Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Sending a message: extracellular vesicles of pathogenic protozoan parasites

Abstract

Parasitic unicellular eukaryotes use extracellular vesicles (EVs) as vehicles for intercellular communication and host manipulation. By using various mechanisms to generate EVs and by transferring a wide range of molecules through EVs, pathogenic protozoans are able to establish infective niches, modulate the immune system of the host and cause disease. In addition to effects on the host, EVs are able to transfer virulence factors, drug-resistance genes and differentiation factors between parasites. In this Progress article, we explore recent insights into the biology of EVs from human infectious protozoan parasites, including Trichomonas vaginalis, Plasmodium spp. and kinetoplastids, such as Trypanosoma spp. and Leishmania spp.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation and mechanisms of interaction of parasite EVs.
Figure 2: Interactions of EVs in the parasite population.
Figure 3: Interactions of EVs with host cells.

Similar content being viewed by others

References

  1. Gould, S. J. & Raposo, G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389 (2013).

    Article  Google Scholar 

  2. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Cocucci, E. & Meldolesi, J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 25, 364–372 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. EL Andaloussi, S., Mager, I., Breakefield, X. O. & Wood, M. J. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12, 347–357 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Marcilla, A. et al. Extracellular vesicles in parasitic diseases. J. Extracell. Vesicles 3, 25040 (2014).

    Article  PubMed  Google Scholar 

  6. Wood, C. R. & Rosenbaum, J. L. Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol. 25, 276–285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schorey, J. S. & Harding, C. V. Extracellular vesicles and infectious diseases: new complexity to an old story. J. Clin. Invest. 126, 1181–1189 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Siles-Lucas, M., Morchon, R., Simon, F. & Manzano-Roman, R. Exosome-transported microRNAs of helminth origin: new tools for allergic and autoimmune diseases therapy? Parasite Immunol. 37, 208–214 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Barteneva, N. S., Maltsev, N. & Vorobjev, I. A. Microvesicles and intercellular communication in the context of parasitism. Front. Cell. Infect. Microbiol. 3, 49 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Coakley, G., Maizels, R. M. & Buck, A. H. Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol. 31, 477–489 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mantel, P. Y. & Marti, M. The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell. Microbiol. 16, 344–354 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marti, M. & Johnson, P. J. Emerging roles for extracellular vesicles in parasitic infections. Curr. Opin. Microbiol. 32, 66–70 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schorey, J. S., Cheng, Y., Singh, P. P. & Smith, V. L. Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep. 16, 24–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Atayde, V. D. et al. Exosome secretion by the parasitic protozoan Leishmania within the sand fly midgut. Cell Rep. 13, 957–967 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kissinger, P. Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. BMC Infect. Dis. 15, 307 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cowman, A. F., Berry, D. & Baum, J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J. Cell Biol. 198, 961–971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodrigues, J. C., Godinho, J. L. & de Souza, W. Biology of human pathogenic trypanosomatids: epidemiology, lifecycle and ultrastructure. Subcell. Biochem. 74, 1–42 (2014).

    Article  PubMed  Google Scholar 

  18. Maudlin, I. African trypanosomiasis. Ann. Trop. Med. Parasitol. 100, 679–701 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Twu, O. et al. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host–parasite interactions. PLoS Pathog. 9, e1003482 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Silverman, J. M. et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J. Immunol. 185, 5011–5022 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh, J., Bose, M., Roy, S. & Bhattacharyya, S. N. Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection. Cell Host Microbe 13, 277–288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Szempruch, A. J. et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia. Cell 164, 246–257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Regev-Rudzki, N. et al. Cell–cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153, 1120–1133 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Mantel, P. Y. et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13, 521–534 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Silva, M. R. et al. Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA pathways, life cycle regulation, and susceptibility to infection of mammalian cells. Parasitol. Res. 113, 285–304 (2014).

    Article  PubMed  Google Scholar 

  26. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Harding, C. V., Heuser, J. E. & Stahl, P. D. Exosomes: looking back three decades and into the future. J. Cell Biol. 200, 367–371 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Silverman, J. M. et al. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol. 9, R35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bayer-Santos, E. et al. Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J. Proteome Res. 12, 883–897 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Thery, C. Cancer: diagnosis by extracellular vesicles. Nature 523, 161–162 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. El-Assaad, F., Wheway, J., Hunt, N. H., Grau, G. E. & Combes, V. Production, fate and pathogenicity of plasma microparticles in murine cerebral malaria. PLoS Pathog. 10, e1003839 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nantakomol, D. et al. Circulating red cell-derived microparticles in human malaria. J. Infect. Dis. 203, 700–706 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Campos, F. M. et al. Augmented plasma microparticles during acute Plasmodium vivax infection. Malar J. 9, 327 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cao, M. et al. Uni-directional ciliary membrane protein trafficking by a cytoplasmic retrograde IFT motor and ciliary ectosome shedding. eLife 4, e05242 (2015).

    Article  PubMed Central  Google Scholar 

  36. Stephens, N. A. & Hajduk, S. L. Endosomal localization of the serum resistance-associated protein in African trypanosomes confers human infectivity. Eukaryot. Cell 10, 1023–1033 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Greef, C. & Hamers, R. The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. Mol. Biochem. Parasitol. 68, 277–284 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Truc, P. et al. Atypical human infections by animal trypanosomes. PLoS Negl Trop. Dis. 7, e2256 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mugnier, M. R., Papavasiliou, F. N. & Schulz, D. Vesicles as vehicles for virulence. Trends Parasitol. 32, 435–436 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ajoko, C. & Steverding, D. A cultivation method for growing bloodstream forms of Trypanosoma brucei to higher cell density and for longer time. Parasitol. Res. 114, 1611–1612 (2015).

    Article  PubMed  Google Scholar 

  41. da Silveira, J. F., Abrahamsohn, P. A. & Colli, W. Plasma membrane vesicles isolated from epimastigote forms of Trypanosoma cruzi. Biochim. Biophys. Acta 550, 222–232 (1979).

    Article  CAS  PubMed  Google Scholar 

  42. Goncalves, M. F. et al. Trypanosoma cruzi: shedding of surface antigens as membrane vesicles. Exp. Parasitol. 72, 43–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Garcia-Silva, M. R. et al. Gene expression changes induced by Trypanosoma cruzi shed microvesicles in mammalian host cells: relevance of tRNA-derived halves. Biomed. Res. Int. 2014, 305239 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bayer-Santos, E., Lima, F. M., Ruiz, J. C., Almeida, I. C. & da Silveira, J. F. Characterization of the small RNA content of Trypanosoma cruzi extracellular vesicles. Mol. Biochem. Parasitol. 193, 71–74 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lambertz, U. et al. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA packaging. BMC Genomics 16, 151 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Couper, K. N. et al. Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation. PLoS Pathog. 6, e1000744 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Combes, V. et al. ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am. J. Pathol. 166, 295–302 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin-Jaular, L., Nakayasu, E. S., Ferrer, M., Almeida, I. C. & Del Portillo, H. A. Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLoS ONE 6, e26588 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Geiger, A. et al. Exocytosis and protein secretion in Trypanosoma. BMC Microbiol. 10, 20 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Berardi, R. et al. Anemia may influence the outcome of patients undergoing neo-adjuvant treatment of rectal cancer. Ann. Oncol. 17, 1661–1664 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Berthier, D. et al. Tolerance to trypanosomatids: a threat, or a key for disease elimination? Trends Parasitol. 32, 157–168 (2016).

    Article  PubMed  Google Scholar 

  52. Trocoli Torrecilhas, A. C. et al. Trypanosoma cruzi: parasite shed vesicles increase heart parasitism and generate an intense inflammatory response. Microbes Infect. 11, 29–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Nogueira, P. M. et al. Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses. J. Extracell Vesicles 4, 28734 (2015).

    Article  PubMed  Google Scholar 

  54. Martins, N. O. et al. Molecular characterization of a novel family of Trypanosoma cruzi surface membrane proteins (TcSMP) involved in mammalian host cell invasion. PLoS Negl Trop. Dis. 9, e0004216 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hassani, K. & Olivier, M. Immunomodulatory impact of Leishmania-induced macrophage exosomes: a comparative proteomic and functional analysis. PLoS Negl Trop. Dis. 7, e2185 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hassani, K., Shio, M. T., Martel, C., Faubert, D. & Olivier, M. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. PLoS ONE 9, e95007 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Silverman, J. M. et al. An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J. Cell Sci. 123, 842–852 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. De Pablos, L. M. & Osuna, A. Multigene families in Trypanosoma cruzi and their role in infectivity. Infect. Immun. 80, 2258–2264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mugnier, M. R., Cross, G. A. & Papavasiliou, F. N. The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science 347, 1470–1473 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scherf, A., Lopez-Rubio, J. J. & Riviere, L. Antigenic variation in Plasmodium falciparum. Annu. Rev. Microbiol. 62, 445–470 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Barteneva, N. S. et al. Circulating microparticles: square the circle. BMC Cell Biol. 14, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schnitzer, J. K., Berzel, S., Fajardo-Moser, M., Remer, K. A. & Moll, H. Fragments of antigen-loaded dendritic cells (DC) and DC-derived exosomes induce protective immunity against Leishmania major. Vaccine 28, 5785–5793 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Aline, F., Bout, D., Amigorena, S., Roingeard, P. & Dimier-Poisson, I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect. Immun. 72, 4127–4137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robbins, P. D. & Morelli, A. E. Regulation of immune responses by extracellular vesicles. Nat. Rev. Immunol. 14, 195–208 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thery, C., Ostrowski, M. & Segura, E. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadevall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Silverman, J. M. & Reiner, N. E. Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell. Microbiol. 13, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Kapsenberg, M. L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3, 984–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Risbud, M. V. & Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10, 44–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Kasper, L. H. & Buzoni-Gatel, D. Ups and downs of mucosal cellular immunity against protozoan parasites. Infect. Immun. 69, 1–8 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Engel, P. et al. CD Nomenclature 2015: human leukocyte differentiation antigen workshops as a driving force in immunology. J. Immunol. 195, 4555–4563 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH; grant AI039033 to S.L.H.). A.J.S. is an Achievement Rewards for College Scientists (ARCS) Foundation Fellow and is supported, in part, by the NIH (training grant AI060546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Hajduk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szempruch, A., Dennison, L., Kieft, R. et al. Sending a message: extracellular vesicles of pathogenic protozoan parasites. Nat Rev Microbiol 14, 669–675 (2016). https://doi.org/10.1038/nrmicro.2016.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro.2016.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing