Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ecology and exploration of the rare biosphere

This article has been updated

Key Points

  • Microbial-community abundance distributions have a long 'tail' of low-abundance organisms, referred to as the rare biosphere, which often comprises the large majority of species.

  • Rare-biosphere microorganisms display specific and sometimes unique ecology and biogeography that can differ substantially from that of more abundant representatives.

  • The rare biosphere contributes to a persistent microbial seed bank, contrasting the influence of local microbial extinction and immigration.

  • Recruitment from the rare biosphere provides a broad reservoir of ecological function and resiliency (redundancy and flexibility).

  • Broad time-series studies with rich metadata will improve the study of rare-biosphere dynamics and conditionally rare taxa.

  • Study of the rare biosphere is prone to experimental artefacts (sequencing noise) and biological artefacts (dormancy and taphonomic gradients).

  • The majority of microbial diversity exists, at least transiently, in the rare biosphere.

  • Novel rare-biosphere members can be studied through cultivation, targeted phylogenetic mining and single-cell genomics.

Abstract

The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance microbial populations — the 'rare biosphere' — have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rank–abundance curves.
Figure 2: Hypothetical temporal abundance profiles for rare-biosphere microorganisms.

Similar content being viewed by others

Change history

  • 06 March 2015

    On page 6 the paper by Doxey, A. C. et al. entitled 'Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production'. ISME J. 9, 461–471 (2015) should have been cited at the end of the sentence ‘The recent discovery of thaumarchaeotal vitamin B12 production in aquatic environments also demonstrated winter archaeal abundance at station L4, in contrast to the low relative abundance of related genes at other sampled time points’ instead of reference 75. We have added this new reference as Ref 181 in the reference list.

References

  1. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Ward, D. M., Weller, R. & Bateson, M. M. 16S rRNA sequences reveal numerous uncultured inhabitants in a natural community. Nature 345, 63–65 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Pace, N. R., Stahl, D. A., Lane, D. J. & Olsen, G. J. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microbial Ecol. 9, 1–55 (1986).

    Article  CAS  Google Scholar 

  5. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997). An early review summarizing molecular phylogenetic methods for studying microbial ecosystems.

    Article  CAS  PubMed  Google Scholar 

  6. Neufeld, J. D. & Mohn, W. W. in Molecular Identification, Systematics, and Population Structure of Prokaryotes Ch. 7 (ed. Stackebrandt, E.) (Springer, 2006).

    Google Scholar 

  7. Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. M. Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neufeld, J. D., Yu, Z., Lam, W. & Mohn, W. W. Serial analysis of ribosomal sequence tags (SARST): a high-throughput method for profiling complex microbial communities. Environ. Microbiol. 6, 131–144 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Ashby, M. N., Rine, J., Mongodin, E. F., Nelson, K. E. & Dimster-Denk, D. Serial analysis of rRNA genes and the unexpected dominance of rare members of microbial communities. Appl. Environ. Microbiol. 73, 4532–4542 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neufeld, J. D. & Mohn, W. W. Unexpectedly high bacterial diversity in Arctic tundra relative to boreal forest soils revealed with serial analysis of ribosomal sequence tags (SARST). Appl. Environ. Microbiol. 71, 5710–5718 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006). This study was the first to recognize and describe the rare biosphere with the use of HTS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baas Becking, L. B. Geobiologie of Inleiding Tot de Milieukunde (in Dutch) (WP Van Stockum & Zoon, 1934).

    Google Scholar 

  13. De Wit, R. & Bouvier, T. 'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say? Environ. Microbiol. 8, 755–758 (2006).

    Article  PubMed  Google Scholar 

  14. Reid, A. & Buckley, M. The Rare Biosphere (American Academy of Microbiology, 2011).

    Google Scholar 

  15. Elshahed, M. S. et al. Novelty and uniqueness patterns of rare members of the soil biosphere. Appl. Environ. Microbiol. 74, 5422–5428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multi-million 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77, 3846–3852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lazarevic, V. et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79, 266–271 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caporaso, J. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108 (Suppl 1), 4516–4522 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Gloor, G. et al. Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. PLoS ONE 5, e15406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pedrós-Alió, C. The rare bacterial biosphere. Annu. Rev. Mar. Sci. 4, 449–466 (2012).

    Article  Google Scholar 

  21. Galand, P. E., Casamayor, E. O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc. Natl Acad. Sci. USA 106, 22427–22432 (2009). This study explores the ecology, taxonomy and biogeographic trends of rare marine microorganisms.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gobet, A., Quince, C. & Ramette, A. Multivariate Cutoff Level Analysis (MultiCoLA) of large community data sets. Nucleic Acids Res. 38, e155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haegeman, B. et al. Robust estimation of microbial diversity in theory and in practice. ISME J. 7, 1092–1101 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5, e01371–14 (2014). This study identifies conditionally rare taxa and investigates their role in temporal abundance dynamics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kim, E. et al. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc. Natl Acad. Sci. USA 108, 1496–1500 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. Proc. Natl Acad. Sci. USA 99, 10494–10499 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Curtis, T. P. & Sloan, W. T. Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr. Opin. Microbiol. 7, 221–226 (2004).

    Article  PubMed  Google Scholar 

  31. Curtis, T. P. et al. What is the extent of prokaryotic diversity? Phil. Trans. R. Soc. B 361, 2023–2037 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb. Ecol. 53, 443–455 (2006).

    Article  PubMed  Google Scholar 

  33. Bent, S. J. & Forney, L. J. The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J. 2, 689–695 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12, 118–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Huse, S., Welch, D., Morrison, H. & Sogin, M. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12, 1889–1898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barberán, A., Casamayor, E. O. & Fierer, N. The microbial contribution to macroecology. Front. Microbiol. 5, 203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fierer, N. & Lennon, J. T. The generation and maintenance of diversity in microbial communities. Am. J. Bot. 98, 439–448 (2011).

    Article  PubMed  Google Scholar 

  38. Pedrós-Alió, C. Dipping into the rare biosphere. Science 315, 192–193 (2007). A perspective article introducing the study of rare-biosphere organisms at the beginning of the HTS era.

    Article  PubMed  Google Scholar 

  39. Newton, R. J. et al. Shifts in the microbial community composition of Gulf Coast beaches following beach oiling. PLoS ONE 8, e74265 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vergin, K. L., Done, B., Carlson, C. A. & Giovannoni, S. J. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. Aquat. Microb. Ecol. 71, 1–13 (2013).

    Article  Google Scholar 

  41. Youssef, N. et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Appl. Environ. Microbiol. 75, 5227–5236 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gobet, A. et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. ISME J. 6, 542–553 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bowen, J. L., Crump, B. C., Deegan, L. A. & Hobbie, J. E. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs. ISME J. 3, 924–934 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Logares, R. et al. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24, 813–821 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Youssef, N., Steidley, B. L. & Elshahed, M. S. Novel high-rank phylogenetic lineages within a sulfur spring (Zodletone spring, Oklahoma, USA) revealed using a combined pyrosequencing/Sanger approach. Appl. Environ. Microbiol. 78, 2677–2688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lynch, M. D., Bartram, A. K. & Neufeld, J. D. Targeted recovery of novel phylogenetic diversity from next-generation sequence data. ISME J. 6, 2067–2077 (2012). This study used phylogenetic mining of HTS data to identify taxonomic blind spots through targeted gene recovery.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nature Biotech. 29, 415–420 (2011).

    Article  CAS  Google Scholar 

  48. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilbert, J. A. et al. The Earth Microbiome Project: meeting report of the 1st EMP meeting on sample selection and acquisition at Argonne National Laboratory October 6th 2010. Stand. Genomic Sci. 3, 249–253 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Caron, D. A. & Countway, P. D. Hypotheses on the role of the protistan rare biosphere in a changing world. Aquat. Microb. Ecol. 57, 227–238 (2009).

    Article  Google Scholar 

  51. Campbell, B. J., Yu, L., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl Acad. Sci. USA 108, 12776–12781 (2011). Discovery of disproportionate activity among rare marine bacteria.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl Acad. Sci. USA 107, 5881–5886 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Besemer, K. et al. Unraveling assembly of stream biofilm communities. ISME J. 6, 1459–1468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilhelm, L. et al. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. Environ. Microbiol. 16, 2514–2524 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Wilcox, R. M. & Fuhrman, J. A. Bacterial viruses in coastal seawater: lytic rather than lysogenic production. Mar. Ecol. Prog. Ser. 114, 35–45 (1994).

    Article  Google Scholar 

  56. Winter, C., Bouvier, T., Weinbauer, M. G. & Thingstad, T. F. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol. Mol. Biol. Rev. 74, 42–57 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).

    Article  Google Scholar 

  58. Jürgens, K. & Matz, C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek 81, 413–434 (2002).

    Article  PubMed  Google Scholar 

  59. Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nature Rev. Microbiol. 3, 537–546 (2005).

    Article  Google Scholar 

  60. Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

    Article  Google Scholar 

  61. Connell, J. H. in Dynamics of Populations (eds den Boer, P. J. & Gradwell, G.) 298–312 (Wageningen, 1971).

    Google Scholar 

  62. Brockhurst, M. A., Fenton, A., Roulston, B. & Rainey, P. B. The impact of phages on interspecific competition in experimental populations of bacteria. BMC Ecol. 6, 19 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Rev. Microbiol. 9, 119–130 (2011).

    Article  CAS  Google Scholar 

  65. Marchant, R., Banat, I. M., Rahman, T. J. & Berzano, M. The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ. Microbiol. 4, 595–602 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Hubert, C. et al. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science 325, 1541–1544 (2009). This study demonstrates thermophilic bacterial immigration and preservation within Arctic sediment and identifies influences on community composition.

    Article  CAS  PubMed  Google Scholar 

  67. de Rezende, J. R. et al. Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years. ISME J. 7, 72–84 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Müller, A. L. et al. Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. ISME J. 8, 1153–1165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 11, 3132–3139 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. ISME J. 6, 298–308 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Caporaso, J. G., Paszkiewicz, K., Field, D., Knight, R. & Gilbert, J. A. The Western English Channel contains a persistent microbial seed bank. ISME J. 6, 1089–1093 (2012). Deep sequencing of a single time point, compared to a 6-year time series, resulted in the identification of recruitment from the rare biosphere or microbial seed bank rather than extinction and recolonization.

    Article  CAS  PubMed  Google Scholar 

  72. Brazelton, W. J. et al. Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys. Proc. Natl Acad. Sci. USA 107, 1612–1617 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sjöstedt, J. et al. Recruitment of members from the rare biosphere of marine bacterioplankton communities after an environmental disturbance. Appl. Environ. Microbiol. 78, 1361–1369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anderson, D. M., Cembella, A. D. & Hallegraeff, G. M. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu. Rev. Mar. Sci. 4, 143–176 (2012).

    Article  Google Scholar 

  75. Gibbons, S. M. et al. Evidence for a persistent microbial seed bank throughout the global ocean. Proc. Natl Acad. Sci. USA 110, 4651–4655 (2013). Single-location (English Channel station L4) deep sequencing shows substantial taxonomic overlap with global marine sampling and strongly suggests that there is a rich and persistent microbial seed bank.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Webster, N. S. et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12, 2070–2082 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Taylor, M. W. et al. “Sponge-specific” bacteria are widespread (but rare) in diverse marine environments. ISME J. 7, 438–443 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. ISME J. 8, 2207–2217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Crump, B. C., Amaral-Zettler, L. A. & Kling, G. W. Microbial diversity in Arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 6, 1629–1639 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kirchman, D. L., Cottrell, M. T. & Lovejoy, C. The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ. Microbiol. 12, 1132–1143 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Hugoni, M. et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc. Natl Acad. Sci. USA 110, 6004–6009 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shade, A. et al. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance. Environ. Microbiol. 13, 2752–2767 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Miki, T., Ushio, M., Fukui, S. & Kondoh, M. Functional diversity of microbial decomposers facilitates plant coexistence in a plant–microbe–soil feedback model. Proc. Natl Acad. Sci. USA 107, 14251–14256 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Montoya, J. P. et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430, 1027–1032 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Williams, R. J., Howe, A. & Hofmockel, K. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5, 358 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036–12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Giovannoni, S. J. & Stingl, U. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Pholchan, M. K., Baptista, J. C., Davenport, R. J., Sloan, W. T. & Curtis, T. P. Microbial community assembly, theory and rare functions. Front. Microbiol. 4, 68 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bartram, A. K. et al. Exploring links between pH and bacterial community composition in soils from the Craibstone Experimental Farm. FEMS Microbiol. Ecol. 87, 403–415 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Pester, M., Bittner, N., Deevong, P., Wagner, M. & Loy, A. A 'rare biosphere' microorganism contributes to sulfate reduction in a peatland. ISME J. 4, 1591–1602 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Neufeld, J. D. et al. Stable-isotope probing implicates Methylophaga spp. and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J. 1, 480–491 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Jørgensen, B. B. Big sulfur bacteria. ISME J. 4, 1083–1084 (2010).

    Article  PubMed  Google Scholar 

  98. Jørgensen, B. B. & Gallardo, V. A. Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28, 301–313 (1999).

    Article  Google Scholar 

  99. Schulz, H. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284, 493–495 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Jørgensen, B. B., Dunker, R., Grünke, S. & Røy, H. Filamentous sulfur bacteria, Beggiatoa spp., in arctic marine sediments (Svalbard, 79° N). FEMS Microbiol. Ecol. 73, 500–513 (2010).

    PubMed  Google Scholar 

  101. Hol, W. H. G. et al. Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol. Lett. 13, 292–301 (2010).

    Article  PubMed  Google Scholar 

  102. Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Reeder, J. & Knight, R. The 'rare biosphere': a reality check. Nature Methods 6, 636–637 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Mello, A., Murat, C. & Bonfante, P. Truffles: much more than a prized and local fungal delicacy. FEMS Microbiol. Lett. 260, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013). A targeted study of the genomics of novel lineages (microbial dark matter) that greatly expands genomic representation of microbial life.

    Article  CAS  PubMed  Google Scholar 

  106. Wu, D. et al. Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. PLoS ONE 6, e18011 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jensen, S., Lynch, M. D. J., Ray, J. L., Neufeld, J. D. & Hovland, M. Norwegian deep-water coral reefs: cultivation and molecular analysis of planktonic microbial communities. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.12531 (2014).

  108. Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pinhassi, J., Zweifel, U. L. & Hagstroëm, A. Dominant marine bacterioplankton species found among colony-forming bacteria. Appl. Environ. Microbiol. 63, 3359–3366 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zengler, K. et al. Cultivating the uncultured. Proc. Natl Acad. Sci. USA 99, 15681–15686 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A. & Janssen, P. H. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69, 7210–7215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Leadbetter, J. R. Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr. Opin. Microbiol. 6, 274–281 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Nichols, D. Cultivation gives context to the microbial ecologist. FEMS Microbiol. Ecol. 60, 351–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Lee, K. C.-Y. et al. Chthonomonas calidirosea gen. nov., sp. nov., an aerobic, pigmented, thermophilic micro-organism of a novel bacterial class, Chthonomonadetes classis nov., of the newly described phylum Armatimonadetes originally designated candidate division OP10. Int. J. Syst. Evol. Microbiol. 61, 2482–2490 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Neufeld, J. D., Li, J. & Mohn, W. W. Scratching the surface of the rare biosphere with ribosomal sequence tag primers. FEMS Microbiol. Lett. 283, 146–153 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Derakshani, M., Lukow, T. & Liesack, W. Novel bacterial lineages at the (sub) division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl. Environ. Microbiol. 67, 623–631 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nakai, R. et al. Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. Polar Biol. 35, 425–433 (2012).

    Article  Google Scholar 

  119. Couradeau, E. et al. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336, 459–462 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife 2, e01102 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Engelbrektson, A. et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 4, 642–647 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Kennedy, K., Hall, M. W., Lynch, M. D. J., Moreno-Hagelsieb, G. & Neufeld, J. D. Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80, 5717–5722 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pinto, A. J. & Raskin, L. PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS ONE 7, e43093 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  125. Kowalchuk, G. A., Speksnijder, A. G. C. L., Zhang, K., Goodman, R. M. & Veen, J. A. Finding the needles in the metagenome haystack. Microb. Ecol. 53, 475–485 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nature Biotech. 31, 533–538 (2013).

    Article  CAS  Google Scholar 

  127. Frisli, T., Haverkamp, T., Jakobsen, K., Stenseth, N. C. & Rudi, K. Estimation of metagenome size and structure in an experimental soil microbiota from low coverage next-generation sequence data. J. Appl. Microbiol. 114, 141–151 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Schloss, P. D. & Handelsman, J. Toward a census of bacteria in soil. PLoS Comput. Biol. 2, 786–793 (2006).

    Article  CAS  Google Scholar 

  130. Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Podar, M. et al. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microbiol. 73, 3205–3214 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stoffels, M., Ludwig, W. & Schleifer, K. H. rRNA probe-based cell fishing of bacteria. Environ. Microbiol. 1, 259–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  133. Binga, E. K., Lasken, R. S. & Neufeld, J. D. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J. 2, 233–241 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Neufeld, J. D. et al. DNA stable-isotope probing. Nature Protoc. 2, 860–866 (2007).

    Article  CAS  Google Scholar 

  135. Verastegui, Y. et al. Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities. mBio 5, e01157–14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Green, S. J. & Minz, D. Suicide polymerase endonuclease restriction, a novel technique for enhancing PCR amplification of minor DNA templates. Appl. Environ. Microbiol. 71, 4721–4727 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 

  139. Blainey, P. C. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37, 407–427 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Shade, A. et al. Culturing captures members of the soil rare biosphere. Environ. Microbiol. 14, 2247–2252 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).

    Article  Google Scholar 

  142. Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).

    Article  Google Scholar 

  143. Woodcock, S. et al. Neutral assembly of bacterial communities. FEMS Microbiol. Ecol. 62, 171–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Bell, G. The co-distribution of species in relation to the neutral theory of community ecology. Ecology 86, 1757–1770 (2005).

    Article  Google Scholar 

  145. Ofiţeru, I. D. et al. Combined niche and neutral effects in a microbial wastewater treatment community. Proc. Natl Acad. Sci. USA 107, 15345–15350 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wang, J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J. 7, 1310–1321 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Soininen, J. Macroecology of unicellular organisms — patterns and processes. Environ. Microbiol. Rep. 4, 10–22 (2012).

    Article  PubMed  Google Scholar 

  148. Green, J. & Bohannan, B. J. M. Spatial scaling of microbial biodiversity. Trends Ecol. Evol. 21, 501–507 (2006).

    Article  PubMed  Google Scholar 

  149. Hughes, J. B. & Bohannan, B. J. M. in Molecular Microbial Ecology Manual Vol. 1, Ch. 7.01 (eds Kowalchuk, G. A. et al.) (Springer, 2004).

    Google Scholar 

  150. Connolly, S. R. et al. Commonness and rarity in the marine biosphere. Proc. Natl Acad. Sci. USA 111, 8524–8529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    Article  PubMed  Google Scholar 

  152. Van de Peer, Y., Chapelle, S. & De Wachter, R. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 24, 3381–3391 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

  155. Klein, D. Microbial communities in nature: a postgenomic perspective. Microbe 2, 591–595 (2007).

    Google Scholar 

  156. Levy-Booth, D. J. et al. Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39, 2977–2991 (2007).

    Article  CAS  Google Scholar 

  157. Nogva, H. K., Dromtorp, S., Nissen, H. & Rudi, K. Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. Biotechniques 34, 804–813 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Rudi, K., Moen, B., Drømtorp, S. M. & Holck, A. L. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. Appl. Environ. Microbiol. 71, 1018–1024 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nocker, A., Cheung, C.-Y. & Camper, A. K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live versus dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 67, 310–320 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Pan, Y. & Breidt, F. Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl. Environ. Microbiol. 73, 8028–8031 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Bachar, A. et al. Soil microbial abundance and diversity along a low precipitation gradient. Microb. Ecol. 60, 453–461 (2010).

    Article  PubMed  Google Scholar 

  162. Wagner, A. O., Malin, C., Knapp, B. A. & Illmer, P. Removal of free extracellular DNA from environmental samples by ethidium monoazide and propidium monoazide. Appl. Environ. Microbiol. 74, 2537–2539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Flekna, G. et al. Insufficient differentiation of live and dead Campylobacter jejuni and Listeria monocytogenes cells by ethidium monoazide (EMA) compromises EMA/real-time PCR. Res. Microbiol. 158, 405–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Kobayashi, H., Oethinger, M., Tuohy, M., Hall, G. & Bauer, T. Unsuitable distinction between viable and dead Staphylococcus aureus and Staphylococcus epidermidis by ethidium bromide monoazide. Lett. Appl. Microbiol. 48, 633–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Keer, J. & Birch, L. Molecular methods for the assessment of bacterial viability. J. Microbiol. Methods 53, 175–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 7, 2061–2068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Goodrich, J. K. et al. Conducting a microbiome study. Cell 158, 250–262 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Patin, N. V., Kunin, V., Lidström, U. & Ashby, M. N. Effects of OTU clustering and PCR artifacts on microbial diversity estimates. Microb. Ecol. 65, 709–719 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Schloss, P. D., Gevers, D. & Westcott, S. L. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6, e27310 (2011). An evaluation of PCR and sequencing artefacts in SSU rRNA-based studies, including a proposed quality-filtering pipeline.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lee, C. K. et al. Groundtruthing next-gen sequencing for microbial ecology — biases and errors in community structure estimates from PCR amplicon pyrosequencing. PLoS ONE 7, e44224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Huber, T., Faulkner, G. & Hugenholtz, P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20, 2317–2319 (2004).

    Article  CAS  PubMed  Google Scholar 

  173. Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12, 38 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Quince, C. et al. Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods 6, 639–641 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Claesson, M. J. et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38, e200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Eren, A. M., Vineis, J. H., Morrison, H. G. & Sogin, M. L. A filtering method to generate high quality short reads using Illumina paired-end technology. PLoS ONE 8, e66643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Schloss, P. D. Secondary structure improves OTU assignments of 16S rRNA gene sequences. ISME J. 7, 457–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cannone, J. J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 1–31 (2002).

    Article  Google Scholar 

  181. Doxey, A. C. et al. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J. 9, 461–471 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate comments provided by M. L. Sogin and B. J. Butler during the preparation of this manuscript. They acknowledge support from an Early Researcher Award (Government of Ontario), the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh D. Neufeld.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Rare biosphere

Although this has been an arbitrarily defined term, subject to variable abundance thresholds (for example, <0.1% of total community relative abundance), the rare biosphere may be considered as the collective of rare viable or dormant microbial taxa that are found in a given environmental sample at a specific time point.

Bioprospecting

The screening of biological systems (for example, genomes or ecosystems) for novel components of industrial, commercial or scientific value.

Conditionally rare taxa

Species that are rare under some conditions but can become abundant when provided with optimal growth conditions.

Resilience

The ability of a community to regain functionality following a disturbance event. This ability is linked to role redundancy conferred through species diversity.

Operational taxonomic units

(OTUs). Commonly used theoretical framework for relating sequence differences to discrete taxonomic entities. The OTU remains a surrogate for a taxonomic rank (for example, species) and is typically based on a specified nucleotide identity (for example, 97% for small subunit ribosomal RNA marker-gene studies).

Biogeography

The study of species distribution through geographic space and time.

Copiotrophic

Microorganisms that grow optimally in nutrient-rich environments and are generally adapted to rapidly exploit available resources.

Killing-the-winner hypothesis

A negative frequency-dependent selection, in which abundant or active bacterial types are affected by viral pressure. This mechanism would promote the survival and viability of rare types of microorganisms, maintaining high diversity.

Taphonomic gradient

A temporal gradient involving decay and fossilization of cells. In the context of studying the rare biosphere, the term refers to the detection of nucleic acids from deceased organisms.

Microbial seed bank

A collection of dormant microorganisms that can respond to favourable environmental conditions.

r-selected growth

Growth strategy favouring rapid reproduction and exponential population size increase. It is common in organisms such as bacteria, insects and weeds.

K-selected growth

Growth strategy in which abundance tends to be stable and close to the maximum capacity in an environment. Populations undergoing K-selected growth often have larger body sizes, slower growth rates and longer life cycles.

Epilimnion

Top layer in a thermally stratified lake, typically with increased dissolved oxygen concentrations.

Hypolimnion

Dense bottom layer of a thermally stratified lake (below the epilimnion).

Black Queen hypothesis

A theory explaining reductive evolution in free-living organisms and dependence on co-occurring microorganisms. Natural selection favours the loss of costly biological functions ('leaky' functions) as long as the function is retained by a subset of the community and provides an indispensable public good.

Synapomorphic

A derived characteristic shared by two or more taxa and their most recent common ancestor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynch, M., Neufeld, J. Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13, 217–229 (2015). https://doi.org/10.1038/nrmicro3400

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3400

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology