton, D. C. & Prusiner, S. B. A protease-resistant protein is a structural component of the scrapie prion. Cell 35, 57–62 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. Kuczius, T. & Groschup, M. H. Differences in proteinase K resistance and neuronal deposition of abnormal prion proteins characterize bovine spongiform encephalopathy (BSE) and scrapie strains. Mol. Med. 5, 406–418 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris, D. A. et al. A transgenic model of a familial prion disease. Arch. Virol. Suppl. 103–112 (2000).

  26. Post, K. et al. Rapid acquisition of β-sheet structure in the prion protein prior to multimer formation. Biol. Chem. 379, 1307–1317 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Appel, T. R., Dumpitak, C., Matthiesen, U. & Riesner, D. Prion rods contain an inert polysaccharide scaffold. Biol. Chem. 380, 1295–1306 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Bolton, D. C., Rudelli, R. D., Currie, J. R. & Bendheim, P. E. Copurification of Sp33-37 and scrapie agent from hamster brain prior to detectable histopathology and clinical disease. J. Gen. Virol. 72, 2905–2913 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Weissmann, C. Spongiform encephalopathies. The prion's progress. Nature 349, 569–571 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Manson, J. C. et al. A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 18, 6855–6864 (1999). An interesting example of how a single amino acid change in PrP can affect pathogenesis in prion disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lasmezas, C. I. et al. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein. Science 275, 402–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Collinge, J. et al. Transmission of fatal familial insomnia to laboratory animals. Lancet 346, 569–570 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Manuelidis, L., Sklaviadis, T. & Manuelidis, E. E. Evidence suggesting that PrP is not the infectious agent in Creutzfeldt–Jakob disease. EMBO J. 6, 341–347 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tzaban, S. et al. Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry 41, 12868–12875 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Tremblay, P. et al. Mutant PrPSc conformers induced by a synthetic peptide and several prion strains. J. Virol. 78, 2088–2099 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prusiner, S. B. & Scott, M. R. Genetics of prions. Annu. Rev. Genet. 31, 139–175 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Liemann, S. & Glockshuber, R. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38, 3258–3267 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Jarrett, J. T. & Lansbury, P. J. Seeding 'one-dimensional crystallization' of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73, 1055–1058 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Orgel, L. E. Prion replication and secondary nucleation. Chem. Biol. 3, 413–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Vanik, D. L., Surewicz, K. A. & Surewicz, W. K. Molecular basis of barriers for interspecies transmissibility of mammalian prions. Mol. Cell 14, 139–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Wickner, R. B. et al. Prions of yeast as heritable amyloidoses. J. Struct. Biol. 130, 310–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Enari, M., Flechsig, E. & Weissmann, C. Scrapie prion protein accumulation by scrapie-infected neuroblastoma cells abrogated by exposure to a prion protein antibody. Proc. Natl Acad. Sci. USA 98, 9295–9299 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Montrasio, F. et al. B lymphocyte-restricted expression of prion protein does not enable prion replication in prion protein knockout mice. Proc. Natl Acad. Sci. USA 98, 4034–4037 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Telling, G. C. et al. Prion propagation in mice expressing human and chimeric PrP transgenes implicates the interaction of cellular PrP with another protein. Cell 83, 79–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Priola, S. A. & Chesebro, B. A single hamster PrP amino acid blocks conversion to protease-resistant PrP in scrapie-infected mouse neuroblastoma cells. J. Virol. 69, 7754–7758 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hunter, N. in Prion Diseases (eds Baker, H. F. & Ridley, R. M.) 211–221 (Humana Press, New Jersey, 1996).

    Book  Google Scholar 

  49. Perrier, V. et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl Acad. Sci. USA 23, 23 (2002).

    Google Scholar 

  50. Windl, O. et al. Genetic basis of Creutzfeldt–Jakob disease in the United Kingdom: a systematic analysis of predisposing mutations and allelic variation in the PRNP gene. Hum. Genet. 98, 259–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Collinge, J. & Rossor, M. A new variant of prion disease. Lancet 347, 916–917 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Peden, A. H., Head, M. W., Ritchie, D. L., Bell, J. E. & Ironside, J. W. Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet 364, 527–529 (2004).

    Article  PubMed  Google Scholar 

  53. Race, R. E., Fadness, L. H. & Chesebro, B. Characterization of scrapie infection in mouse neuroblastoma cells. J. Gen. Virol. 68, 1391–1399 (1987).

    Article  PubMed  Google Scholar 

  54. Rubenstein, R., Carp, R. I. & Callahan, S. M. In vitro replication of scrapie agent in a neuronal model: infection of PC12 cells. J. Gen. Virol. 65, 2191–2198 (1984).

    Article  PubMed  Google Scholar 

  55. Schatzl, H. M. et al. A hypothalamic neuronal cell line persistently infected with scrapie prions exhibits apoptosis. J. Virol. 71, 8821–8831 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vorberg, I., Raines, A., Story, B. & Priola, S. A. Susceptibility of common fibroblast cell lines to transmissible spongiform encephalopathy agents. J. Infect. Dis. 189, 431–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Vilette, D. et al. Ex vivo propagation of infectious sheep scrapie agent in heterologous epithelial cells expressing ovine prion protein. Proc. Natl Acad. Sci. USA 98, 4055–4059 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bosque, P. J. & Prusiner, S. B. Cultured cell sublines highly susceptible to prion infection. J. Virol. 74, 4377–4386 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kloehn, P.-C., Stoltze, l., Flechsig, E., Enari, M. & Weissmann, C. A quantitative, highly sensitive cell-based infectivity assay for mouse scrapie prions. Proc. Natl Acad. Sci. USA 100, 11666–11671 (2003).

    Article  CAS  Google Scholar 

  60. Nishida, N. et al. Successful transmission of three mouse-adapted scrapie strains to murine neuroblastoma cell lines overexpressing wild-type mouse prion protein. J. Virol. 74, 320–325 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fischer, M. et al. Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kaneko, K. et al. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc. Natl Acad. Sci. USA 94, 10069–10074 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuczius, T., Haist, I. & Groschup, M. H. Molecular analysis of bovine spongiform encephalopathy and scrapie strain variation. J. Infect. Dis. 178, 693–699 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Kocisko, D. A. et al. Cell-free formation of protease-resistant prion protein. Nature 370, 471–474 (1994). First demonstration that PrPC can be converted to PrPSc in a cell-free system.

    Article  CAS  PubMed  Google Scholar 

  65. Saborio, G. P., Permanne, B. & Soto, C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Deleault, N. R., Lucassen, R. W. & Supattapone, S. RNA molecules stimulate prion protein conversion. Nature 425, 717–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Bruce, M. E., Fraser, H., McBride, P. A., Scott, J. R. & Dickinson, A. G. in Prion Diseases of Humans and Animals (eds Prusiner, S. B., Collinge, J., Powell, J. & Anderton, B.) 497–508 (Ellis Horwood, New York, London, 1992).

    Google Scholar 

  69. Bessen, R. A. & Marsh, R. F. Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J. Virol. 66, 2096–2101 (1992). First demonstration that different prion strains are associated with different forms of PrPSc.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Telling, G. C. et al. Evidence for the conformation of the pathologic isoform of the prion protein enciphering and propagating prion diversity. Science 274, 2079–2082 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. Collinge, J., Sidle, K. C., Meads, J., Ironside, J. & Hill, A. F. Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature 383, 685–690 (1996). Provides biochemical evidence that the agents causing BSE and vCJD are related.

    Article  CAS  PubMed  Google Scholar 

  72. Safar, J. G. et al. Measuring prions causing bovine spongiform encephalopathy or chronic wasting disease by immunoassays and transgenic mice. Nature Biotechnol. 20, 1147–1150 (2002).

    Article  CAS  Google Scholar 

  73. Bellon, A. et al. Improved conformation-dependent immunoassay: suitability for human prion detection with enhanced sensitivity. J. Gen. Virol. 84, 1921–1925 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Caughey, B. et al. Methods for studying prion protein (PrP) metabolism and the formation of protease-resistant PrP in cell culture and cell-free systems. An update. Mol. Biotechnol. 13, 45–55 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–8. (2004). Elegant demonstration that two different fibrillar conformations of a yeast protein generated in vitro are propagated unchanged in yeast and underlie two different phenotypic strains. See also Ref. 76.

    Article  CAS  PubMed  Google Scholar 

  76. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Kimberlin, R. H., Cole, S. & Walker, C. A. Temporary and permanent modifications to a single strain of mouse scrapie on transmission to rats and hamsters. J. Gen. Virol. 68, 1875–1881 (1987).

    Article  PubMed  Google Scholar 

  78. DeArmond, S. J. et al. Selective neuronal targeting in prion disease. Neuron 19, 1337–1348 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Miller, M. W., Williams, E. S., Hobbs, N. T. & Wolfe, L. L. Environmental sources of prion transmission in mule deer. Emerg. Infect. Dis. 10, 1003–1006 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pattison, I. H. in NINDB Monograph No. 2, Slow, Latent and Temperate Virus Infections (eds Gajdusek, D. C., Gibbs, C. J. & Alpers, M.) 249–257 (1965).

    Google Scholar 

  81. Hill, A. F. et al. Species-barrier-independent prion replication in apparently resistant species. Proc. Natl Acad. Sci. USA 97, 10248–10253 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Race, R., Raines, A., Raymond, G. J., Caughey, B. & Chesebro, B. Long-term subclinical carrier state precedes scrapie replication and adaptation in a resistant species: analogies to bovine spongiform encephalopathy and variant Creutzfeldt–Jakob disease in humans. J. Virol. 75, 10106–10112 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Asante, E. A. et al. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J. 21, 6358–6366 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Scott, M. R. et al. Identification of a prion protein epitope modulating transmission of bovine spongiform encephalopathy prions to transgenic mice. Proc. Natl Acad. Sci. USA 94, 14279–14284 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lloyd, S. E. et al. Identification of multiple quantitative trait loci linked to prion disease incubation period in mice. Proc. Natl Acad. Sci. USA 98, 6279–6283 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stephenson, D. A. et al. Quantitative trait loci affecting prion incubation time in mice. Genomics 69, 47–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Moreno, C. R., Lantier, F., Lantier, I., Sarradin, P. & Elsen, J. M. Detection of new quantitative trait loci for susceptibility to transmissible spongiform encephalopathies in mice. Genetics 165, 2085–2091 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Manolakou, K. et al. Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. Proc. Natl Acad. Sci. USA 98, 7402–7407 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994). The seminal paper linking extra-chromosomal inheritance in yeast with the self-propagating conformational variant of a protein.

    Article  CAS  PubMed  Google Scholar 

  90. Wickner, R. B., Edskes, H. K., Roberts, B. T., Pierce, M. & Baxa, U. Prions of yeast as epigenetic phenomena: high protein 'copy number' inducing protein 'silencing'. Adv. Genet. 46, 485–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997). Support for the seeding hypothesis.

    Article  CAS  PubMed  Google Scholar 

  92. Blättler, T. et al. PrP-expressing tissue required for transfer of scrapie infectivity from spleen to brain. Nature 389, 69–73 (1997). Shows that PrP is required not only for susceptibility to prion infection but also for prion transport through the organism.

    Article  PubMed  Google Scholar 

  93. Brandner, S. et al. Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc. Natl Acad. Sci. USA 93, 13148–13151 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Huang, F. P., Farquhar, C. F., Mabbott, N. A., Bruce, M. E. & MacPherson, G. G. Migrating intestinal dendritic cells transport PrPSc from the gut. J. Gen. Virol. 83, 267–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Klein, M. A. et al. PrP expression in B lymphocytes is not required for prion neuroinvasion. Nature Med. 4, 1429–1433 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Kitamoto, T., Muramoto, T., Mohri, S., Dohura, K. & Tateishi, J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt–Jakob disease. J. Virol. 65, 6292–6295 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mackay, F. & Browning, J. L. Turning off follicular dendritic cells. Nature 395, 26–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Montrasio, F. et al. Impaired prion replication in spleens of mice lacking functional follicular dendritic cells. Science 288, 1257–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Mabbott, N. A., Mackay, F., Minns, F. & Bruce, M. E. Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nature Med. 6, 719–720 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Mabbott, N. A., Young, J., McConnell, I. & Bruce, M. E. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J. Virol. 77, 6845–6854 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Glatzel, M., Heppner, F. L., Albers, K. M. & Aguzzi, A. Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron 31, 25–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Race, R., Oldstone, M. & Chesebro, B. Entry versus blockade of brain infection following oral or intraperitoneal scrapie administration: role of prion protein expression in peripheral nerves and spleen. J. Virol. 74, 828–833 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mallucci, G. R. et al. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J. 21, 202–210 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Büeler, H. et al. High prion and PrPSc levels but delayed onset of disease in scrapie-inoculated mice heterozygous for a disrupted PrP gene. Mol. Med. 1, 19–30 (1994).

    Article  PubMed  Google Scholar 

  105. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Ma, J., Wollmann, R. & Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science, 1781–1785 (2002).

  108. Ma, J. & Lindquist, S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298, 1785–1788 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Drisaldi, B. et al. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J. Biol. Chem. 278, 21732–21743 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Heller, U., Winklhofer, K. F., Heske, J., Reintjes, A. & Tatzelt, J. Post-translational import of the prion protein into the endoplasmic reticulum interferes with cell viability: a critical role for the putative transmembrane domain. J. Biol. Chem. 278, 36139–36147 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Roucou, X., Guo, Q., Zhang, Y., Goodyer, C. G. & LeBlanc, A. C. Cytosolic prion protein is not toxic and protects against Bax-mediated cell death in human primary neurons. J. Biol. Chem. 278, 40877–40881 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Hegde, R. S. et al. Transmissible and genetic prion diseases share a common pathway of neurodegeneration. Nature 402, 822–826 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Hegde, R. S. et al. A transmembrane form of the prion protein in neurodegenerative disease. Science 279, 827–834 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Carrell, R. W. & Lomas, D. A. Conformational disease. Lancet 350, 134–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Lansbury, P. T. Jr. Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl Acad. Sci. USA 96, 3342–3324 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Flechsig, E., Manson, J. C., Barron, R., Aguzzi, A. & Weissmann, C. in Prion Biology and Diseases (ed. Prusiner, S. B.) 373–434 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2004).

    Google Scholar 

  117. Tateishi, J., Kitamoto, T., Hoque, M. Z. & Furukawa, H. Experimental transmission of Creutzfeldt–Jakob disease and related diseases to rodents. Neurology 46, 532–537 (1996).

    Article  CAS  PubMed  Google Scholar 

  118. Chiesa, R. et al. Molecular distinction between pathogenic and infectious properties of the prion protein. J. Virol. 77, 7611–7622 (2003). Discusses the difference between a PrP proteinopathy and prion disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Goldfarb, L. G. et al. Transmissible familial Creutzfeldt–Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the Prnp gene. Proc. Natl Acad. Sci. USA 88, 10926–10930 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tateishi, J. & Kitamoto, T. Inherited prion diseases and transmission to rodents. Brain Pathol. 5, 53–59 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Chiti, F. et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl Acad. Sci. USA 96, 3590–3594 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Weissmann, C. Molecular biology of prion diseases. Trends Cell Biol. 4, 10–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Weissmann, C., Enari, M., Klohn, P. C., Rossi, D. & Flechsig, E. Transmission of prions. Proc. Natl Acad. Sci. USA 14, 14 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Infectious Disease Information

Bovine spongiform encephalopathy

OMIM

Creutzfeldt–Jacob disease

kuru

Glossary

STRAINS

Types of prions differing in regard to the clinical course of the disease and the neuropathology they elicit, their transmissibility and the physico-chemical properties of the PrP isoforms that they are associated with.

PRION

Protein-containing infectious agent causing transmissible spongiform encephalopathy (TSE), unusually resistant to agents known to inactivate nucleic acids. As used in this article the term does not imply any specific components or structure.

VIRINO

An infectious particle that is conjectured to consist of a TSE-specific nucleic acid enveloped by PrPSc.

UNIFIED THEORY

This theory proposes that a PrP isoform, PrP*, is indeed the essential infectious component, but that its properties can be modified by a physically associated small RNA, the co-prion, such as a siRNA. The co-prion would have to be amplified in the host cell and remain bound to the newly formed PrP* to explain the stability of strains, and different siRNAs would be responsible for the phenotypic differences between prion strains.

SYMPATHECTOMY

A chemical or surgical procedure that destroys innervation by the sympathetic nervous system.

AMYLOID

Fibrillary, mostly β-sheet-rich deposits of protein. PrP in amyloid form is found in some but not all forms of prion disease in humans and animals.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissmann, C. The state of the prion. Nat Rev Microbiol 2, 861–871 (2004). https://doi.org/10.1038/nrmicro1025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing