Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Escherichia coli acid resistance: tales of an amateur acidophile

Key Points

  • There are four known acid-resistance systems present in pathogenic and non-pathogenic strains of Escherichia coli.

  • The two most effective systems involve the decarboxylation of glutamate or arginine, a process that consumes an intracellular proton.

  • In combination with cognate amino acid antiporters, the amino-acid-dependent systems increase intracellular pH and reverse transmembrane potential. Cl/H+ antiporters are also important in this process.

  • Genetic regulation of the glutamate-dependent acid-resistance system involves a complex regulatory network of at least 10 proteins that mediate induction of gadE, the direct activator of the glutamate decarboxylase and antiporter genes.

  • Glutamate-dependent acid resistance seems to be important for the survival of E. coli O157:H7 in the bovine gastrointestinal tract.

Abstract

Gastrointestinal pathogens are faced with an extremely acidic environment. Within moments, a pathogen such as Escherichia coli O157:H7 can move from the nurturing pH 7 environment of a hamburger to the harsh pH 2 milieu of the stomach. Surprisingly, certain microorganisms that grow at neutral pH have elegantly regulated systems that enable survival during excursions into acidic environments. The best-characterized acid-resistance system is found in E. coli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Consumption of protons during decarboxylation of glutamate (a) and arginine (b).
Figure 2: Model of ClC chloride channel involvement in acid resistance.
Figure 3: Acid resistance reverses electrical potential (ΔΨ).
Figure 4: Model of acid resistance with positive-inside electrical potential.
Figure 5: Activation and accessory circuits controlling glutamate-dependent acid resistance.
Figure 6: Summary of microarray studies.

Similar content being viewed by others

References

  1. Smith, J. L. The role of gastric acid in preventing food-borne disease and how bacteria overcome acid conditions. J. Food. Prot. 66, 1292–1303 (2003).

    Article  Google Scholar 

  2. Gorden, J. & Small, P. L. C. Acid resistance in enteric bacteria. Infect. Immun. 61, 364–367 (1993).

    CAS  Google Scholar 

  3. Small, P., Blankenhorn, D., Welty, D., Zinser, E. & Slonczewski, J. L. Acid and base resistance in Escherichia coli and Shigella flexneri: Role of rpoS and growth pH. J. Bacteriol. 176, 1729–1737 (1994). First study to demonstrate the inducible nature of acid resistance in both E. coli and S. flexneri.

    Article  CAS  Google Scholar 

  4. Audia, J. P., Webb, C. C. & Foster, J. W. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int. J. Med. Microbiol. 291, 97–106 (2001).

    Article  CAS  Google Scholar 

  5. Richard, H. T. & Foster, J. W. Acid resistance in Escherichia coli. Adv. Appl. Microbiol. 52, 167–186 (2003).

    Article  CAS  Google Scholar 

  6. Lin, J., Lee, I. S., Frey, J., Slonczewski, J. L. & Foster, J. W. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri and Escherichia coli. J. Bacteriol. 177, 4097–4104 (1995). First description of the three basic systems of acid resistance in E. coli — the glutamate-dependent, arginine-dependent and glucose-repressed or oxidative system. It also identified adiA , which encodes arginine decarboxylase, as an important part of arginine-dependent acid resistance

    Article  CAS  Google Scholar 

  7. Lin, J. et al. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 62, 3094–3100 (1996).

    CAS  Google Scholar 

  8. Gale, E. F. & Epps, H. M. R. The effect of the pH of the medium during growth on the enzymic activities of bacteria (E. coli and M. lysodiekticus) and the biological significance of the changes produced. J. Biochem. 36, 600–619 (1942).

    Article  CAS  Google Scholar 

  9. Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott, J. F. & Foster, J. W. Control of acid resistance in Escherichia coli. J. Bacteriol. 181, 3525–3535 (1999).

    CAS  Google Scholar 

  10. Iyer, R., Williams, C. & Miller, C. Arginine–agmatine antiporter in extreme acid resistance in Escherichia coli. J. Bacteriol. 185, 6556–6561 (2003).

    Article  CAS  Google Scholar 

  11. Richard, H. & Foster, J. W. Glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J. Bacteriol. 186, 6032–6041 (2004). First attempt to directly show that these systems function to increase internal pH. Also demonstrated that the systems enable the cell to switch electrical potential from inside-negative to inside-positive during extreme acid stress.

    Article  CAS  Google Scholar 

  12. Martin-Galiano, A. J., Ferrandiz, M. J. & de La Campa, A. G. The promoter of the operon encoding the F0F1 ATPase of Streptococcus pneumoniae is inducible by pH. Mol. Microbiol. 41, 1327–1338 (2001).

    Article  CAS  Google Scholar 

  13. Quivey, R. G. Jr, Kuhnert, W. L. & Hahn, K. Adaptation of oral streptococci to low pH. Adv. Microb. Physiol. 42, 239–274 (2000).

    Article  CAS  Google Scholar 

  14. Smith, D. K., Kassam, T., Singh, B. & Elliott, J. F. Escherichia coli has two homologous glutamate decarboxylase genes that map to distinct loci. J. Bacteriol. 174, 5820–5826 (1992).

    Article  CAS  Google Scholar 

  15. De Biase, D., Tramonti, A., Bossa, F. & Visca, P. The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol. Microbiol. 32, 1198–1211 (1999). Described the transcriptional organization of the gadBC operon and revealed that it is regulated by acid, osmolarity and stationary phase.

    Article  CAS  Google Scholar 

  16. Hersh, B. M., Farooq, F. T., Barstad, D. N., Blankenshorn, D. L. & Slonczewski, J. L. A glutamate-dependent acid resistance gene in Escherichia coli. J. Bacteriol. 178, 3978–3981 (1996). Identified the first component of the glutamate-dependent acid-resistance system, which proved to be the glutamate/GABA antiporter.

    Article  CAS  Google Scholar 

  17. Molenaar, D., Bosscher, J. S., ten Brink, B., Driessen, A. J. & Konings, W. N. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 175, 2864–2870 (1993).

    Article  CAS  Google Scholar 

  18. Foster, J. W. & Hall, H. K. Inducible pH homeostasis and the acid tolerance response of Salmonella typhimurium. J. Bacteriol. 173, 5129–5135 (1991).

    Article  CAS  Google Scholar 

  19. Capitani, G. et al. Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase. EMBO J. 22, 4027–4037 (2003).

    Article  CAS  Google Scholar 

  20. Iyer, R., Iverson, T. M., Accardi, A. & Miller, C. A biological role for prokaryotic ClC chloride channels. Nature 419, 715–718 (2002).

    Article  CAS  Google Scholar 

  21. Gutknecht, J. & Walter, A. Transport of protons and hydrochloric acid through lipid bilayer membranes. Biochim. Biophys. Acta 641, 183–188 (1981).

    Article  CAS  Google Scholar 

  22. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427, 803–807 (2004).

    Article  CAS  Google Scholar 

  23. Matin, A. in Bacterial Responses to pH (eds Derek, J. C. & Gardew, G.) 152–163 (John Wiley & Sons, England, 1999).

    Google Scholar 

  24. Matin, A., Wilson, B., Zychlinsky, E. & Matin, M. Proton motive force and the physiological basis of delta pH maintenance in Thiobacillus acidophilus. J. Bacteriol. 150, 582–591 (1982).

    CAS  Google Scholar 

  25. Zychlinsky, E. & Matin, A. Cytoplasmic pH homeostasis in an acidophilic bacterium, Thiobacillus acidophilus. J. Bacteriol. 156, 1352–1355 (1983).

    CAS  Google Scholar 

  26. Sanders, J. W. et al. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27, 299–310 (1998).

    Article  CAS  Google Scholar 

  27. Small, P. L. & Waterman, S. R. Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol. 6, 214–216 (1998).

    Article  CAS  Google Scholar 

  28. Cotter, P. D., Gahan, C. G. & Hill, C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol. Microbiol. 40, 465–475 (2001).

    Article  CAS  Google Scholar 

  29. Cotter, P. D., O'Reilly, K. & Hill, C. Role of the glutamate decarboxylase acid-resistance system in the survival of Listeria monocytogenes LO28 in low pH foods. J. Food. Prot. 64, 1362–1368 (2001).

    Article  CAS  Google Scholar 

  30. Waterman, S. R. & Small, P. L. C. Identification of σs-dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol. Microbiol. 21, 925–940 (1996).

    Article  CAS  Google Scholar 

  31. Ma, Z. et al. GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol. Microbiol. 49, 1309–1320 (2003). First study to identify GadE as the direct activator of the gadA and gadBC genes.

    Article  CAS  Google Scholar 

  32. Castanie-Cornet, M. P. & Foster, J. W. Escherichia coli acid resistance: cAMP receptor protein and a 20 bp cis-acting sequence control pH and stationary phase expression of the gadA and gadBC glutamate decarboxylase genes. Microbiology 147, 709–715 (2001).

    Article  CAS  Google Scholar 

  33. Masuda, N. & Church, G. M. Escherichia coli gene expression responsive to levels of the response regulator EvgA. J. Bacteriol. 184, 6225–6234 (2002).

    Article  CAS  Google Scholar 

  34. Masuda, N. & Church, G. M. Regulatory network of acid resistance genes in Escherichia coli. Mol. Microbiol. 48, 699–712 (2003). Describes a brilliant approach used to define regulatory circuits in acid resistance. The first report to describe a connection between EvgA and acid resistance.

    Article  CAS  Google Scholar 

  35. Tucker, D. L., Tucker, N. & Conway, T. Gene expression profiling of the pH response in Escherichia coli. J. Bacteriol. 184, 6551–6558 (2002).

    Article  CAS  Google Scholar 

  36. Ma, Z., Masuda, N. & Foster, J. W. Defining the EvgAS–YdeO–GadE branched regulatory circuit governing Escherichia coli glutamate-dependent acid resistance. J. Bacteriol. (in the press).

  37. Ma, Z., Richard, H., Tucker, D. L., Conway, T. & Foster, J. W. Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J. Bacteriol. 184, 7001–7012 (2002).

    Article  CAS  Google Scholar 

  38. Shin, S. et al. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator, Per. Mol. Microbiol. 41, 1133–1150. (2001). The first report to demonstrate a role for GadX in regulating glutamate-dependent acid resistance and to link acid resistance to the regulation of genes in the LEE pathogenicity island of enteropathogenic E. coli.

    Article  CAS  Google Scholar 

  39. Tramonti, A., De Canio, M., Bossa, F. & De Biase, D. Stability and oligomerization of recombinant GadX, a transcriptional activator of the Escherichia coli glutamate decarboxylase system. Biochim. Biophys. Acta 1647, 376–380 (2003).

    Article  CAS  Google Scholar 

  40. Tramonti, A., Visca, P., De Canio, M., Falconi, M. & De Biase, D. Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J. Bacteriol. 184, 2603–2613 (2002).

    Article  CAS  Google Scholar 

  41. Lange, R. & Hengge-Aronis, R. The cellular concentration of the σs subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev. 8, 1600–1612 (1994).

    Article  CAS  Google Scholar 

  42. Ma, Z., Richard, H. & Foster, J. W. pH-dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J. Bacteriol. 185, 6852–6859 (2003).

    Article  CAS  Google Scholar 

  43. Cabedo, H. et al. The Escherichia coli trmE (mnmE) gene, involved in tRNA modification, codes for an evolutionarily conserved GTPase with unusual biochemical properties. EMBO J. 18, 7063–7076 (1999).

    Article  CAS  Google Scholar 

  44. Caldon, C. E., Yoong, P. & March, P. E. Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol. Microbiol. 41, 289–297 (2001).

    Article  CAS  Google Scholar 

  45. Yim, L. et al. The GTPase activity and C-terminal cysteine of the Escherichia coli MnmE protein are essential for its tRNA modifying function. J. Biol. Chem. 278, 28378–28387 (2003).

    Article  CAS  Google Scholar 

  46. Gong, S, Ma, Z. & Foster, J. W. The Era-like GTPase TrmE conditionally regulates amino acid-dependent acid resistance in E. coli. Mol. Microbiol. (in the press).

  47. Stim-Herndon, K. P., Flores, T. M. & Bennett, G. N. Molecular characterization of adiY, a regulatory gene which affects expression of the biodegradative acid-induced arginine decarboxylase gene (adiA) of Escherichia coli. Microbiology 142, 1311–1320 (1996).

    Article  CAS  Google Scholar 

  48. Shi, X. & Bennett, G. N. Effects of rpoA and cysB mutations on acid induction of biodegradative agrinine decarboxylase in Escherichia coli. J. Bacteriol. 176, 7017–7023 (1994).

    Article  CAS  Google Scholar 

  49. Tucker, D. L. et al. Genes of the GadX–GadW regulon in Escherichia coli. J. Bacteriol. 185, 3190–3201 (2003).

    Article  CAS  Google Scholar 

  50. Gajiwala, K. S. & Burley, S. K. HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria. J. Mol. Biol. 295, 605–612 (2000).

    Article  CAS  Google Scholar 

  51. Hommais, F. et al. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150, 61–72 (2004).

    Article  CAS  Google Scholar 

  52. Price, S. B., Wright, J. C., DeGraves, F. J., Castanie-Cornet, M. P & Foster, J. W. Acid resistance systems required for survival of Escherichia coli O15p7:H7 in the bovine gastrointestinal tract and in apple cider are different. Appl. Environ. Microbiol. 70 4792–4799 (2004).

    Article  CAS  Google Scholar 

  53. Buchanan, R. L. & Edelson, S. G. pH-dependent stationary-phase acid resistance response of enterohemorrhagic Escherichia coli in the presence of various acidulants. J. Food. Prot. 62, 211–218 (1999).

    Article  CAS  Google Scholar 

  54. Deng, Y., Ryu, J. H. & Beuchat, L. R. Tolerance of acid-adapted and non-adapted Escherichia coli O157:H7 cells to reduced pH as affected by type of acidulant. J. Appl. Microbiol. 86, 203–210 (1999).

    Article  CAS  Google Scholar 

  55. Berry, E. D. & Cutter, C. N. Effects of acid adaptation of Escherichia coli O157:H7 on efficacy of acetic acid spray washes to decontaminate beef carcass tissue. Appl. Environ. Microbiol. 66, 1493–1498 (2000).

    Article  CAS  Google Scholar 

  56. Riordan, D. C. R. et al. Effects of acid adaptation, product pH, and heating on survival of Escherichia coli O157:H7 in pepperoni. Appl. Environ. Microbiol. 66, 1726–1729 (2000).

    Article  CAS  Google Scholar 

  57. Arnold, K. W. & Kaspar, C. W. Starvation- and stationary-phase-induced acid tolerance in Escherichia coli 0157:H7. Appl. Environ. Microbiol. 61, 2037–2039 (1995).

    CAS  Google Scholar 

  58. McClure, P. J. & Hall, S. Survival of Escherichia coli in foods. J. Appl. Microbiol. 88, S61–S70 (2000).

    Article  Google Scholar 

  59. Itoh, K. & Freter, R. Control of Escherichia coli populations by a combination of indigenous clostridia and lactobacilli in gnotobiotic mice and continuous-flow cultures. Infect. Immun. 57, 559–565 (1989).

    CAS  Google Scholar 

  60. Wadolkowski, E. A., Laux, D. C. & Cohen, P. S. Colonization of the streptomycin-treated mouse large intestine by a human fecal Escherichia coli strain: role of growth in mucus. Infect. Immun. 56, 1030–1035 (1988).

    CAS  Google Scholar 

  61. Wadolkowski, E. A., Burris, J. A. & O'Brien, A. D. Mouse model for colonization and disease caused by enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 25, 2438–2445 (1990).

    Google Scholar 

  62. Rang, C. U. et al. Estimation of growth rates of Escherichia coli BJ4 in streptomycin-treated and previously germfree mice by in situ rRNA hybridization. Clin. Diagn. Lab. Immunol. 6, 434–436 (1999).

    CAS  Google Scholar 

  63. Poulsen, L. K., Licht, T. R., Rang, C., Krogfelt, K. A. & Molin, S. Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice. J. Bacteriol. 177, 5840–5845 (1995).

    Article  CAS  Google Scholar 

  64. Yohannes, E., Barnhart, D. M. & Slonczewski, J. L. pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J. Bacteriol. 186, 192–199 (2004).

    Article  CAS  Google Scholar 

  65. Neidhardt, F. C. & Umbarger, H. E. in Escherichia coli and Salmonella. Cellular and Molecular Biology. (ASM Press, Washington DC, 1996).

    Google Scholar 

  66. Karagiannis, J. & Young, P. G. Intracellular pH homeostasis during cell-cycle progression and growth state transition in Schizosaccharomyces pombe. J. Cell Sci. 114, 2929–2941 (2001).

    CAS  Google Scholar 

  67. Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R. & Piston, D. W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J. 73, 2782–2790 (1997).

    Article  CAS  Google Scholar 

  68. Kneen, M., Farinas, J., Li, Y. & S., V. A. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74, 1591–1599 (1998).

    Article  CAS  Google Scholar 

  69. Iwami, Y. et al. Intracellular and extracellular pHs of Streptococcus mutans after addition of acids: loading and efflux of a fluorescent pH indicator in streptococcal cells. Oral Microbiol. Immunol. 17, 239–244 (2002).

    Article  CAS  Google Scholar 

  70. Shechter, E., Letellier, L. & Simons, E. R. Fluorescence dye as monitor of internal pH in Escherichia coli cells. FEBS Lett. 139, 121–124 (1982).

    Article  CAS  Google Scholar 

  71. Kashket, E. R. Effects of K+ and Na+ on the proton motive force of respiring Escherichia coli at alkaline pH. J. Bacteriol. 163, 423–429 (1985).

    CAS  Google Scholar 

  72. Kashket, E. R. The proton motive force in bacteria: a critical assessment of methods. Annu. Rev. Microbiol. 39, 219–242 (1985).

    Article  CAS  Google Scholar 

  73. Bordi, C., Theraulaz, L., Mejean, V. & Jourlin-Castelli, C. Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Mol. Microbiol. 48, 211–223 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank the many colleagues and collaborators that have contributed to our current understanding of E. coli acid resistance. Specifically, J. Slonczewski, T. Conway, G. Church, G. Storz, P. Small, D. De Biase, G. Bennett and C. Miller. I also gratefully acknowledge the generous support of the National Institutes of Health and the United States Department of Agriculture.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez

Brucella melitensis

Chlamydia pneumoniae

Clostridium perfringens

Coxiella burnettii

Escherichia coli

gadA

Helicobacter pylori

Salmonella enterica serovar Typhimurium

Vibrio cholerae

SwissProt

AdiC

CRP

EvgA

EvgS

GadE

GadX

TrmE

YdeO

FURTHER INFORMATION

John W. Foster's laboratory

BRENDA enzyme database

Glossary

STATIONARY PHASE

A stage of extremely slow growth that occurs when nutrients are limited, or when detrimental metabolic end products accumulate.

SIGMA FACTOR

The subunit of RNA polymerase holoenzyme that is required for promoter sequence recognition and the ability to initiate transcription.

ANTIPORTERS

Inner membrane transport proteins that expel one compound that is present in the cytoplasm in exchange for importing a different compound into the cell.

PROTONMOTIVE FORCE

The force attempting to draw protons across the cytoplasmic membrane. It is a combination of the inwardly directed chemical concentration gradient of H+ plus the attractive force of an internal negative electrical charge.

ELECTROGENIC

When a coupled transport system alters the transmembrane electrical gradient — for example, antiport exchange of a +1 charged molecule for a +2 charged molecule. Any pump, whether ATP-dependent or Na+-dependent, which moves net electrical charge across the membrane is called an electrogenic pump.

HYPERPOLARIZATION

When the electrical gradient across the membrane becomes too large and compromises membrane integrity.

EXPONENTIAL GROWTH

A stage of rapid growth where cells multiply exponentially.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, J. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2, 898–907 (2004). https://doi.org/10.1038/nrmicro1021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing