Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prochlorococcus: the structure and function of collective diversity

Key Points

  • Prochlorococcus is the numerically dominant phototroph in the oceans and is responsible for a notable fraction of global photosynthesis.

  • Prochlorococcus populations contain distinct subgroups with remarkable genetic and physiological diversity, which contributes to their stability, abundance and wide distribution in the oceans.

  • Cells have distinct adaptations to environmental factors such as light intensity, temperature and nutrient levels.

  • Although each individual cell has a small, 'streamlined' genome, collectively, the global Prochlorococcus population (that is, the pan-genome) contains a vast number of different genes.

  • Interactions with phages and heterotrophs have a crucial role in shaping Prochlorococcus physiology and diversity.

  • Prochlorococcus represents a useful model system for understanding microbial ecology.

Abstract

The marine cyanobacterium Prochlorococcus is the smallest and most abundant photosynthetic organism on Earth. In this Review, we summarize our understanding of the diversity of this remarkable phototroph and describe its role in ocean ecosystems. We discuss the importance of interactions of Prochlorococcus with the physical environment, with phages and with heterotrophs in shaping the ecology and evolution of this group. In light of recent studies, we have come to view Prochlorococcus as a 'federation' of diverse cells that sustains its broad distribution, stability and abundance in the oceans via extensive genomic and phenotypic diversity. Thus, it is proving to be a useful model system for elucidating the forces that shape microbial populations and ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Prochlorococcus habitat.
Figure 2: Phylogenetic and genomic diversity of Prochlorococcus.
Figure 3: The Prochlorococcus federation.
Figure 4: The influence of phage predation on Prochlorococcus gene content, population diversity and physiology.

Similar content being viewed by others

References

  1. Chisholm, S. W. et al. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334, 340–343 (1988).

    Article  Google Scholar 

  2. Morel, A., Ahn, Y., Partensky, F., Vaulot, D. & Claustre, H. Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation. J. Mar. Res. 51, 617–649 (1993).

    Article  CAS  Google Scholar 

  3. Flombaum, P. et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013). This is an extensive synthesis of the global distributions of marine picocyanobacteria, including projections about how climate change may affect their abundance and habitats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schattenhofer, M. et al. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ. Microbiol. 11, 2078–2093 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Partensky, F., Blanchot, J. & Vaulot, D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull. l'Institut Oceanogr., Monaco 19, 457–476 (1999).

    Google Scholar 

  6. Dufresne, A. et al. Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl Acad. Sci. 100, 10020–10025 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003). This detailed comparison of genomes from representative HL- and LL-adapted strains reveals many of the fundamental genomic distinctions that correlate with their different physiologies and evolutionary histories. This work also highlights the power of comparative genomics in microbial ecology.

    Article  CAS  PubMed  Google Scholar 

  8. Goericke, R. & Repeta, D. J. The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine procaryote. Limnol. Oceanogr. 37, 425–433 (1992).

    Article  CAS  Google Scholar 

  9. Moore, L., Goericke, R. & Chisholm, S. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Marine Ecol. Progress Series 116, 259–275 (1995).

    Article  Google Scholar 

  10. Partensky, F., Hess, W. R. & Vaulot, D. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63, 106–127 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Partensky, F. & Garczarek, L. Prochlorococcus: Advantages and limits of minimalism. Annu. Rev. Marine. Sci. 2, 305–331 (2010).

    Article  Google Scholar 

  12. Huston, M. A. & Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monographs 79, 343–377 (2009).

    Article  Google Scholar 

  13. Olson, R. J., Chisholm, S., Zettler, E. R., Altabet, M. & Dusenberry, J. A. Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep Sea Res. Part A, Oceanogr. Res. Papers 37, 1033–1051 (1990).

    Article  Google Scholar 

  14. Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial pacific ocean. Science 268, 1480–1482 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Holtzendorff, J. et al. Diel expression of cell cycle-related genes in synchronized cultures of Prochlorococcus sp. strain PCC 9511. J. Bacteriol. 183, 915–920 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Holtzendorff, J. et al. Synchronized expression of ftsZ in natural Prochlorococcus populations of the Red Sea. Environ. Microbiol. 4, 644–653 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Zinser, E. R. et al. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus. PLoS ONE 4, e5135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waldbauer, J. R., Rodrigue, S., Coleman, M. L. & Chisholm, S. W. Transcriptome and proteome dynamics of a light-dark synchronized bacterial cell cycle. PLoS ONE 7, e43432 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ottesen, E. A. et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345, 207–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Simon, M., Grossart, H.-P., Schweitzer, B. & Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28, 175–211 (2002).

    Article  Google Scholar 

  21. Malfatti, F. & Azam, F. Atomic force microscopy reveals microscale networks and possible symbioses among pelagic marine bacteria. Aquat. Microb. Ecol. 58, 1–14 (2009).

    Article  Google Scholar 

  22. Bertilsson, S., Berglund, O., Karl, D. & Chisholm, S. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnol. Oceanogr. 48, 1721–1731 (2003).

    Article  CAS  Google Scholar 

  23. Heldal, M., Scanlan, D. J., Norland, S., Thingstad, F. & Mann, N. H. Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using X-ray microanalysis. Limnol. Oceanogr. 48, 1732–1743 (2003).

    Article  CAS  Google Scholar 

  24. Grob, C. et al. Elemental composition of natural populations of key microbial groups in Atlantic waters. Environ. Microbiol. 15, 3054–3064 (2013).

    CAS  PubMed  Google Scholar 

  25. Van Mooy, B. A. S., Rocap, G., Fredricks, H. F., Evans, C. T. & Devol, A. H. Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proc. Natl Acad. Sci. USA 103, 8607–8612 (2006). This study highlights the strong selective pressure that phosphorus limitation has imposed on the evolution of Prochlorococcus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zwirglmaier, K. et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10, 147–161 (2008).

    PubMed  Google Scholar 

  27. Moore, L. R., Rocap, G. & Chisholm, S. W. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393, 464–467 (1998). This study demonstrates that genetically distinct Prochlorococcus strains isolated from the same water sample have distinct light adaptations. This set the stage for the development of Prochlorococcus as a model system that could be used to link field observations with physiological properties that are determined through the study of laboratory cultures.

    Article  CAS  PubMed  Google Scholar 

  28. Scanlan, D. J. & West, N. J. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol. Ecol. 40, 1–12 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Ahlgren, N. A., Rocap, G. & Chisholm, S. W. Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ. Microbiol. 8, 441–454 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Zinser, E. R. et al. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol. Oceanogr. 52, 2205–2220 (2007).

    Article  Google Scholar 

  31. West, N. J. & Scanlan, D. J. Niche-partitioning of Prochlorococcus populations in a stratified water column in the Eastern North Atlantic Ocean. Appl. Environ. Microbiol. 65, 2585–2591 (1999). This article provides the first description of how different Prochlorococcus ecotypes partition in the water column.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. West, N. J. et al. Closely related Prochlorococcus genotypes show remarkably different depth distributions in two oceanic regions as revealed by in situ hybridization using 16S rRNA-targeted oligonucleotides. Microbiology 147, 1731–1744 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006). This study showed that temperature correlated with the distribution of HL-adapted Prochlorococcus ecotypes along ocean gradients and provided evidence that the physiology of cells in culture is consistent with their distributions in the wild.

    Article  CAS  PubMed  Google Scholar 

  34. Zwirglmaier, K. et al. Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ. Microbiol. 9, 1278–1290 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Malmstrom, R. R. et al. Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans. ISME J. 4, 1252–1264 (2010). Using data from two long-term ocean time-series stations, this paper highlights the remarkable reproducibility of Prochlorococcus ecotype abundances over many years.

    Article  PubMed  Google Scholar 

  36. Martiny, A. C., Tai, A. P. K., Veneziano, D., Primeau, F. & Chisholm, S. W. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ. Microbiol. 11, 823–832 (2009).

    Article  PubMed  Google Scholar 

  37. Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68, 1180–1191 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferris, M. J. & Palenik, B. Niche adaptation in ocean cyanobacteria. Nature 396, 226–228 (1998).

    Article  CAS  Google Scholar 

  39. Jameson, E., Joint, I., Mann, N. H. & Mühling, M. Application of a novel rpoC1-RFLP approach reveals that marine Prochlorococcus populations in the Atlantic gyres are composed of greater microdiversity than previously described. Microb. Ecol. 55, 141–151 (2008).

    Article  PubMed  Google Scholar 

  40. Urbach, E., Scanlan, D. J., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J. Mol. Evol. 46, 188–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Penno, S., Lindell, D. & Post, A. F. Diversity of Synechococcus and Prochlorococcus populations determined from DNA sequences of the N-regulatory gene ntcA. Environ. Microbiol. 8, 1200–1211 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Mühling, M. M. On the culture-independent assessment of the diversity and distribution of Prochlorococcus. Environ. Microbiol. 14, 567–579 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Urbach, E., Robertson, D. L. & Chisholm, S. W. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355, 267–270 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Kettler, G. C. et al. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet. 3, e231 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014). This study shows the vast genomic diversity of Prochorococcus cells in a single sample of seawater and argues that hundreds of diverse subpopulations contribute to the dynamics and stability of the global Prochlorococcus federation.

    Article  CAS  PubMed  Google Scholar 

  46. Partensky, F., Hoepffner, N., Li, W. & Ulloa, O. Photoacclimation of Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea. Plant Physiol. 101, 285–296 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, S. et al. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 6, 285–297 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Malmstrom, R. R. et al. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 7, 184–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Rusch, D. B., Martiny, A. C., Dupont, C. L., Halpern, A. L. & Venter, J. C. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl Acad. Sci. USA 107, 16184–16189 (2010). This study shows the utility of metagenomic data for characterizing the distribution and key features of previously unknown and uncultured lineages of Prochlorococcus.

    Article  PubMed  PubMed Central  Google Scholar 

  50. West, N. J., Lebaron, P., Strutton, P. G. & Suzuki, M. T. A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean. ISME J. 5, 933–944 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Shi, Y., Tyson, G. W., Eppley, J. M. & Delong, E. F. Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J. 5, 999–1013 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Zinser, E. R. et al. Prochlorococcus ecotype abundances in the North Atlantic Ocean as revealed by an improved quantitative PCR method. Appl. Environ. Microbiol. 72, 723–732 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Coleman, M. L. & Chisholm, S. W. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol. 15, 398–407 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. He, Q., Dolganov, N., Bjorkman, O. & Grossman, A. R. The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light. J. Of Biol. Chem. 276, 306–314 (2001).

    Article  CAS  Google Scholar 

  55. Li, B. et al. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc. Natl Acad. Sci. USA 107, 10430–10435 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lavin, P., González, B., Santibáñez, J. F., Scanlan, D. J. & Ulloa, O. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. Rep. 2, 728–738 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Giovannoni, S. J. & Thrash, J. C. and Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Scanlan, D. J. et al. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73, 249–299 (2009). This extensive review examines the similarities and differences among Synechococcus and Prochlorococcus genomes from an environmental perspective.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun, Z. & Blanchard, J. L. Strong genome-wide sselection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes. PLoS ONE 9, e88837 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Biller, S. J. et al. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Scientif. Data 1, 140034 (2014).

    Article  CAS  Google Scholar 

  61. Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The infinitely many genes model for the distributed genome of bacteria. Genome Biol. Evol. 4, 443–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science 311, 1768–1770 (2006). This study reveals the importance of genomic islands as hot spots for the integration of ecologically important flexible genes into Prochlorococcus genomes.

    Article  CAS  PubMed  Google Scholar 

  63. Humbert, J.-F. et al. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS ONE 8, e70747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66–74 (2004).

    Article  PubMed  Google Scholar 

  65. Palenik, B. et al. The genome of a motile marine Synechococcus. Nature 424, 1037–1042 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Dufresne, A. et al. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 9, R90 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luo, H., Friedman, R., Tang, J. & Hughes, A. L. Genome reduction by deletion of paralogs in the marine cyanobacterium Prochlorococcus. Mol. Biol. Evol. 28, 2751–2760 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl Acad. Sci. USA 103, 12552–12557 (2006). This article shows that phosphorus limitation is one of the strongest selective pressures shaping gene content of Prochlorococcus in the Atlantic versus the Pacific Ocean.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Coleman, M. L. & Chisholm, S. W. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc. Natl Acad. Sci. USA 107, 18634–18639 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl Acad. Sci. USA 108, E757–E764 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kelly, L., Ding, H., Huang, K. H., Osburne, M. S. & Chisholm, S. W. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME J. 7, 1827–1841 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Avrani, S., Wurtzel, O., Sharon, I., Sorek, R. & Lindell, D. Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature 474, 604–608 (2011). This study highlights the role of genetic diversity in genomic islands for maintaining the coexistence of Prochlorococcus and cyanophages.

    Article  CAS  PubMed  Google Scholar 

  73. Collins, R. E. & Higgs, P. G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413–3425 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Kislyuk, A. O., Haegeman, B., Bergman, N. H. & Weitz, J. S. Genomic fluidity: an integrative view of gene diversity within microbial populations. BMC Genomics 12, 32 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Moore, L. & Chisholm, S. Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates. Limnol. Oceanogr. 44, 628–638 (1999).

    Article  Google Scholar 

  76. Dufresne, A., Garczarek, L. & Partensky, F. Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol. 6, R14 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Osburne, M. S., Holmbeck, B. M., Coe, A. & Chisholm, S. W. The spontaneous mutation frequencies of Prochlorococcus strains are commensurate with those of other bacteria. Environ. Microbiol. Rep. 3, 744–749 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Hu, J. & Blanchard, J. L. Environmental sequence data from the Sargasso Sea reveal that the characteristics of genome reduction in Prochlorococcus are not a harbinger for an escalation in genetic drift. Mol. Biol. Evol. 26, 5–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Cohan, F. M. Towards a conceptual and operational union of bacterial systematics, ecology, and evolution. Phil. Trans. R. Soc. B: Biol. Sci. 361, 1985–1996 (2006).

    Article  Google Scholar 

  80. Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. Nature Rev. Microbiol. 7, 828–836 (2009).

    Article  CAS  Google Scholar 

  81. Cordero, O. X. & Polz, M. F. Explaining microbial genomic diversity in light of evolutionary ecology. Nature Rev. Microbiol. 12, 263–273 (2014).

    Article  CAS  Google Scholar 

  82. Rodriguez-Valera, F. & Ussery, D. W. Is the pan-genome also a pan-selectome? F1000Res 1, 16 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424, 1047–1051 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Sullivan, M. B., Coleman, M. L., Weigele, P., Rohwer, F. & Chisholm, S. W. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 3, e144 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sullivan, M. B. et al. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial 'mobilome'. Environ. Microbiol. 11, 2935–2951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sullivan, M. B. et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ. Microbiol. 12, 3035–3056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Labrie, S. J. et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ. Microbiol. 15, 1356–1376 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Parsons, R. J., Breitbart, M., Lomas, M. W. & Carlson, C. A. Ocean time-series reveals recurring seasonal patterns of virioplankton dynamics in the northwestern Sargasso Sea. ISME J. 6, 273–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Williams, K. P. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res. 30, 866–875 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Lindell, D. et al. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc. Natl Acad. Sci. USA 101, 11013–11018 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeidner, G. et al. Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ. Microbiol. 7, 1505–1513 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cai, F., Axen, S. D. & Kerfeld, C. A. Evidence for the widespread distribution of CRISPR-Cas system in the phylum Cyanobacteria. RNA Biol. 10, 1–7 (2013).

    Article  CAS  Google Scholar 

  95. Weinberger, A. D., Wolf, Y. I., Lobkovsky, A. E., Gilmore, M. S. & Koonin, E. V. Viral diversity threshold for adaptive immunity in prokaryotes. mBio 3, e00456–e00412 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Avrani, S., Schwartz, D. & Lindell, D. Virus-host swinging party in the oceans: Incorporating biological complexity into paradigms of antagonistic coexistence. Mob Genet. Elements 2, 88–95 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Bacterial photosynthesis genes in a virus. Nature 424, 741 (2003). This paper was the first to report the presence of photosynthesis genes in a virus.

    Article  CAS  PubMed  Google Scholar 

  98. Millard, A. D., Zwirglmaier, K., Downey, M. J., Mann, N. H. & Scanlan, D. J. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: implications for mechanisms of cyanophage evolution. Environ. Microbiol. 11, 2370–2387 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Zeng, Q. & Chisholm, S. W. Marine viruses exploit their host's two-component regulatory system in response to resource limitation. Curr. Biol. 22, 124–128 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Carini, P., Steindler, L., Beszteri, S. & Giovannoni, S. J. Nutrient requirements for growth of the extreme oligotroph 'Candidatus Pelagibacter ubique' HTCC1062 on a defined medium. ISME J. 7, 592–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Bertilsson, S., Berglund, O., Pullin, M. & Chisholm, S. Release of dissolved organic matter by Prochlorococcus. Vie Milieu 55, 225–232 (2005).

    Google Scholar 

  103. Chisholm, S. W. et al. Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch. Microbiol. 157, 297–300 (1992).

    Article  CAS  Google Scholar 

  104. Rippka, R. et al. Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria). Int. J. Systemat. Evol. Microbiol. 50, 1833–1847 (2000).

    Article  CAS  Google Scholar 

  105. Saito, M., Moffett, J., Chisholm, S. & Waterbury, J. Cobalt limitation and uptake in Prochlorococcus. Limnol. Oceanogr. 47, 1629–1636 (2002).

    Article  CAS  Google Scholar 

  106. Berube, P. M. et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. http://dx.doi.org/10.1038/ismej.2014.211 (2014).

  107. Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by 'helper' heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Morris, J. J., Johnson, Z. I., Szul, M. J., Keller, M. & Zinser, E. R. Dependence of the cyanobacterium Prochlorococcus on hydrogen peroxide scavenging microbes for growth at the ocean's surface. PLoS ONE 6, e16805 (2011). This paper provides an experimental demonstration of the importance of heterotroph interactions for Prochlorococcus growth in the wild.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036–00012 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nature Prod. Rep. 30, 108–160 (2013).

    Article  CAS  Google Scholar 

  112. Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science 343, 183–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Tettelin, H., Riley, D., Cattuto, C. & Medini, D. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Doolittle, W. F. & Zhaxybayeva, O. Metagenomics and the units of biological organization. BioScience 60, 102–112 (2010).

    Article  Google Scholar 

  115. Becker, J. W. et al. Closely related phytoplankton species produce similar suites of dissolved organic matter. Front. Microbiol. 5, 1–14 (2014).

    Article  CAS  Google Scholar 

  116. Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nature Rev. Microbiol. 5, 782–791 (2007).

    Article  CAS  Google Scholar 

  117. Goericke, R., Strom, S. L. & Bell, R. A. Distribution and sources of cyclic pheophorbides in the marine environment. Limnol. Oceanogr. 45, 200–211 (2000).

    Article  CAS  Google Scholar 

  118. Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. USA 107, 15129–15134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Christaki, U., Jacquet, S., Dolan, J. R., Vaulot, D. & Rassoulzadegan, F. Growth and grazing on Prochlorococcus and Synechococcus by two marine ciliates. Limnol. Oceanogr. 44, 52–61 (1999).

    Article  Google Scholar 

  120. Hirose, M., Katano, T. & Nakano, S.-I. Growth and grazing mortality rates of Prochlorococcus, Synechococcus and eukaryotic picophytoplankton in a bay of the Uwa Sea, Japan. J. Plankton Res. 30, 241–250 (2008).

    Article  Google Scholar 

  121. Guillou, L., Jacquet, S., Chretiennot-Dinet, M.-J. & Vaulot, D. Grazing impact of two small heterotrophic flagellates on Prochlorococcus and Synechococcus. Aquat. Microb. Ecol. 26, 201–207 (2001).

    Article  Google Scholar 

  122. Hartmann, M., Zubkov, M. V., Scanlan, D. J. & Lepère, C. In situ interactions between photosynthetic picoeukaryotes and bacterioplankton in the Atlantic Ocean: evidence for mixotrophy. Environ. Microbiol. Rep. 5, 835–840 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Frias-Lopez, J., Thompson, A., Waldbauer, J. & Chisholm, S. W. Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ. Microbiol. 11, 512–525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Raven, J. A., Beardall, J., Flynn, K. J. & Maberly, S. C. Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin's insectivorous plants. J. Exp. Bot. 60, 3975–3987 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Richardson, T. L. & Jackson, G. A. Small phytoplankton and carbon export from the surface ocean. Science 315, 838–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Zubkov, M. V., Fuchs, B. M., Tarran, G. A., Burkill, P. H. & Amann, R. High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl. Environ. Microbiol. 69, 1299–1304 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gómez-Pereira, P. R. et al. Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre. ISME J. 7, 603–614 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Mary, I. et al. Light enhanced amino acid uptake by dominant bacterioplankton groups in surface waters of the Atlantic Ocean. FEMS Microbiol. Ecol. 63, 36–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Michelou, V. K., Cottrell, M. T. & Kirchman, D. L. Light-stimulated bacterial production and amino acid assimilation by cyanobacteria and other microbes in the North Atlantic ocean. Appl. Environ. Microbiol. 73, 5539–5546 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Del Carmen Muñoz-Marín, M. et al. Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean. Proc. Natl Acad. Sci. USA 110, 8597–8602 (2013). This article shows the potential for Prochlorococcus photoheterotrophic growth in the wild.

    Article  Google Scholar 

  131. Gómez-Baena, G. et al. Glucose uptake and its effect on gene expression in Prochlorococcus. PLoS ONE 3, e3416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhaxybayeva, O., Doolittle, W. F., Papke, R. T. & Gogarten, J. P. Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biol. Evol. 1, 325–339 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Mackey, K. R. M. et al. Effect of temperature on photosynthesis and growth in marine Synechococcus spp. Plant Physiol. 163, 815–829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pittera, J. et al. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. The ISME J. 8, 1221–1236 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Mann, E., Ahlgren, N., Moffett, J. & Chisholm, S. W. Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol. Oceanogr. 47, 976–988 (2002).

    Article  CAS  Google Scholar 

  137. Chen, B., Liu, H., Landry, M. R., Chen, M. & Sun, J. Estuarine nutrient loading affects phytoplankton growth and microzooplankton grazing at two contrasting sites in Hong Kong coastal waters. Marine Ecol. Progress Series 379, 77–90 (2009).

    Article  CAS  Google Scholar 

  138. Moore, L. et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol. Oceanogr.: Methods 5, 353–362 (2007).

    Article  CAS  Google Scholar 

  139. Martiny, A. C., Huang, Y. & Li, W. Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ. Microbiol. 11, 1340–1347 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Feingersch, R. et al. Potential for phosphite and phosphonate utilization by Prochlorococcus. ISME J. 6, 827–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Martinez, A., Tyson, G. W. & Delong, E. F. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. Environ. Microbiol. 12, 222–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Martinez, A., Osburne, M. S., Sharma, A. K., Delong, E. F. & Chisholm, S. W. Phosphite utilization by the marine picocyanobacterium Prochlorococcus MIT9301. Environ. Microbiol. 14, 1363–1377 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Grzymski, J. J. & Dussaq, A. M. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 6, 71–80 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Bragg, J. G. & Hyder, C. L. Nitrogen versus carbon use in prokaryotic genomes and proteomes. Proc. Biol. Sci. 271 (Suppl. 5), S374–S377 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Gilbert, J. D. & Fagan, W. F. Contrasting mechanisms of proteomic nitrogen thrift in Prochlorococcus. Mol. Ecol. 20, 92–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Garcia-Fernandez, J. M., de Marsac, N. T. & Diez, J. Streamlined regulation and gene loss as adaptive mechanisms in Prochlorococcus for optimized nitrogen utilization in oligotrophic environments. Microbiol. Mol. Biol. Rev. 68, 630–638 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Martiny, A. C., Kathuria, S. & Berube, P. M. Widespread metabolic potential for nitrite and nitrate assimilation among Prochlorococcus ecotypes. Proc. Natl Acad. Sci. USA 106, 10787–10792 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kamennaya, N. A. & Post, A. F. Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp. Appl. Environ. Microbiol. 77, 291–301 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Moore, L., Post, A., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).

    Article  CAS  Google Scholar 

  150. Thompson, A. W., Huang, K., Saito, M. A. & Chisholm, S. W. Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability. ISME J. 5, 1580–1594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Chisholm laboratory, L. Kelly, O. Cordero and M. Polz for providing helpful comments on the manuscript. The authors also thank J. Waldbauer for carrying out the initial calculations that inspired Figure 1b. S.B., P.B. and S.W.C. were supported by grants from the Gordon and Betty Moore Foundation (grant GBMF495 to S.W.C.) and the National Science Foundation (OCE-1153588, OCE-1356460 and DBI-0424599, the NSF Center for Microbial Oceanography Research and Education). D.L. was supported by the Israel Science Foundation (Morasha grant 1504/06) and the European Research Council (starting grant 203406).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven J. Biller or Sallie W. Chisholm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Phytoplankton

Free-floating aquatic photosynthetic microorganisms that require sunlight and inorganic nutrients for growth

Euphotic zone

The sunlit upper region of the ocean water column that receives sufficient light energy to sustain photosynthesis. The depth can vary depending on local conditions, but it is generally the upper 200 m in oligotrophic waters.

Oligotrophic

A term used to describe an environment with low concentrations of available nutrients.

Ecotypes

Genetically and physiologically differentiated subgroups of a species that occupy a distinct ecological niche.

ITS sequence

(Internal transcribed spacer sequence). A non-functional rRNA sequence located between the 16S and 23S ribosomal RNA genes in bacteria, which is a useful phylogenetic marker.

Clades

Coherent phylogenetic groups of organisms, each of which comprises all the descendents of a single ancestor.

Siderophore

A molecule that can bind iron; it is often used by microorganisms to facilitate the acquisition of iron from the environment.

Oxygen minimum zones

Subsurface ocean regions that are deficient in oxygen owing to poor ventilation and high rates of respiration.

Gyres

Ocean systems bounded by circular rotating winds and currents. The five major ocean gyres are found in the North Atlantic, North Pacific, South Atlantic, South Pacific and Indian Oceans.

Pan-genome

The complete set of genes that is encoded by all the genomes of a defined group of organisms.

Synteny

The conserved ordering of genes along a chromosome.

Paralogous genes

A pair of similar genes that were created by a duplication event.

Effective population size

In population genetics, the size of an idealized population that would be expected to behave in the same manner as the actual population in terms of the effects of selection and genetic drift.

Genetic drift

The change in the frequency of an allele in a population due to chance or random events.

Cyanophages

Phages that infect cyanobacteria.

Lysogenic phages

Bacteriophages that are capable of integrating their genome into the host genome and are replicated along with the cell, without killing it.

Calvin cycle

The biochemical process that converts CO2 into organic carbon.

Reducing power

In redox chemistry, the availability of compounds that can supply electrons.

Axenic

A term used to describe a pure culture of a single organism that is free of any other contaminating organism.

Reactive oxygen species

(ROS). Oxygen-containing compounds, such as H2O2, that readily react with and damage cellular components.

Extracellular membrane vesicles

Small (20–200 nm diameter) spherical structures enclosed by a lipid bilayer. In Gram-negative cells, they are thought to be derived from the outer membrane.

Mixotrophic

A term used to describe an organism that can use multiple metabolic modes for acquiring energy or carbon for growth. In the context of this Review, this refers to organisms that can use both CO2 (autotrophy) and organic carbon (heterotrophy).

Autotrophic

A term used to describe an organism that can build complex, energy-containing organic molecules from CO2 using either light or inorganic chemical reactions as an energy source. Prochlorococcus is capable of photoautotrophic growth and uses light energy to turn CO2 into organic carbon via photosynthesis.

Microbial loop

The network of interactions among microorganisms at the base of the marine food web through which carbon and other nutrients move before they are supplied to larger organisms.

Salps

Marine tunicates that consume plankton by filter feeding.

Ocean stratification

The division of the water column into low-density and high-density zones, with a boundary layer (the pycnocline) defined by a gradient of densities across which water will not passively mix. Changes in density that lead to stratification are typically due to differences in temperature and salinity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biller, S., Berube, P., Lindell, D. et al. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13, 13–27 (2015). https://doi.org/10.1038/nrmicro3378

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3378

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing