Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

RAB11-mediated trafficking in host–pathogen interactions

Key Points

  • Bacterial and viral pathogens disrupt or exploit RAB11 and exocyst-dependent vesicular trafficking.

  • Innate immune signalling, autophagy and toxin shedding are regulated by RAB11 and the exocyst.

  • Toxins that increase intracellular cyclic AMP levels inhibit endocytic recycling of proteins to cell junctions, thereby disrupting vascular endothelial and epithelial barrier integrity.

  • Bacterial pathogens exploit endocytic recycling to divert host resources to sites of bacterial invasion.

  • Disruption of trafficking from the Golgi complex to recycling endosomes contributes to pathogen replication.

  • Viruses subvert endocytic recycling to exit from host cells.

Abstract

Many bacterial and viral pathogens block or subvert host cellular processes to promote successful infection. One host protein that is targeted by invading pathogens is the small GTPase RAB11, which functions in vesicular trafficking. RAB11 functions in conjunction with a protein complex known as the exocyst to mediate terminal steps in cargo transport via the recycling endosome to cell–cell junctions, phagosomes and cellular protrusions. These processes contribute to host innate immunity by promoting epithelial and endothelial barrier integrity, sensing and immobilizing pathogens and repairing pathogen-induced cellular damage. In this Review, we discuss the various mechanisms that pathogens have evolved to disrupt or subvert RAB11-dependent pathways as part of their infection strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAB-mediated endocytic recycling.
Figure 2: The modes of action of anthrax toxins and cholera toxin.
Figure 3: Pathogen subversion of RAB11 and exocyst functions.
Figure 4: Viral exit via the recycling endosome.

Similar content being viewed by others

References

  1. Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nature Rev. Mol. Cell Biol. 10, 513–525 (2009).

    CAS  Google Scholar 

  2. Heider, M. R. & Munson, M. Exorcising the exocyst complex. Traffic 13, 898–907 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelly, E. E., Horgan, C. P. & McCaffrey, M. W. Rab11 proteins in health and disease. Biochem. Soc. Trans. 40, 1360–1367 (2012).

    CAS  PubMed  Google Scholar 

  4. Lim, Y. S., Chua, C. E. & Tang, B. L. Rabs and other small GTPases in ciliary transport. Biol. Cell 103, 209–221 (2011).

    CAS  PubMed  Google Scholar 

  5. Knodler, A. et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc. Natl Acad. Sci. USA 107, 6346–6351 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Apodaca, G. Opening ahead: early steps in lumen formation revealed. Nature Cell Biol. 12, 1026–1028 (2010).

    CAS  PubMed  Google Scholar 

  7. Novick, P. et al. Interactions between Rabs, tethers, SNAREs and their regulators in exocytosis. Biochem. Soc. Trans. 34, 683–686 (2006).

    CAS  PubMed  Google Scholar 

  8. Husebye, H. et al. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity 33, 583–596 (2010). This study identifies RAB11 as an important regulator of TLR4 and TRAM transport to E. coli phagosomes to activate interferon regulatory factor 3 (IRF3) expression.

    CAS  PubMed  Google Scholar 

  9. Los, F. C. et al. RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin. Cell Host Microbe 9, 147–157 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Simicek, M. et al. The deubiquitylase USP33 discriminates between RALB functions in autophagy and innate immune response. Nature Cell Biol. 15, 1220–1230 (2013).

    CAS  PubMed  Google Scholar 

  12. Prigent, M. et al. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J. Cell Biol. 163, 1111–1121 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fielding, A. B. et al. Rab11-FIP3 and FIP4 interact with Arf6 and the exocyst to control membrane traffic in cytokinesis. EMBO J. 24, 3389–3399 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Guichard, A. et al. Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature 467, 854–858 (2010). This paper shows that RAB11 and the exocyst are targets that are inhibited by the anthrax toxins EF and LF, respectively, thereby causing loss of barrier function.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Guichard, A. et al. Cholera toxin disrupts barrier function by inhibiting exocyst-mediated trafficking of host proteins to intestinal cell junctions. Cell Host Microbe 14, 294–305 (2013). This study shows that, in addition to its well-appreciated role in stimulating Cl ion secretion, cholera toxin also weakens cell junctions to enable the efflux of Na+ ions and water in the gut lumen.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nichols, C. D. & Casanova, J. E. Salmonella-directed recruitment of new membrane to invasion foci via the host exocyst complex. Curr. Biol. 20, 1316–1320 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brock, S. C., Goldenring, J. R. & Crowe, J. E. Jr. Apical recycling systems regulate directional budding of respiratory syncytial virus from polarized epithelial cells. Proc. Natl Acad. Sci. USA 100, 15143–15148 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rowe, R. K., Suszko, J. W. & Pekosz, A. Roles for the recycling endosome, Rab8, and Rab11 in hantavirus release from epithelial cells. Virology 382, 239–249 (2008). This study reports the discovery that RAB8 and RAB11 colocalize with ANDV proteins during infection and that downregulation of RAB11 and RAB8 proteins reduce viral secretion from host cells, thereby implicating the recycling endosome and these RAB proteins in hantavirus trafficking to the plasma membrane.

    CAS  PubMed  Google Scholar 

  19. Mounier, J. et al. Shigella effector IpaB-induced cholesterol relocation disrupts the Golgi complex and recycling network to inhibit host cell secretion. Cell Host Microbe 12, 381–389 (2012). This paper shows that Shigella spp. recruits cholesterol to sites of bacterial invasion, which leads to fragmentation of the Golgi complex, inhibition of endocytic trafficking and disruption of host epithelial barriers.

    CAS  PubMed  Google Scholar 

  20. Rejman Lipinski, A. et al. Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog. 5, e1000615 (2009). This study shows that RAB6 and RAB11 are key regulators of Golgi stability and further shows that C. trachomatis functions via these small GTPases to disrupt Golgi complex structure and promote its intracellular development.

    PubMed  Google Scholar 

  21. Koch, R. (ed.) Beitrage zur Biologie der Pflanzen Vol. 2 (J. U. Kern's Verlag (Max Müller)) (in German) (1876).

    Google Scholar 

  22. Koch, R. Sechster Bericht der deutschen Wissenschaftlichen Commission zur Enforschung der Cholera, Geh Regierungsraths Dr Koch. Dtsch. Med. Wochenschr. 10, 191–192 (in German) (1884).

    Google Scholar 

  23. Chamberland, C. (ed). Le charbon et la vaccination charbonneuse d'apres les travaux recents de M. Pasteur (ed. Tignol, B.) (Bernard Tignol) (in French) (1883).

    Google Scholar 

  24. Pasteur, L., Chamberland, C. & Roux, E. Compte rendu sommaire des experiences faites a Pouilly-le-Fort, pres Melun, sur la vaccination charbonneuse. Cr. Acad. Sci. Paris 92, 1393–1398 (in French) (1881).

    Google Scholar 

  25. Guichard, A., Nizet, V. & Bier, E. New insights into the biological effects of anthrax toxins: linking cellular to organismal responses. Microbes Infect. 14, 97–118 (2012).

    CAS  PubMed  Google Scholar 

  26. Mourez, M. Anthrax toxins. Rev. Physiol. Biochem. Pharmacol. 152, 135–164 (2004).

    CAS  PubMed  Google Scholar 

  27. Liu, S. et al. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice. Cell Host Microbe 8, 455–462 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pezard, C., Berche, P. & Mock, M. Contribution of individual toxin components to virulence of Bacillus anthracis. Infect. Immun. 59, 3472–3477 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, S. et al. Key tissue targets responsible for anthrax-toxin-induced lethality. Nature 501, 63–68 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  31. Guichard, A., Park, J. M., Cruz-Moreno, B., Karin, M. & Bier, E. Anthrax lethal factor and edema factor act on conserved targets in Drosophila. Proc. Natl Acad. Sci. USA 103, 3244–3249 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Jafar-Nejad, H. et al. Sec15, a component of the exocyst, promotes Notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev. Cell 9, 351–363 (2005).

    CAS  PubMed  Google Scholar 

  33. De Haan, L. & Hirst, T. R. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms. Mol. Membr. Biol. 21, 77–92 (2004).

    CAS  PubMed  Google Scholar 

  34. Sack, D. A., Sack, R. B., Nair, G. B. & Siddique, A. K. Cholera. Lancet 363, 223–233 (2004).

    CAS  PubMed  Google Scholar 

  35. Barrett, K. E. & Keely, S. J. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu. Rev. Physiol. 62, 535–572 (2000).

    CAS  PubMed  Google Scholar 

  36. Gabriel, S. E., Brigman, K. N., Koller, B. H., Boucher, R. C. & Stutts, M. J. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266, 107–109 (1994).

    CAS  PubMed  Google Scholar 

  37. Mathan, M. M., Chandy, G. & Mathan, V. I. Ultrastructural changes in the upper small intestinal mucosa in patients with cholera. Gastroenterology 109, 422–430 (1995).

    CAS  PubMed  Google Scholar 

  38. Ahuja, N., Kumar, P. & Bhatnagar, R. The adenylate cyclase toxins. Crit. Rev. Microbiol. 30, 187–196 (2004).

    CAS  PubMed  Google Scholar 

  39. Sears, C. L. & Kaper, J. B. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60, 167–215 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Weiglmeier, P. R., Rosch, P. & Berkner, H. Cure and curse: E. coli heat-stable enterotoxin and its receptor guanylyl cyclase C. Toxins 2, 2213–2229 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brumell, J. H. & Scidmore, M. A. Manipulation of Rab GTPase function by intracellular bacterial pathogens. Microbiol. Mol. Biol. Rev. 71, 636–652 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ray, K., Marteyn, B., Sansonetti, P. J. & Tang, C. M. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nature Rev. Microbiol. 7, 333–340 (2009).

    CAS  Google Scholar 

  43. Hayward, R. D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18, 4926–4934 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rzomp, K. A., Scholtes, L. D., Briggs, B. J., Whittaker, G. R. & Scidmore, M. A. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect. Immun. 71, 5855–5870 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Varthakavi, V. et al. The pericentriolar recycling endosome plays a key role in Vpu-mediated enhancement of HIV-1 particle release. Traffic 7, 298–307 (2006).

    CAS  PubMed  Google Scholar 

  46. Sfakianos, J. N. & Hunter, E. M-PMV capsid transport is mediated by Env/Gag interactions at the pericentriolar recycling endosome. Traffic 4, 671–680 (2003).

    CAS  PubMed  Google Scholar 

  47. Sayner, S. L. et al. Paradoxical cAMP-induced lung endothelial hyperpermeability revealed by Pseudomonas aeruginosa ExoY. Circ. Res. 95, 196–203 (2004).

    CAS  PubMed  Google Scholar 

  48. Sack, R. B. The discovery of cholera-like enterotoxins produced by Escherichia coli causing secretory diarrhoea in humans. Indian J. Med. Res. 133, 171–180 (2011).

    PubMed  PubMed Central  Google Scholar 

  49. Carbonetti, N. H. Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol. 5, 455–469 (2010).

    CAS  PubMed  Google Scholar 

  50. Bai, G., Knapp, G. S. & McDonough, K. A. Cyclic AMP signalling in mycobacteria: redirecting the conversation with a common currency. Cell. Microbiol. 13, 349–358 (2011).

    PubMed  Google Scholar 

  51. Wang, M. et al. Microbial hijacking of complement–Toll-like receptor crosstalk. Sci. Signal 3, ra11 (2010).

    PubMed  PubMed Central  Google Scholar 

  52. Michankin, B. N., Chevchenko, L. A. & Asseeva, L. E. Adenylate cyclase. A possible factor in the pathogenicity of Yersinia pestis. Bull. Soc. Pathol. Exot. 85, 17–21 (1992).

    CAS  PubMed  Google Scholar 

  53. Bliska, J. B. Yersinia inhibits host signaling by acetylating MAPK kinases. ACS Chem. Biol. 1, 349–351 (2006).

    CAS  PubMed  Google Scholar 

  54. Huffman, D. L. et al. Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc. Natl Acad. Sci. USA 101, 10995–11000 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Park, J. M., Ng, V. H., Maeda, S., Rest, R. F. & Karin, M. Anthrolysin O and other Gram-positive cytolysins are Toll-like receptor 4 agonists. J. Exp. Med. 200, 1647–1655 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Moayeri, M. & Leppla, S. H. Cellular and systemic effects of anthrax lethal toxin and edema toxin. Mol. Aspects Med. 30, 439–455 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tournier, J. N., Rossi Paccani, S., Quesnel-Hellmann, A. & Baldari, C. T. Anthrax toxins: a weapon to systematically dismantle the host immune defenses. Mol. Aspects Med. 30, 456–466 (2009).

    CAS  PubMed  Google Scholar 

  58. Queen, J. & Satchell, K. J. Promotion of colonization and virulence by cholera toxin is dependent on neutrophils. Infect. Immun. 81, 3338–3345 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Grinberg, L. M., Abramova, F. A., Yampolskaya, O. V., Walker, D. H. & Smith, J. H. Quantitative pathology of inhalational anthrax I: quantitative microscopic findings. Mod. Pathol. 14, 482–495 (2001).

    CAS  PubMed  Google Scholar 

  60. Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008). This paper shows that STING is essential for recognition of viral dsDNA and that it induces innate signalling via interactions with the exocyst complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chien, Y. et al. RalB GTPase-mediated activation of the IκB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127, 157–170 (2006).

    CAS  PubMed  Google Scholar 

  62. Cherry, S. Genomic RNAi screening in Drosophila S2 cells: what have we learned about host–pathogen interactions? Curr. Opin. Microbiol. 11, 262–270 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Guttman, J. A. & Finlay, B. B. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta 1788, 832–841 (2009).

    CAS  PubMed  Google Scholar 

  64. Wilke, G. A. & Bubeck Wardenburg, J. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc. Natl Acad. Sci. USA 107, 13473–13478 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Berube, B. J. & Bubeck Wardenburg, J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins 5, 1140–1166 (2013).

    PubMed  PubMed Central  Google Scholar 

  66. Powers, M. E., Kim, H. K., Wang, Y. & Bubeck Wardenburg, J. ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J. Infect. Dis. 206, 352–356 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Inoshima, N., Wang, Y. & Bubeck Wardenburg, J. Genetic requirement for ADAM10 in severe Staphylococcus aureus skin infection. J. Invest. Dermatol. 132, 1513–1516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Inoshima, I. et al. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nature Med. 17, 1310–1314 (2011). This study shows that ADAM10 functions as the host receptor for the S. aureus PFT α-toxin, which leads to cleavage of E-cadherin and weakens epithelial barriers.

    CAS  PubMed  Google Scholar 

  69. Weber, S. et al. The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development 138, 495–505 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gibb, D. R. et al. ADAM10 is essential for Notch2-dependent marginal zone B cell development and CD23 cleavage in vivo. J. Exp. Med. 207, 623–635 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tian, L. et al. ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int. Immunol. 20, 1181–1187 (2008).

    CAS  PubMed  Google Scholar 

  72. Hartmann, D. et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts. Hum. Mol. Genet. 11, 2615–2624 (2002).

    CAS  PubMed  Google Scholar 

  73. Wen, C., Metzstein, M. M. & Greenwald, I. SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development 124, 4759–4767 (1997).

    CAS  PubMed  Google Scholar 

  74. Pan, D. & Rubin, G. M. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271–280 (1997).

    CAS  PubMed  Google Scholar 

  75. Debellis, L. et al. The Vibrio cholerae cytolysin promotes chloride secretion from intact human intestinal mucosa. PLoS ONE 4, e5074 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Valeva, A. et al. A cellular metalloproteinase activates Vibrio cholerae pro-cytolysin. J. Biol. Chem. 279, 25143–25148 (2004).

    CAS  PubMed  Google Scholar 

  77. Husmann, M. et al. Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis. FEBS Lett. 583, 337–344 (2009).

    CAS  PubMed  Google Scholar 

  78. Husmann, M. et al. Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus α-toxin or streptolysin O. Biochem. Biophys. Res. Commun. 344, 1128–1134 (2006).

    CAS  PubMed  Google Scholar 

  79. Lizak, M. & Yarovinsky, T. O. Phospholipid scramblase 1 mediates type I interferon-induced protection against staphylococcal α-toxin. Cell Host Microbe 11, 70–80 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ali, S. R. et al. Anthrax toxin induces macrophage death by p38 MAPK inhibition but leads to inflammasome activation via ATP leakage. Immunity 35, 34–44 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith, H. & Keppie, J. Observations on experimental anthrax; demonstration of a specific lethal factor produced in vivo by Bacillus anthracis. Nature 173, 869–870 (1954).

    CAS  PubMed  Google Scholar 

  82. Chitlaru, T., Altboum, Z., Reuveny, S. & Shafferman, A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol. Rev. 239, 221–236 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank E. Troemel and members of the Bier and Nizet laboratories for helpful comments and discussions on the manuscript. They also acknowledge funding from the following US National Institutes of Health (NIH) R01 grants: AI070654 (to E.B.), AI057153 (to V.N.) and AI110713 (to E.B. and V.N.), which have supported their studies on topics covered in this Review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Nizet or Ethan Bier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Recycling endosomes

Late vesicular compartments that are involved in recycling membrane proteins and de novo synthesized cargo from the Golgi complex to the cell surface.

SNARE complexes

(Soluble NSF attachment protein receptor complexes). A family of related proteins that mediate the fusion of surface-bound vesicles with the plasma membrane (for example, SNAP25, a plasma membrane tethered SNARE and a vesicular SNARE form a trimeric complex to initiate membrane fusion).

Invadosomes

Subcellular structures that derive from the plasma membrane and mediate bacterial invasion of the host cell.

Notch signalling

A signalling pathway that controls a range of cell fate and growth decisions. It is activated at adherens junctions by cell surface-tethered ligands (for example, Delta) on one cell, which stimulate Notch receptors on adjacent cells.

Adherens junctions

Subapically localized cell–cell junctions that consist of transmembrane epithelial cadherin adhesion molecules, which interact with the cytoskeleton via α-catenins and β-catenins and link epithelial and endothelial cells, enabling them to form contiguous sheets.

Tight junctions

The most apically localized cell–cell junctions; they consist of adhesive claudins and occludin transmembrane proteins, which function as a diffusion barrier to ions, water and other small molecules.

Toxisome

A vesicle that contains toxic factors and that is expelled from the cell surface (for example, shed microvilli).

Anterograde Golgi trafficking

A pathway via which vesicles that are derived from Golgi membranes are directed to the cell surface via anterograde trafficking. In addition, vesicles that are derived from the cell surface or other intracellular membrane compartments can be directed back to the Golgi via retrograde trafficking.

RALB

A small GTPase that can bind in a mutually exclusive manner to either of the exocyst components SEC5 or EXO84 to function as a molecular switch between immune signalling and autophagy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guichard, A., Nizet, V. & Bier, E. RAB11-mediated trafficking in host–pathogen interactions. Nat Rev Microbiol 12, 624–634 (2014). https://doi.org/10.1038/nrmicro3325

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing