Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Post-translational protein modifications in malaria parasites

Key Points

  • The modification of proteins by addition of various chemical groups is pervasive at all stages of the life cycle of malaria parasites; such modifications can regulate the activity, localization, interactions and other properties of the target proteins.

  • The post-translational modifications (PTMs) that have been most extensively studied in malaria parasites are phosphorylation (notably in the context of signalling pathways), acetylation and methylation (notably in the context of epigenetic control of gene expression), and lipidation (notably in the context of membrane association).

  • The enzymes that mediate PTM of proteins in malaria parasites fulfil many essential functions along the parasites' life cycle and are, in many instances, sufficiently divergent from their mammalian homologues to provide opportunities for selective inhibition by small molecules; therefore, they are attractive potential targets for novel curative and/or transmission-blocking antimalarial drugs.

Abstract

Post-translational modifications play crucial parts in regulating protein function and thereby control several fundamental aspects of eukaryotic biology, including cell signalling, protein trafficking, epigenetic control of gene expression, cell–cell interactions, and cell proliferation and differentiation. In this Review, we discuss protein modifications that have been shown to have a key role in malaria parasite biology and pathogenesis. We focus on phosphorylation, acetylation, methylation and lipidation. We provide an overview of the biological significance of these modifications and discuss prospects and progress in antimalarial drug discovery based on the inhibition of the enzymes that mediate these modifications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasmodium spp. life cycle.
Figure 2: Modes of phospho-regulation of malaria parasite protein kinases.
Figure 3: Histone H3 post-translational modifications.
Figure 4: Classes and functions of protein lipidation.

Similar content being viewed by others

References

  1. Murray, C. J. et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379, 413–431 (2012).

    PubMed  Google Scholar 

  2. Dondorp, A. M. et al. Artemisinin resistance: current status and scenarios for containment. Nature Rev. Microbiol. 8, 272–280 (2010).

    CAS  Google Scholar 

  3. Burrows, J. N., Chibale, K. & Wells, T. N. The state of the art in anti-malarial drug discovery and development. Curr. Top. Med. Chem. 11, 1226–1254 (2011).

    CAS  PubMed  Google Scholar 

  4. Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1, E5 (2003).

    PubMed  PubMed Central  Google Scholar 

  5. Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003).

    CAS  PubMed  Google Scholar 

  6. Macedo, C. S., Schwarz, R. T., Todeschini, A. R., Previato, J. O. & Mendonca-Previato, L. Overlooked post-translational modifications of proteins in Plasmodium falciparum: N- and O-glycosylation — a review. Mem. Inst. Oswaldo Cruz 105, 949–956 (2010).

    PubMed  Google Scholar 

  7. Kimura, E. A., Katzin, A. M. & Couto, A. S. More on protein glycosylation in the malaria parasite. Parasitol. Today 16, 38–40 (2000).

    CAS  PubMed  Google Scholar 

  8. Ponts, N. et al. Unraveling the ubiquitome of the human malaria parasite. J. Biol. Chem. 286, 40320–40330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Issar, N., Roux, E., Mattei, D. & Scherf, A. Identification of a novel post-translational modification in Plasmodium falciparum: protein sumoylation in different cellular compartments. Cell. Microbiol. 10, 1999–2011 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, L. et al. Protein S-nitrosylation in Plasmodium falciparum. Antioxid. Redox Signal 20, 2923–2935 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kehr, S. et al. Protein S-glutathionylation in malaria parasites. Antioxid. Redox Signal 15, 2855–2865 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Talevich, E., Tobin, A. B., Kannan, N. & Doerig, C. An evolutionary perspective on the kinome of malaria parasites. Phil. Trans. R. Soc. B 367, 2607–2618 (2012).

    CAS  PubMed  Google Scholar 

  13. Lucet, I. S., Tobin, A., Drewry, D., Wilks, A. F. & Doerig, C. Plasmodium kinases as targets for new-generation antimalarials. Future Med. Chem. 4, 2295–2310 (2013).

    Google Scholar 

  14. Anamika, Srinivasan, N. & Krupa, A. A genomic perspective of protein kinases in Plasmodium falciparum. Proteins 58, 180–189 (2005).

    CAS  PubMed  Google Scholar 

  15. Ward, P., Equinet, L., Packer, J. & Doerig, C. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5, 79 (2004). This paper is the first report on the mining of the then recently published P. falciparum genome to identify protein kinase-encoding genes. It reveals a number of features of the P. falciparum kinome, including the presence of a novel, Apicomplexa-specific kinase family, the FIKK, which has one member in most Apicomplexa but 20 members in P. falciparum.

    PubMed  PubMed Central  Google Scholar 

  16. Tewari, R. et al. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe 8, 377–387 (2010). This study uses a kinome-wide knockout strategy to probe the developmental phenotypes associated with the lack of individual kinases in the rodent parasite P. berghei . It identifies kinase genes that are probably essential for asexual proliferation in erythrocytes and then focuses on enzymes that have a role in the mosquito stages, which are particularly amenable to investigation in P. berghei.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Solyakov, L. et al. Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nature Commun. 2, 565 (2011). This paper reports one of the first global phospho-proteomes to be published and uses a kinome-wide reverse-genetic approach to determine that 36 parasite kinases are essential for the survival of P. falciparum in the blood stage. It also reveals that several kinases are phosphorylated on activating residues, suggesting that phospho-signalling cascades operate in the parasite.

    Google Scholar 

  18. Lasonder, E. et al. The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J. Proteome Res. 11, 5323–5337 (2012). This report shows the phospho-proteome of P. falciparum and provides a motif analysis in an attempt to assign phosphorylation sites to particular kinase groups — most notably, phosphorylation events associated with PfPKA.

    CAS  PubMed  Google Scholar 

  19. Treeck, M., Sanders, J. L., Elias, J. E. & Boothroyd, J. C. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites' boundaries. Cell Host Microbe 10, 410–419 (2011). This is the only study to compare the global phospho-proteomes of two apicomplexan organisms — that of P. falciparum and T. gondii.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Collins, M. O., Wright, J. C., Jones, M., Rayner, J. C. & Choudhary, J. S. Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation. J. Proteom. 103, 1–14 (2014).

    CAS  Google Scholar 

  21. Lasonder, E., Treeck, M., Alam, M. & Tobin, A. B. Insights into the Plasmodium falciparum schizont phospho-proteome. Microbes Infect. 14, 811–819 (2012).

    CAS  PubMed  Google Scholar 

  22. Pease, B. N. et al. Global analysis of protein expression and phosphorylation of three stages of Plasmodium falciparum intraerythrocytic development. J. Proteome Res. 12, 4028–4045 (2013). This global phospho-proteomic study provides a comparison of the phospho-proteomes in ring, trophozoite and schizont stages of the P. falciparum blood-stage parasites. This is the first such study to make a comparison of multiple parasite stages.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Brochet, M. et al. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca2+ signals at key decision points in the life cycle of malaria parasites. PLoS Biol. 12, e1001806 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Wilkes, J. M. & Doerig, C. The protein-phosphatome of the human malaria parasite Plasmodium falciparum. BMC Genomics 9, 412 (2008).

    PubMed  PubMed Central  Google Scholar 

  25. Guttery, D. S. et al. Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell Host Microbe 16, 128–140 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nolen, B., Taylor, S. & Ghosh, G. Regulation of protein kinases; controlling activity through activation segment conformation. Mol. Cell 15, 661–675 (2004).

    CAS  PubMed  Google Scholar 

  27. Parker, L. L., Atherton-Fessler, S. & Piwnica-Worms, H. p107wee1 is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc. Natl Acad. Sci. USA 89, 2917–2921 (1992).

    CAS  PubMed  Google Scholar 

  28. Collins, C. R. et al. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLoS Pathog. 9, e1003344 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Leykauf, K. et al. Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite. PLoS Pathog. 6, e1000941 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Dvorin, J. D. et al. A plant-like kinase in Plasmodium falciparum regulates parasite egress from erythrocytes. Science 328, 910–912 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dastidar, E. et al. Comprehensive histone phosphorylation analysis and identification of Pf14-3-3 protein as a histone H3 phosphorylation reader in malaria parasites. PLoS ONE 8, e53179 (2012).

    Google Scholar 

  32. Billker, O. et al. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392, 289–292 (1998).

    CAS  PubMed  Google Scholar 

  33. Billker, O. et al. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117, 503–514 (2004).

    CAS  PubMed  Google Scholar 

  34. Tewari, R., Dorin, D., Moon, R., Doerig, C. & Billker, O. An atypical mitogen-activated protein kinase controls cytokinesis and flagellar motility during male gamete formation in a malaria parasite. Mol. Microbiol. 58, 1253–1263 (2005).

    CAS  PubMed  Google Scholar 

  35. Proud, C. G. eIF2 and the control of cell physiology. Semin. Cell Dev. Biol. 16, 3–12 (2005).

    CAS  PubMed  Google Scholar 

  36. Fennell, C. et al. PfeIK1, a eukaryotic initiation factor 2α kinase of the human malaria parasite Plasmodium falciparum, regulates stress-response to amino-acid starvation. Malar. J. 8, 99 (2009).

    PubMed  PubMed Central  Google Scholar 

  37. Zhang, M. et al. The Plasmodium eukaryotic initiation factor-2α kinase IK2 controls the latency of sporozoites in the mosquito salivary glands. J. Exp. Med. 207, 1465–1474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, M. et al. PK4, a eukaryotic initiation factor 2α (eIF2α) kinase, is essential for the development of the erythrocytic cycle of Plasmodium. Proc. Natl Acad. Sci. USA 109, 3956–3961 (2012).

    CAS  PubMed  Google Scholar 

  39. Miao, J. et al. Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development. Mol. Microbiol. 89, 660–675 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tonkin, C. J. et al. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol. 7, e84 (2009).

    PubMed  Google Scholar 

  41. French, J. B., Cen, Y. & Sauve, A. A. Plasmodium falciparum Sir2 is an NAD+-dependent deacetylase and an acetyllysine-dependent and acetyllysine-independent NAD+ glycohydrolase. Biochemistry 47, 10227–10239 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Coleman, B. I. et al. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16, 177–186 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mancio-Silva, L., Lopez-Rubio, J. J., Claes, A. & Scherf, A. Sir2a regulates rDNA transcription and multiplication rate in the human malaria parasite Plasmodium falciparum. Nature Commun. 4, 1530 (2013).

    Google Scholar 

  44. Guizetti, J. & Scherf, A. Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum. Cell. Microbiol. 15, 718–726 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Freitas-Junior, L. H. et al. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121, 25–36 (2005).

    CAS  PubMed  Google Scholar 

  46. Lopez-Rubio, J. et al. 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol. Microbiol. 66, 1296–1305 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chookajorn, T. et al. Epigenetic memory at malaria virulence genes. Proc. Natl Acad. Sci. USA 104, 899–902 (2007).

    CAS  PubMed  Google Scholar 

  48. Lopez-Rubio, J. J., Mancio-Silva, L. & Scherf, A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5, 179–190 (2009). This was the first demonstration that histone lysine 9 methylation is a mark linked to default silencing of clonally variant genes.

    CAS  PubMed  Google Scholar 

  49. Salcedo-Amaya, A. M. et al. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc. Natl Acad. Sci. USA 106, 9655–9660 (2009).

    CAS  PubMed  Google Scholar 

  50. Bischoff, E. & Vaquero, C. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum. BMC Genomics 11, 34 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Cui, L., Miao, J. & Cui, L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob. Agents Chemother. 51, 488–494 (2007).

    CAS  PubMed  Google Scholar 

  52. Fan, Q., An, L. & Cui, L. Plasmodium falciparum histone acetyltransferase, a yeast GCN5 homologue involved in chromatin remodeling. Eukaryot. Cell 3, 264–276 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Miao, J. et al. The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum. Mol. Microbiol. 78, 883–902 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fan, Q., Miao, J., Cui, L. & Cui, L. Characterization of PRMT1 from Plasmodium falciparum. Biochem. J. 421, 107–118 (2009).

    CAS  PubMed  Google Scholar 

  55. Volz, J. C. et al. PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division. Cell Host Microbe 11, 7–18 (2012). This study shows that the methyltransferase PfSET10 retains memory for heritable transmission of epigenetic information during parasite division.

    CAS  PubMed  Google Scholar 

  56. Cui, L., Fan, Q. & Miao, J. Histone lysine methyltransferases and demethylases in Plasmodium falciparum. Int. J. Parasitol. 38, 1083–1097 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang, L. et al. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature 499, 223–227 (2013). This reverse-genetic study demonstrates that knockout of the methyltransferase PfSETvs, which controls H3K36 trimethylation on var genes, results in the transcription of all var genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Volz, J. et al. Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum. Int. J. Parasitol. 40, 109–121 (2010).

    CAS  PubMed  Google Scholar 

  59. Kutateladze, T. G. SnapShot: histone readers. Cell 146, 842–842.e1 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Flueck, C. et al. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog. 5, e1000569 (2009).

    PubMed  PubMed Central  Google Scholar 

  61. Perez-Toledo, K. et al. Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. Nucleic Acids Res. 37, 2596–2606 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brancucci, N. M. et al. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16, 165–176 (2014). This report shows that PfHP1 is central to locking silencing of clonally variant genes and gametocyte commitment.

    CAS  PubMed  Google Scholar 

  63. Resh, M. D. Covalent lipid modifications of proteins. Curr. Biol. 23, R431–435 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rees-Channer, R. R. et al. Dual acylation of the 45 kDa gliding-associated protein (GAP45) in Plasmodium falciparum merozoites. Mol. Biochem. Parasitol. 149, 113–116 (2006).

    CAS  PubMed  Google Scholar 

  65. Jones, M. L., Collins, M. O., Goulding, D., Choudhary, J. S. & Rayner, J. C. Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe 12, 246–258 (2012). This study combined biochemical purification, metabolic labelling and mass spectrometry to identify the extent of palmitoylation in P. falciparum blood-stage parasites for the first time.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wright, M. H. et al. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nature Chem. 6, 112–121 (2014). This study combines small-molecule inhibitors and proteomics to explore myristoylation in P. falciparum blood stages and validate NMT as a high-priority drug target.

    CAS  Google Scholar 

  67. Gilson, P. R. et al. Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol. Cell Proteom. 5, 1286–1299 (2006). This is one of the first large-scale studies of lipidation in P. falciparum . It describes the use of biochemical purification and mass spectrometry to identify GPI-anchored proteins in P. falciparum schizonts.

    CAS  Google Scholar 

  68. Martin, B. R. & Cravatt, B. F. Large-scale profiling of protein palmitoylation in mammalian cells. Nature Methods 6, 135–138 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Linder, M. E. & Deschenes, R. J. Palmitoylation: policing protein stability and traffic. Nature Rev. Mol. Cell. Biol. 8, 74–84 (2007).

    CAS  Google Scholar 

  70. Jones, M. L., Tay, C. L. & Rayner, J. C. Getting stuck in: protein palmitoylation in Plasmodium. Trends Parasitol. 28, 496–503 (2012).

    CAS  PubMed  Google Scholar 

  71. Frenal, K. et al. Global analysis of apicomplexan protein S-acyl transferases reveals an enzyme essential for invasion. Traffic 14, 895–911 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. von Itzstein, M., Plebanski, M., Cooke, B. M. & Coppel, R. L. Hot, sweet and sticky: the glycobiology of Plasmodium falciparum. Trends Parasitol. 24, 210–218 (2008).

    CAS  PubMed  Google Scholar 

  73. Cowman, A. F., Berry, D. & Baum, J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J. Cell Biol. 198, 961–971 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Howe, R., Kelly, M., Jimah, J., Hodge, D. & Odom, A. R. Isoprenoid biosynthesis inhibition disrupts Rab5 localization and food vacuolar integrity in Plasmodium falciparum. Eukaryot. Cell 12, 215–223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Martin, B. R., Wang, C., Adibekian, A., Tully, S. E. & Cravatt, B. F. Global profiling of dynamic protein palmitoylation. Nature Methods 9, 84–89 (2012).

    CAS  Google Scholar 

  76. Mueller, C. et al. The Toxoplasma protein ARO mediates the apical positioning of rhoptry organelles, a prerequisite for host cell invasion. Cell Host Microbe 13, 289–301 (2013).

    CAS  PubMed  Google Scholar 

  77. Cabrera, A. et al. Dissection of minimal sequence requirements for rhoptry membrane targeting in the malaria parasite. Traffic 13, 1335–1350 (2012).

    CAS  PubMed  Google Scholar 

  78. Blaskovic, S., Blanc, M. & van der Goot, F. G. What does S-palmitoylation do to membrane proteins? FEBS J. 280, 2766–2774 (2013).

    CAS  PubMed  Google Scholar 

  79. Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nature Rev. Cancer 9, 28–39 (2009).

    Google Scholar 

  80. Talevich, E., Mirza, A. & Kannan, N. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol. Biol. 11, 321 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kato, N. et al. Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. Nature Chem. Biol. 4, 347–356 (2008).

    CAS  Google Scholar 

  82. Sebastian, S. et al. A Plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs. Cell Host Microbe 12, 9–19 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Siden-Kiamos, I. et al. Plasmodium berghei calcium-dependent protein kinase 3 is required for ookinete gliding motility and mosquito midgut invasion. Mol. Microbiol. 60, 1355–1363 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chapman, T. M. et al. Substituted imidazopyridazines are potent and selective inhibitors of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1). Bioorg. Med. Chem. Lett. 23, 3064–3069 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Doerig, C. et al. Malaria: targeting parasite and host cell kinomes. Biochim. Biophys. Acta 1804, 604–612 (2010).

    CAS  PubMed  Google Scholar 

  86. Sicard, A. et al. Activation of a PAK–MEK signalling pathway in malaria parasite-infected erythrocytes. Cell. Microbiol. 13, 836–845 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Malmquist, N. A., Moss, T. A., Mecheri, S., Scherf, A. & Fuchter, M. J. Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum. Proc. Natl Acad. Sci. USA 109, 16708–16713 (2012).

    CAS  PubMed  Google Scholar 

  88. Dembele, L. et al. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nature Med. 20, 307–312 (2014).

    CAS  PubMed  Google Scholar 

  89. Darkin-Rattray, S. J. et al. Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl Acad. Sci. USA 93, 13143–13147 (1996).

    CAS  PubMed  Google Scholar 

  90. Andrews, K. T. et al. Potent antimalarial activity of histone deacetylase inhibitor analogues. Antimicrob. Agents Chemother. 52, 1454–1461 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Patel, V. et al. Identification and characterization of small molecule inhibitors of a class I histone deacetylase from Plasmodium falciparum. J. Med. Chem. 52, 2185–2187 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Rackham, M. D. et al. Discovery of novel and ligand-efficient inhibitors of Plasmodium falciparum and Plasmodium vivax N-myristoyltransferase. J. Med. Chem. 56, 371–375 (2013).

    CAS  PubMed  Google Scholar 

  93. Goncalves, V. et al. Discovery of Plasmodium vivax N-myristoyltransferase inhibitors: screening, synthesis, and structural characterization of their binding mode. J. Med. Chem. 55, 3578–3582 (2012).

    CAS  PubMed  Google Scholar 

  94. Bell, A. S. et al. Selective inhibitors of protozoan protein N-myristoyltransferases as starting points for tropical disease medicinal chemistry programs. PLoS Negl. Trop. Dis. 6, e1625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Resh, M. D. Targeting protein lipidation in disease. Trends Mol. Med. 18, 206–214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Nallan, L. et al. Protein farnesyltransferase inhibitors exhibit potent antimalarial activity. J. Med. Chem. 48, 3704–3713 (2005).

    CAS  PubMed  Google Scholar 

  97. Dekker, F. J. et al. Small-molecule inhibition of APT1 affects Ras localization and signaling. Nature Chem. Biol. 6, 449–456 (2010).

    CAS  Google Scholar 

  98. Child, M. A. et al. Small-molecule inhibition of a depalmitoylase enhances Toxoplasma host-cell invasion. Nature Chem. Biol. 9, 651–656 (2013).

    CAS  Google Scholar 

  99. Macek, B. et al. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol. Cell Proteom. 7, 299–307 (2008).

    CAS  Google Scholar 

  100. Gruhler, A. et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell Proteom. 4, 310–327 (2005).

    CAS  Google Scholar 

  101. Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    CAS  PubMed  Google Scholar 

  102. Moser, K. & White, F. M. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS. J. Proteome Res. 5, 98–104 (2006).

    CAS  PubMed  Google Scholar 

  103. Kruger, M. et al. SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364 (2008).

    PubMed  Google Scholar 

  104. Donald, R. G. et al. Anticoccidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-dependent protein kinase. Mol. Biochem. Parasitol. 149, 86–98 (2006).

    CAS  PubMed  Google Scholar 

  105. Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16 (1999).

    CAS  PubMed  Google Scholar 

  106. Trelle, M. B., Salcedo-Amaya, A. M., Cohen, A. M., Stunnenberg, H. G. & Jensen, O. N. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. J. Proteome Res. 8, 3439–3450 (2009).

    CAS  PubMed  Google Scholar 

  107. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    CAS  PubMed  Google Scholar 

  108. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  109. Miranda-Saavedra, D., Gabaldon, T., Barton, G. J., Langsley, G. & Doerig, C. The kinomes of apicomplexan parasites. Microbes Infect. 14, 796–810 (2012).

    CAS  PubMed  Google Scholar 

  110. Schneider, A. G. & Mercereau-Puijalon, O. A new Apicomplexa-specific protein kinase family: multiple members in Plasmodium falciparum, all with an export signature. BMC Genom. 6, 30 (2005).

    Google Scholar 

  111. Peixoto, L. et al. Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell Host Microbe 8, 208–218 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, M., Joyce, B. R., Sullivan, W. J. Jr & Nussenzweig, V. Translational control in Plasmodium and Toxoplasma parasites. Eukaryot. Cell 12, 161–167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sullivan, W. J. Jr, Narasimhan, J., Bhatti, M. M. & Wek, R. C. Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control. Biochem. J. 380, 523–531 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Gissot, M., Kelly, K. A., Ajioka, J. W., Greally, J. M. & Kim, K. Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii. PLoS Pathog. 3, e77 (2007).

    PubMed  PubMed Central  Google Scholar 

  115. Brooks, C. F. et al. Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle. Proc. Natl Acad. Sci. USA 108, 3767–3772 (2011).

    CAS  PubMed  Google Scholar 

  116. Heaslip, A. T., Nishi, M., Stein, B. & Hu, K. The motility of a human parasite, Toxoplasma gondii, is regulated by a novel lysine methyltransferase. PLoS Pathog. 7, e1002201 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kemp, L. E. et al. Characterization of a serine hydrolase targeted by acyl-protein thioesterase inhibitors in Toxoplasma gondii. J. Biol. Chem. 288, 27002–27018 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wirth, D. F. Biological revelations. Nature 419, 495–496 (2002).

    CAS  PubMed  Google Scholar 

  119. Kafsack, B. F. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Webster, W. A. & McFadden, G. I. From the genome to the phenome: tools to understand the basic biology of Plasmodium falciparum. J. Eukaryot. Microbiol. 61, 655–671 (2014).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. Mitcheson for the original contribution to Figure 1. Research in the laboratories of A.S., J.C.R. and C.D. was supported by the European Union FP7 Network of Excellence EviMalaR. C.D.'s laboratory is supported by Monash University, the Australian National Health and Medical Research Council and the Australian Centre for HIV and Hepatitis Virology Research. J.C.R. is supported by the Wellcome Trust (098051). A.S. is supported by the French Parasitology consortium ParaFrap (ANR-11-LABX0024) and ERC Advanced grant PlasmoEscape (250320). A.B.T. is funded by the Medical Research Council (Programme Leader — Toxicology Unit).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Doerig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Histone mark writers in P. falciparum (PDF 197 kb)

Supplementary information S2 (table)

Histone mark readers in P. falciparum (PDF 200 kb)

PowerPoint slides

Glossary

Hypnozoite

The dormant liver-stage form of the parasite that develops when a sporozoite invades a liver cell. Several human (Plasmodium vivax and Plasmodium ovale) and monkey (Plasmodium cynomolgi) malaria parasite species develop dormant liver stages that become activated several weeks, or even years, later, resulting in a blood-stage infection.

Phosphorylation

Covalent attachment of a phosphate group to a molecule. Protein phosphorylation is a particular case, in which the phosphate is transferred from ATP (or, in some cases, GTP) to an amino acid within a polypeptide. Eukaryotic protein kinases target residues with an alcohol group (that is, serine, threonine and tyrosine); other amino acids that do not carry an alcohol group, such as histidine or aspartic acid, can also be phosphorylated, notably (but not exclusively) in prokaryotic systems.

Kinome

The ensemble of all the genes in the genome of an organism that encode protein kinases. In eukaryotes, this typically represents 1–2% of the total number of genes.

Alveolates

A major superphylum of unicellular eukaryotes that comprises several phyla, including the Apicomplexa (to which Plasmodium spp. belong), the Chromerids (the closest free-living and photosynthetic relatives of Apicomplexa), the Ciliates and the Dinoflagellates. Alveolates are named after the so-called cortical alveoli, which are characteristic vesicles that form a layer underneath the plasma membrane called the inner membrane complex, a feature that is shared by all members of the superphylum.

Antigenic variation

A mechanism by which a malaria parasite alters its surface proteins in order to evade a host immune response.

Heterochromatin

Highly compact and therefore transcriptionally inactive regions of the genome. In Plasmodium falciparum, the histone H3 lysine 9 trimethylation (H3K9me3) mark recruits heterochromatin protein 1 (PfHP1) to form facultative heterochromatin. This is key to expression control of clonally variant gene families.

Histone writers

Molecules that attach modifications to histones at a specific modified site.

Histone readers

Molecules that bind to a specific modified site in histones.

Prenylation

Covalent attachment of either a farnesyl moiety (farnesylation) or a geranylgeranyl moiety (geranylation) to cysteine residues.

Myristoylation

Covalent attachment of myrisitic acid (a 14-carbon saturated fatty acid) to the amino-terminal glycine residue of a protein. Myristoylation occurs via an irreversible amide bond.

Palmitoylation

Covalent attachment of a long-chain fatty acid (typically, but not always, palmitic acid, a 16-carbon saturated fatty acid) to cysteine residues via a thioester bond. In the most common form (S-palmitoylation), attachment occurs at an internal cysteine residue, and the thioester bond is reversible. In other eukaryotes, attachment can also occur irreversibly at an amino-terminal cysteine; whether N-palamitoylation occurs in Plasmodium falciparum is not currently known.

Glycosylphosphatidylinositol anchor

(GPI anchor). Glycolipids that are attached to the carboxyl terminus of a protein to mediate surface attachment of the protein. GPI anchors are synthesized from fatty acid and carbohydrate precursors by a multi-step process that occurs in the secretory pathway.

Inner membrane complex

A morphological feature shared by all Alveolates that is composed of flattened vesicles underlying the plasma membrane. It is associated with the cytoskeleton and has roles in structural strengthening, motility and cytokinesis.

Rhoptry

A specialized secretory organelle at the apical end of the motile parasite. Along with other secretory organelles (the micronemes and the dense granules), rhoptries contain proteins involved in host cell invasion and subsequent modification of the host cell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doerig, C., Rayner, J., Scherf, A. et al. Post-translational protein modifications in malaria parasites. Nat Rev Microbiol 13, 160–172 (2015). https://doi.org/10.1038/nrmicro3402

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3402

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology