Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A functional perspective on phenotypic heterogeneity in microorganisms

Key Points

  • The phenotype of an individual microbial cell is not determined by genes and environment alone. Rather, a number of cellular mechanisms produce phenotypic differences between genetically identical cells grown in homogeneous environments; these differences are referred to as phenotypic heterogeneity.

  • The degree of heterogeneity that arises in a given trait is influenced by the biochemical properties of molecules and by the architecture of gene-regulatory networks. Mutations and other genetic changes can therefore influence the degree of phenotypic heterogeneity.

  • As a consequence, phenotypic heterogeneity is an evolvable trait that can be shaped by natural selection. Increased levels of heterogeneity in specific phenotypic traits can evolve if this provides organisms with benefits in terms of increased survival and growth.

  • One possible benefit is that phenotypic heterogeneity can help organisms to cope with fluctuating environments. This effect is known as bet hedging.

  • Another possible benefit arises through division of labour. Individual cells with different phenotypic traits can specialize in different activities and behaviours and can engage in beneficial interactions.

  • Phenotypic heterogeneity is a potentially important component of biological diversity; it arises at the level of individual microbial cells and provides groups of microorganisms with added functionality.

Abstract

Most microbial communities consist of a genetically diverse assembly of different organisms, and the level of genetic diversity plays an important part in community properties and functions. However, biological diversity also arises at a lower level of biological organization, between genetically identical cells that reside in the same microenvironment. In this Review, I outline the molecular mechanisms responsible for phenotypic heterogeneity and discuss how phenotypic heterogeneity allows genotypes to persist in fluctuating environments. I also describe how it promotes interactions between phenotypic subpopulations in clonal groups, providing microbial groups with new functionality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic heterogeneity.
Figure 2: Molecular mechanisms of phenotypic heterogeneity.
Figure 3: Different functions of phenotypic heterogeneity.

Similar content being viewed by others

References

  1. Smith, V. H. Microbial diversity–productivity relationships in aquatic ecosystems. FEMS Microbiol. Ecol. 62, 181–186 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Allison, S. & Martiny, J. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002). References 3 and 4 are seminal papers that quantify gene expression noise and identify its cellular origins.

    Article  CAS  PubMed  Google Scholar 

  5. McAdams, H. H. & Arkin, A. Stochastic mechanisms in gene expression. Proc. Natl Acad. Sci. USA 94, 814–819 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957).

    Article  CAS  PubMed  Google Scholar 

  7. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanchez, A., Choubey, S. & Kondev, J. Regulation of noise in gene expression. Annu. Rev. Biophys. 42, 469–491 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Raser, J. M. & O'Shea, E. K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaern, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Avery, S. V. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4, 577–587 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Balázsi, G., van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910–925 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altschuler, S. J. & Wu, L. F. Cellular heterogeneity: do differences make a difference? Cell 141, 559–563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Levine, J. H., Lin, Y. & Elowitz, M. B. Functional roles of pulsing in genetic circuits. Science 342, 1193–1200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blake, W. J. et al. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Süel, G. M., Kulkarni, R. P., Dworkin, J., Garcia-Ojalvo, J. & Elowitz, M. B. Tunability and noise dependence in differentiation dynamics. Science 315, 1716–1719 (2007). This study provides direct evidence for a causal link between gene expression noise and phenotypic heterogeneity in B. subtilis.

    Article  CAS  PubMed  Google Scholar 

  17. Huh, D. & Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell division. Nat. Genet. 43, 95–100 (2011). This research quantifies the impact of unequal partitioning of cell components on phenotypic heterogeneity.

    Article  CAS  PubMed  Google Scholar 

  18. Hallet, B. Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr. Opin. Microbiol. 4, 570–581 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Darmon, E. & Leach, D. R. F. Bacterial genome instability. Microbiol. Mol. Biol. Rev. 78, 1–39 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Freed, N. E. et al. A simple screen to identify promoters conferring high levels of phenotypic noise. PLoS Genet. 4, e1000307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blake, W. J., Kaern, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Smits, W. K., Kuipers, O. P. & Veening, J.-W. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4, 259–271 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lenz, P. & Søgaard-Andersen, L. Temporal and spatial oscillations in bacteria. Nat. Rev. Microbiol. 9, 565–577 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Macara, I. G. & Mili, S. Polarity and differential inheritance – universal attributes of life? Cell 135, 801–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fredriksson, Å. & Nyström, T. Conditional and replicative senescence in Escherichia coli. Curr. Opin. Microbiol. 9, 612–618 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Levy, S. F., Ziv, N. & Siegal, M. L. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol. 10, e1001325 (2012). This work shows that cellular age can be a driver of phenotypic heterogeneity in S. cerevisiae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Caudron, F. & Barral, Y. A super-assembly of Whi3 encodes memory of deceptive encounters by single cells during yeast courtship. Cell 155, 1244–1257 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Bergmiller, T. & Ackermann, M. Pole age affects cell size and the timing of cell division in Methylobacterium extorquens AM1. J. Bacteriol. 193, 5216–5221 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wakamoto, Y. et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339, 91–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Reuven, P. & Eldar, A. Macromotives and microbehaviors: the social dimension of bacterial phenotypic variability. Curr. Opin. Genet. Dev. 21, 759–767 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Snijder, B. et al. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461, 520–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Blango, M. G. & Mulvey, M. A. Bacterial landlines: contact-dependent signaling in bacterial populations. Curr. Opin. Microbiol. 12, 177–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miller-Jensen, K., Dey, S. S., Schaffer, D. V. & Arkin, A. P. Varying virulence: epigenetic control of expression noise and disease processes. Trends Biotechnol. 29, 517–525 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell. Biol. 12, 119–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Leibler, S. & Kussell, E. Individual histories and selection in heterogeneous populations. Proc. Natl Acad. Sci. USA 107, 13183–13188 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Norman, T. M., Lord, N. D., Paulsson, J. & Losick, R. Memory and modularity in cell-fate decision making. Nature 503, 481–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Amundson, R. in Adaptation (eds Rose, M. R. & Lauder, G. V) 11–53 (Academic, 1996).

    Google Scholar 

  39. Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004). This article establishes that phenotypic heterogeneity in bacterial growth rates leads to the formation of persisters that are tolerant to antibiotics.

    Article  CAS  PubMed  Google Scholar 

  40. Arnoldini, M. et al. Bistable expression of virulence genes in Salmonella leads to the formation of an antibiotic-tolerant subpopulation. PLoS Biol. 12, e1001928 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008). This study uses a combination of mathematical modelling and laboratory experiments to suggest that phenotypic heterogeneity can lead to the division of labour observed in bacterial pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  42. Wolf, D. M., Vazirani, V. V. & Arkin, A. P. Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theor. Biol. 234, 227–253 (2005).

    Article  PubMed  Google Scholar 

  43. Thattai, M. & van Oudenaarden, A. Stochastic gene expression in fluctuating environments. Genetics 530, 523–530 (2004).

    Article  Google Scholar 

  44. Acar, M., Mettetal, J. T. & van Oudenaarden, A. Stochastic switching as a survival strategy in fluctuating environments. Nat. Genet. 40, 471–475 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Kussell, E. & Leibler, S. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309, 2075–2078 (2005). This theoretical paper establishes that phenotypic heterogeneity can increase long-term growth rates in fluctuating environments.

    Article  CAS  PubMed  Google Scholar 

  46. Perkins, T. J. & Swain, P. S. Strategies for cellular decision-making. Mol. Syst. Biol. 5, 326 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Frankel, N. W. et al. Adaptability of non-genetic diversity in bacterial chemotaxis. eLife 3, e03526 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  48. Kashiwagi, A., Urabe, I., Kaneko, K. & Yomo, T. Adaptive response of a gene network to environmental changes by fitness-induced attractor selection. PLoS ONE 1, e49 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Philippi, T. & Seger, J. Hedging one's evolutionary bets, revisited. Trends Ecol. Evol. 4, 2–5 (1989). This article is an authoritative early review on bet hedging.

    Article  Google Scholar 

  50. Kotte, O., Volkmer, B., Radzikowski, J. L. & Heinemann, M. Phenotypic bistability in Escherichia coli's central carbon metabolism. Mol. Syst. Biol. 10, 736 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rotem, E. et al. Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc. Natl Acad. Sci. USA 107, 12541–12546 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Chastanet, A. et al. Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 107, 8486–8491 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Maamar, H., Raj, A. & Dubnau, D. Noise in gene expression determines cell fate in Bacillus subtilis. Science 317, 526–529 (2007). This report details an important analysis of the impact of noise on phenotypic heterogeneity in B. subtilis.

    Article  CAS  PubMed  Google Scholar 

  54. Stewart, M. K., Cummings, L. A., Johnson, M. L., Berezow, A. B. & Cookson, B. T. Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. Proc. Natl Acad. Sci. USA 108, 20742–20747 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Holland, S. L., Reader, T., Dyer, P. S. & Avery, S. V. Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress. Environ. Microbiol. 16, 1729–1740 (2014).

    Article  PubMed  Google Scholar 

  56. Solopova, A. et al. Bet-hedging during bacterial diauxic shift. Proc. Natl Acad. Sci. USA 111, 7427–7432 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Van Heerden, J. H. et al. Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells. Science 343, 1245114 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. New, A. M. et al. Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol. 12, e1001764 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C. & Rainey, P. B. Experimental evolution of bet hedging. Nature 462, 90–93 (2009). References 58 and 59 show that increased levels of phenotypic heterogeneity can evolve in the laboratory, driven by experimentally imposed fluctuating selection.

    Article  CAS  PubMed  Google Scholar 

  60. López-Maury, L., Marguerat, S. & Bähler, J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat. Rev. Genet. 9, 583–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Ackermann, M. Microbial individuality in the natural environment. ISME J. 7, 465–467 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Veening, J.-W. et al. Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol. Syst. Biol. 4, 184 (2008). This study demonstrates that the production of a secreted, and therefore potentially shared, extracellular compound is phenotypically heterogeneous.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hautefort, I., Proença, M. J., Hinton, J. C. D. & Jose, M. Single-copy green fluorescent protein gene fusions allow accurate measurement of Salmonella gene expression in vitro and during infection of mammalian cells. Appl. Environ. Microbiol. 69, 7480–7491 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stecher, B. et al. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Adams, D. G. Heterocyst formation in cyanobacteria. Curr. Opin. Microbiol. 3, 618–624 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Foster, R. A., Sztejrenszus, S. & Kuypers, M. M. M. Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry1. J. Phycol. 49, 502–516 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Johnson, D. R., Goldschmidt, F., Lilja, E. E. & Ackermann, M. Metabolic specialization and the assembly of microbial communities. ISME J. 6, 1985–1991 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Lorenzo, V., Sekowska, A. & Danchin, A. Chemical reactivity drives spatiotemporal organization of bacterial metabolism. FEMS Microbiol. Rev. 39, 96–119 (2014).

    PubMed  Google Scholar 

  69. Wagner, P. L. et al. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 44, 957–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Voth, D. E. & Ballard, J. D. Clostridium difficile toxins: mechanism of action and role in disease. Clin. Microbiol. Rev. 18, 247–263 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jack, R. W., Tagg, J. R. & Ray, B. Bacteriocins of gram-positive bacteria. Microbiol. Mol. Biol. Rev. 59, 171–200 (1995).

    CAS  Google Scholar 

  72. Mutschler, H., Gebhardt, M., Shoeman, R. L. & Meinhart, A. A novel mechanism of programmed cell death in bacteria by toxin–antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol. 9, e1001033 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sturm, A. et al. The cost of virulence: retarded growth of Salmonella Typhimurium cells expressing type III secretion system 1. PLoS Pathog. 7, e1002143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wessel, A. K., Hmelo, L., Parsek, M. R. & Whiteley, M. Going local: technologies for exploring bacterial microenvironments. Nat. Rev. Microbiol. 11, 337–348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nowak, M. A. & May, R. M. Evolutionary games and spatial chaos. Nature 359, 826–829 (1992).

    Article  Google Scholar 

  76. Velicer, G. J. Social strife in the microbial world. Trends Microbiol. 11, 330–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Diard, M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Crespi, B. J. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16, 178–183 (2001).

    Article  PubMed  Google Scholar 

  79. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Celiker, H. & Gore, J. Cellular cooperation: insights from microbes. Trends Cell Biol. 23, 9–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).

    Article  CAS  PubMed  Google Scholar 

  82. Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Chai, Y., Chu, F., Kolter, R. & Losick, R. Bistability and biofilm formation in Bacillus subtilis. Mol. Microbiol. 67, 254–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. M. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Griffiths, B. S. et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos 2, 279–294 (2000).

    Article  Google Scholar 

  87. Mrak, P., Podlesek, Z., van Putten, J. P. M. & Zgur-Bertok, D. Heterogeneity in expression of the Escherichia coli colicin K activity gene cka is controlled by the SOS system and stochastic factors. Mol. Genet. Genom. 277, 391–401 (2007).

    Article  CAS  Google Scholar 

  88. Nikel, P. I., Silva-Rocha, R., Benedetti, I. & de Lorenzo, V. The private life of environmental bacteria: pollutant biodegradation at the single cell level. Environ. Microbiol. 16, 628–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Ansel, J. et al. Cell-to-cell stochastic variation in gene expression is a complex genetic trait. PLoS Genet. 4, e1000049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fehrmann, S. et al. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability. Mol. Syst. Biol. 9, 695 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yvert, G. et al. Single-cell phenomics reveals intra-species variation of phenotypic noise in yeast. BMC Syst. Biol. 7, 54 (2013). This paper describes an extensive analysis of phenotypic heterogeneity in natural isolates of S. cerevisiae.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Newman, J. R. S. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006). The article presents the first genome-wide study of phenotypic heterogeneity in a microorganism.

    Article  CAS  PubMed  Google Scholar 

  93. Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Silander, O. K. et al. A genome-wide analysis of promoter-mediated phenotypic noise in Escherichia coli. PLoS Genet. 8, e1002443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010). This report presents a genome-wide screen of phenotypic heterogeneity in E. coli.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lehner, B. Selection to minimise noise in living systems and its implications for the evolution of gene expression. Mol. Syst. Biol. 4, 170 (2008). This paper describes an analysis of the action of natural selection on phenotypic heterogeneity in the expression of different genes.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wang, Z. & Zhang, J. Impact of gene expression noise on organismal fitness and the efficacy of natural selection. Proc. Natl Acad. Sci. USA 108, E67–E76 (2011).

    Article  PubMed  Google Scholar 

  98. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Lehner, B. Conflict between noise and plasticity in yeast. PLoS Genet. 6, e1001185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Spudich, J. & Koshland, D. E. Jr. Non-genetic individuality: chance in the single cell. Nature 262, 467–471 (1976). This is one of the first reports on phenotypic heterogeneity in bacteria.

    Article  CAS  PubMed  Google Scholar 

  101. Locke, J. C. W. & Elowitz, M. B. Using movies to analyse gene circuit dynamics in single cells. Nat. Rev. Microbiol. 7, 383–392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pedraza, J. M. & van Oudenaarden, A. Noise propagation in gene networks. Science 307, 1965–1969 (2005). This investigation demonstrates how gene expression noise propagates through gene-regulatory networks.

    Article  CAS  PubMed  Google Scholar 

  103. Sorek, R. & Cossart, P. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nat. Rev. Genet. 11, 9–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Heinemann, M. & Zenobi, R. Single cell metabolomics. Curr. Opin. Biotechnol. 22, 26–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Pernthaler, A. & Amann, R. Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl. Environ. Microbiol. 70, 5426–5433 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hatzenpichler, R. et al. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ. Microbiol. 16, 2568–2590 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wagner, M. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu. Rev. Microbiol. 63, 411–429 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Musat, N., Foster, R., Vagner, T., Adam, B. & Kuypers, M. M. M. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 36, 486–511 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293, 484–487 (2001). This report describes an early analysis of phenotypic traits at the single-cell level using samples from natural environments.

    Article  CAS  PubMed  Google Scholar 

  110. Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl Acad. Sci. USA 105, 17861–17866 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Zimmermann, M. et al. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front. Microbiol. 6, 243 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Elkins, J. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Remus-Emsermann, M. N. P. & Leveau, J. H. J. Linking environmental heterogeneity and reproductive success at single-cell resolution. ISME J. 4, 215–222 (2010).

    Article  PubMed  Google Scholar 

  114. Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Bernstein, H. C., Paulson, S. D. & Carlson, R. P. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity. J. Biotechnol. 157, 159–166 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Müller, J., Hense, B. A., Marozava, S., Kuttler, C. & Meckenstock, R. U. Model selection for microbial nutrient uptake using a cost-benefit approach. Math. Biosci. 255, 52–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Tzamali, E., Poirazi, P., Tollis, I. G. & Reczko, M. A computational exploration of bacterial metabolic diversity identifying metabolic interactions and growth-efficient strain communities. BMC Syst. Biol. 5, 167 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Labhsetwar, P., Cole, J. A., Roberts, E., Price, N. D. & Luthey-Schulten, Z. A. Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population. Proc. Natl Acad. Sci. USA 110, 14006–14011 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Harvey, E., Heys, J. & Gedeon, T. Quantifying the effects of the division of labor in metabolic pathways. J. Theor. Biol. 360, 222–242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nikolic, N., Barner, T. & Ackermann, M. Analysis of fluorescent reporters indicates heterogeneity in glucose uptake and utilization in clonal bacterial populations. BMC Microbiol. 13, 258 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Silva-Rocha, R. & de Lorenzo, V. Stochasticity of TOL plasmid catabolic promoters sets a bimodal expression regime in Pseudomonas putida mt-2 exposed to m-xylene. Mol. Microbiol. 86, 199–211 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Healey, D. & Gore, J. Phenotypic heterogeneity implements a game theoretic mixed strategy in a clonal microbial population. BioRxiv http://dx.doi.org/10.1101/011049 (2014).

  125. Mohr, W., Vagner, T., Kuypers, M. M., Ackermann, M. & LaRoche, J. Resolution of conflicting signals at the single-cell level in the regulation of cyanobacterial photosynthesis and nitrogen fixation. PLoS One 8, e66060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kopf, S. H. et al. Heavy water and 15N labeling with NanoSIMS analysis reveals growth-rate dependent metabolic heterogeneity in chemostats. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.12752 (2015).

  127. Mouslim, C. & Hughes, K. T. The effect of cell growth phase on the regulatory cross-talk between flagellar and Spi1 virulence gene expression. PLoS Pathog. 10, e1003987 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges fruitful collaborations and important discussions with current and former members of the research group, and with a number of colleagues (in particular W.-D. Hardt and M. Doebeli). The author also thanks the referees and S. van Vliet for helpful comments on the manuscript. This work was supported by the Swiss National Science Foundation, the Swiss Federal Institute of Technology Zurich (ETH Zürich), the Swiss Federal Institute of Aquatic Science and Technology (Eawag) and the Marie Curie Program of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ackermann.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Quantitative biology

The use of mathematical tools and principles to analyse experimental data in order to test existing theories and develop new theories.

Division of labour

The division of a biological task into several different subtasks that are each executed by specialized individuals.

Gene amplification

The generation of multiple copies of a genetic region, resulting from a duplication event and subsequent homologous recombination of the duplicated region.

Stochastic gene expression

Fluctuations in the rate of mRNA and/or protein production over time. These fluctuations are a consequence of the low copy numbers of molecules in microbial cells and the burst-like nature of transcription.

Periodic oscillations

Changes in phenotypic traits that occur at regular time intervals.

Cellular age

The age of a cell as measured by the time since synthesis of particular subcellular structures. During cell division, these structures can be asymmetrically segregated into the daughter cells, resulting in two cells of different cellular ages.

Quorum sensing

The regulation of gene expression in response to changes in bacterial population density. Quorum sensing is mediated by intercellular chemical signalling.

Persisters

Cells that are phenotypically tolerant to antibiotics without being genetically resistant.

HipA

An intracellular bacterial toxin that is part of the toxin–antitoxin module hipBA.

Metabolic flux

The rate at which molecules flow through a metabolic pathway.

Type three secretion system 1

(ttss-1). The genetic locus encoding a multiprotein secretion apparatus that some Gram-negative bacteria use to translocate effector proteins into host cells.

Cheaters

Individuals that contribute less than others to a collectively produced public good but still benefit from that good.

Biofilms

Microbial communities that are attached to surfaces. Biofilms provide spatial structure by limiting the movement of microorganisms and the diffusion of molecules.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13, 497–508 (2015). https://doi.org/10.1038/nrmicro3491

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3491

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology