Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Botulinum neurotoxins: genetic, structural and mechanistic insights

Key Points

  • Botulinum neurotoxins (BoNTs) are produced by neurotoxigenic clostridia and are a diverse group that consists of approximately 40 different BoNT types (and various subtypes), all of which cause persistent paralysis of peripheral nerve terminals — a condition known as botulism.

  • Recent studies have solved various structures of BoNT complexes, which has provided insights into their modes of entry into the general circulation as well as the ability of these toxins to survive for long periods of time in the ex vivo environment.

  • The molecular basis of the specificity of BoNT binding to nerve terminals is explored, as well as the ensuing cellular events, including toxin endocytosis and the targeting and cleavage of SNARE proteins.

  • A molecular model for the essential process of membrane translocation of the metalloprotease domain of BoNTs into the neuronal cytosol is presented.

  • Open questions and future areas of research are outlined with respect to the development of novel therapeutic agents that are based on BoNTs.

Abstract

Botulinum neurotoxins (BoNTs) are produced by anaerobic bacteria of the genus Clostridium and cause a persistent paralysis of peripheral nerve terminals, which is known as botulism. Neurotoxigenic clostridia belong to six phylogenetically distinct groups and produce more than 40 different BoNT types, which inactivate neurotransmitter release owing to their metalloprotease activity. In this Review, we discuss recent studies that have improved our understanding of the genetics and structure of BoNT complexes. We also describe recent insights into the mechanisms of BoNT entry into the general circulation, neuronal binding, membrane translocation and neuroparalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Animal and human botulism.
Figure 2: Structure of isolated BoNT molecules and BoNT complexes.
Figure 3: Binding and trafficking of botulinum neurotoxins inside nerve terminals.
Figure 4: Model for the molecular events that occur during L-chain translocation across the synaptic vesicle membrane.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Popoff, M. R. & Bouvet, P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon 75, 63–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, E. A. & Montecucco, C. in Handbook of Clinical Neurology Vol. 91, 333–368 (ed. Engel, A. G.) (Elsevier, 2008).

    Google Scholar 

  3. Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80, 717–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Cherington, M. Clinical spectrum of botulism. Muscle Nerve 21, 701–710 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Centers for Disease Control and Prevention, Department of Health and Human Services. Possession, use, and transfer of select agents and toxins; biennial review. Final rule. Fed. Regist. 77, 61083–61115 (2012).

  6. Arnon, S. S. et al. Botulinum toxin as a biological weapon: medical and public health management. J. Am. Med. Ass. 285, 1059–1070 (2001).

    Article  CAS  Google Scholar 

  7. Lim, E. C. & Seet, R. C. Use of botulinum toxin in the neurology clinic. Nature Rev. Neurol. 6, 624–636 (2010).

    Article  CAS  Google Scholar 

  8. Smith, L. D. S. & Sugiyama, H. Botulism: the Organism, its Toxins, the Disease (Charles C. Thomas Publisher, 1988).

    Google Scholar 

  9. Hill, K. K. & Smith, T. J. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. Curr. Top. Microbiol. Immunol. 364, 1–20 (2013).

    PubMed  Google Scholar 

  10. Rocke, E. T. & Samuel, M. D. Water and sediment characteristics associated with avian botulism outbreaks in wetlands. J. Wildl. Management 63, 1249–1260 (1999).

    Article  Google Scholar 

  11. Aureli, P. et al. Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J. Infect. Dis. 154, 207–211 (1986). This is the first report of botulism caused by a clostridial species other than C. botulinum.

    Article  CAS  PubMed  Google Scholar 

  12. Koepke, R., Sobel, J. & Arnon, S. S. Global occurrence of infant botulism, 1976–2006. Pediatrics 122, e73–e82 (2008).

    Article  PubMed  Google Scholar 

  13. Simpson, L. L. The life history of a botulinum toxin molecule. Toxicon 68, 40–59 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Wenham, T. N. Botulism: a rare complication of injecting drug use. Emerg. Med. J. 25, 55–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Chertow, D. S. et al. Botulism in 4 adults following cosmetic injections with an unlicensed, highly concentrated botulinum preparation. J. Am. Med. Ass. 296, 2476–2479 (2006).

    Article  CAS  Google Scholar 

  16. Dover, N., Barash, J. R., Hill, K. K., Xie, G. & Arnon, S. S. Molecular characterization of a novel botulinum neurotoxin type H gene. J. Infect. Dis. 209, 192–202 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R. & Stevens, R. C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nature Struct. Biol. 5, 898–902 (1998). This study reports the first crystal structure of a BoNT and provides the molecular basis for understanding the mechanism of neuron intoxication.

    Article  CAS  PubMed  Google Scholar 

  18. Swaminathan, S. & Eswaramoorthy, S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nature Struct. Biol. 7, 693–699 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kumaran, D. et al. Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J. Mol. Biol. 386, 233–245 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Gu, S. et al. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335, 977–981 (2012). This study reports the unexpected finding that NTNHA adopts a similar fold to BoNT and that together, the two proteins form an interlocked complex, which suggests that NTNHA stabilizes BoNT and protects the toxin against proteolytic cleavage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bonventre, P. F. Absorption of botulinal toxin from the gastrointestinal tract. Rev. Infect. Dis. 1, 663–667 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Ohishi, I. & Sakaguchi, G. Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes. Infect. Immun. 28, 303–309 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, K. et al. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog. 9, e1003690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benefield, D. A., Dessain, S. K., Shine, N., Ohi, M. D. & Lacy, D. B. Molecular assembly of botulinum neurotoxin progenitor complexes. Proc. Natl Acad. Sci. USA 110, 5630–5635 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Sugawara, Y. et al. Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin. J. Cell Biol. 189, 691–700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujinaga, Y., Sugawara, Y. & Matsumura, T. Uptake of botulinum neurotoxin in the intestine. Curr. Top. Microbiol. Immunol. 364, 45–59 (2013).

    CAS  PubMed  Google Scholar 

  27. Couesnon, A., Molgo, J., Connan, C. & Popoff, M. R. Preferential entry of botulinum neurotoxin A H domain through intestinal crypt cells and targeting to cholinergic neurons of the mouse intestine. PLoS Pathog. 8, e1002583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maksymowych, A. B. et al. Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. Infect. Immun. 67, 4708–4712 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Restani, L. et al. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog. 8, e1003087 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sheth, A. N. et al. International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. Clin. Infect. Dis. 47, 1245–1251 (2008).

    Article  PubMed  Google Scholar 

  31. Fagan, R. P., McLaughlin, J. B. & Middaugh, J. P. Persistence of botulinum toxin in patients' serum: Alaska, 1959–2007. J. Infect. Dis. 199, 1029–1031 (2009).

    Article  PubMed  Google Scholar 

  32. Dolly, J. O., Black, J., Williams, R. S. & Melling, J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307, 457–460 (1984). This study provides the first evidence that BoNTs bind specifically to the presynaptic membrane before entering the nerve terminal.

    Article  CAS  PubMed  Google Scholar 

  33. Montecucco, C. How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem. Sci. 11, 314–317 (1986). This paper proposes that dual receptor binding could account for the high specificity and affinity of tetanus toxin and BoNTs for the presynaptic membrane.

    Article  CAS  Google Scholar 

  34. Rummel, A. Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr. Top. Microbiol. Immunol. 364, 61–90 (2013).

    CAS  PubMed  Google Scholar 

  35. Chai, Q. et al. Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444, 1096–1100 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Jin, R., Rummel, A., Binz, T. & Brunger, A. T. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444, 1092–1095 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Berntsson, R. P., Peng, L., Dong, M. & Stenmark, P. Structure of dual receptor binding to botulinum neurotoxin B. Nature Commun. 4, 2058 (2013). References 35, 36 and 37 describe the crystallographic structure of BoNT/B in complex with both its protein receptor and glycolipid receptor, which provides experimental evidence for the dual receptor binding model.

    Article  CAS  Google Scholar 

  38. Montecucco, C., Rossetto, O. & Schiavo, G. Presynaptic receptor arrays for clostridial neurotoxins. Trends Microbiol. 12, 442–446 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Muraro, L., Tosatto, S., Motterlini, L., Rossetto, O. & Montecucco, C. The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem. Biophys. Res. Commun. 380, 76–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Y. et al. Structural insights into the functional role of the Hn sub-domain of the receptor-binding domain of the botulinum neurotoxin mosaic serotype C/D. Biochimie 95, 1379–1385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Heyningen, W. E. Tentative identification of the tetanus toxin receptor in nervous tissue. J. Gen. Microbiol. 20, 310–320 (1959). This paper provides the first experimental evidence that a ganglioside is involved in the neurospecific binding of a clostridial neurotoxin.

    Article  CAS  PubMed  Google Scholar 

  42. Simpson, L. L. & Rapport, M. M. The binding of botulinum toxin to membrane lipids: sphingolipids, steroids and fatty acids. J. Neurochem. 18, 1751–1759 (1971).

    Article  CAS  PubMed  Google Scholar 

  43. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  44. Prinetti, A., Loberto, N., Chigorno, V. & Sonnino, S. Glycosphingolipid behaviour in complex membranes. Biochim. Biophys. Acta 1788, 184–193 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Chiba, A., Kusunoki, S., Shimizu, T. & Kanazawa, I. Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome. Ann. Neurol. 31, 677–679 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Bullens, R. W. et al. Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function. J. Neurosci. 22, 6876–6884 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fogolari, F., Tosatto, S. C., Muraro, L. & Montecucco, C. Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes. FEBS Lett. 583, 2321–2325 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Black, J. D. & Dolly, J. O. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J. Cell Biol. 103, 535–544 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Strotmeier, J. et al. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochem. J. 431, 207–216 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Karalewitz, A. P., Fu, Z., Baldwin, M. R., Kim, J. J. & Barbieri, J. T. Botulinum neurotoxin serotype C associates with dual ganglioside receptors to facilitate cell entry. J. Biol. Chem. 287, 40806–40816 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Strotmeier, J. et al. The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites. Mol. Microbiol. 81, 143–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Pirazzini, M., Rossetto, O., Bolognese, P., Shone, C. C. & Montecucco, C. Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell. Microbiol. 13, 1731–1743 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Kitamura, M., Takamiya, K., Aizawa, S. & Furukawa, K. Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochim. Biophys. Acta 1441, 1–3 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Yowler, B. C., Kensinger, R. D. & Schengrund, C. L. Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J. Biol. Chem. 277, 32815–32819 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Jacky, B. P. S. et al. Identification of fibroblast growth factor receptor 3 (FGFR3) as a protein receptor for botulinum neurotoxin serotype A (BoNT/A). PLoS Pathog. 9, e1003369 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nishiki, T. et al. Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J. Biol. Chem. 269, 10498–10503 (1994). This study is the first to identify a synaptic vesicle protein receptor for a BoNT by showing that BoNT/B binds to Syt.

    CAS  PubMed  Google Scholar 

  57. Dong, M. et al. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J. Cell. Biol. 162, 1293–1303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rummel, A. et al. Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc. Natl Acad. Sci. USA 104, 359–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Peng, L. et al. Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D–C and G toxins. J. Cell Sci. 125, 3233–3242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berntsson, R. P., Peng, L., Svensson, L. M., Dong, M. & Stenmark, P. Crystal structures of botulinum neurotoxin dc in complex with its protein receptors synaptotagmin I and II. Structure 21, 1602–1611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dong, M. et al. SV2 is the protein receptor for botulinum neurotoxin A. Science. 312, 592–596 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Dong, M. et al. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol. Biol. Cell 19, 5226–5237 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mahrhold, S., Rummel, A., Bigalke, H., Davletov, B. & Binz, T. The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett. 580, 2011–2014 (2006). References 61, 62 and 63 report that the synaptic vesicle protein SV2 functions as a protein receptor for BoNT/A1 and BoNT/E1.

    Article  CAS  PubMed  Google Scholar 

  64. Mahrhold, S. et al. Identification of the SV2 protein receptor-binding site of botulinum neurotoxin type E. Biochem. J. 453, 37–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Benoit, R. M. et al. Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature 505, 108–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Schiavo, G. Structural biology: dangerous liaisons on neurons. Nature 444, 1019–1020 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Colasante, C. et al. Botulinum neurotoxin type A is internalized and translocated from small synaptic vesicles at the neuromuscular junction. Mol. Neurobiol. 48, 120–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Harper, C. B. et al. Dynamin inhibition blocks botulinum neurotoxin type A endocytosis in neurons and delays botulism. J. Biol. Chem. 286, 35966–35976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006). This paper provides a landmark analysis of the fine structure and molecular composition of synaptic vesicles.

    Article  CAS  PubMed  Google Scholar 

  70. Saheki, Y. & De Camilli, P. Synaptic vesicle endocytosis. Cold Spring Harb. Perspect. Biol. 4, a005645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wohlfarth, K., Goschel, H., Frevert, J., Dengler, R. & Bigalke, H. Botulinum A toxins: units versus units. Naunyn. Schmiedebergs. Arch. Pharmacol. 355, 335–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Rasetti-Escargueil, C., Liu, Y., Rigsby, P., Jones, R. G. & Sesardic, D. Phrenic nerve hemidiaphragm as a highly sensitive replacement assay for determination of functional botulinum toxin antibodies. Toxicon 57, 1008–1016 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Sun, S., Tepp, W. H., Johnson, E. A. & Chapman, E. R. Botulinum neurotoxins B and E translocate at different rates and exhibit divergent responses to GT1b and low pH. Biochemistry 51, 5655–5662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ahnert-Hilger, G., Holtje, M., Pahner, I., Winter, S. & Brunk, I. Regulation of vesicular neurotransmitter transporters. Rev. Physiol. Biochem. Pharmacol. 150, 140–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Simpson, L. L., Coffield, J. A. & Bakry, N. Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. J. Pharmacol. Exp. Ther. 269, 256–262 (1994).

    CAS  PubMed  Google Scholar 

  76. Williamson, L. C. & Neale, E. A. Bafilomycin A1 inhibits the action of tetanus toxin in spinal cord neurons in cell culture. J. Neurochem. 63, 2342–2345 (1994). References 75 and 76 show that the acidification of an intracellular compartment by the vesicular ATPase proton pump is a necessary step in nerve intoxication by clostridial neurotoxins.

    Article  CAS  PubMed  Google Scholar 

  77. Sun, S. et al. Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe 10, 237–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Montal, M. Botulinum neurotoxin: a marvel of protein design. Annu. Rev. Biochem. 79, 591–617 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Fischer, A. Synchronized chaperone function of botulinum neurotoxin domains mediates light chain translocation into neurons. Curr. Top. Microbiol. Immunol. 364, 115–137 (2013).

    CAS  PubMed  Google Scholar 

  80. Hoch, D. H. et al. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc. Natl Acad. Sci. USA 82, 1692–1696 (1985). This is the first study to describe the formation of ion channels by clostridial neurotoxins in planar lipid bilayers.

    Article  CAS  PubMed  Google Scholar 

  81. Donovan, J. J. & Middlebrook, J. L. Ion-conducting channels produced by botulinum toxin in planar lipid membranes. Biochemistry 25, 2872–2876 (1986).

    Article  CAS  PubMed  Google Scholar 

  82. Blaustein, R. O., Germann, W. J., Finkelstein, A. & DasGupta, B. R. The N-terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers. FEBS Lett. 226, 115–120 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Koriazova, L. K. & Montal, M. Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nature Struct. Biol. 10, 13–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Fischer, A. & Montal, M. Crucial role of the disulfide bridge between botulinum neurotoxin light and heavy chains in protease translocation across membranes. J. Biol. Chem. 282, 29604–29611 (2007). This study shows that the disulphide bond that connects the L chain and H chain of BoNT/A1 and BoNT/E1 must be reduced on the cytosolic side of the synaptic vesicle to release the L chain metalloprotease into the cytosol.

    Article  CAS  PubMed  Google Scholar 

  85. Fischer, A. & Montal, M. Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc. Natl Acad. Sci. USA 104, 10447–10452 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Sheridan, R. E. Gating and permeability of ion channels produced by botulinum toxin types A and E in PC12 cell membranes. Toxicon 36, 703–717 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Dalla Serra, M. et al. Conductive properties and gating of channels formed by syringopeptin 25A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes. Mol. Plant. Microbe Interact. 12, 401–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Fischer, A. et al. Molecular architecture of botulinum neurotoxin E revealed by single particle electron microscopy. J. Biol. Chem. 283, 3997–4003 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Bade, S. et al. Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates. J. Neurochem. 91, 1461–1472 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Galloux, M. et al. Membrane Interaction of botulinum neurotoxin A translocation (T) domain. The belt region is a regulatory loop for membrane interaction. J. Biol. Chem. 283, 27668–27676 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Fischer, A. et al. Bimodal modulation of the botulinum neurotoxin protein-conducting channel. Proc. Natl Acad. Sci. USA 106, 1330–1335 (2009).

    Article  PubMed  Google Scholar 

  92. Pirazzini, M. et al. Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain. FEBS Lett. 587, 3831–3836 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Schiavo, G. et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 (1992). This study shows that VAMP has an essential role in neurotransmitter release and that both tetanus toxin and BoNT/B cleave the same protein at the same site, despite the different clinical symptoms that they cause.

    Article  CAS  PubMed  Google Scholar 

  94. Schiavo, G., Papini, E., Genna, G. & Montecucco, C. An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin. Infect. Immun. 58, 4136–4141 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. de Paiva, A. et al. A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. J. Biol. Chem. 268, 20838–20844 (1993).

    CAS  PubMed  Google Scholar 

  96. Eswaramoorthy, S., Kumaran, D., Keller, J. & Swaminathan, S. Role of metals in the biological activity of Clostridium botulinum neurotoxins. Biochemistry 43, 2209–2216 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Fu, F. N., Busath, D. D. & Singh, B. R. Spectroscopic analysis of low pH and lipid-induced structural changes in type A botulinum neurotoxin relevant to membrane channel formation and translocation. Biophys. Chem. 99, 17–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Puhar, A., Johnson, E. A., Rossetto, O. & Montecucco, C. Comparison of the pH-induced conformational change of different clostridial neurotoxins. Biochem. Biophys. Res. Commun. 319, 66–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Pirazzini, M. et al. Time course and temperature dependence of the membrane translocation of tetanus and botulinum neurotoxins C and D in neurons. Biochem. Biophys. Res. Commun. 430, 38–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Sankaranarayanan, S. & Ryan, T. A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nature Cell Biol. 2, 197–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Eisenberg, M., Gresalfi, T., Riccio, T. & McLaughlin, S. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry 18, 5213–5223 (1979).

    Article  CAS  PubMed  Google Scholar 

  103. Nordera, P., Serra, M. D. & Menestrina, G. The adsorption of Pseudomonas aeruginosa exotoxin A to phospholipid monolayers is controlled by pH and surface potential. Biophys. J. 73, 1468–1478 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Deutsch, J. W. & Kelly, R. B. Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. Biochemistry 20, 378–385 (1981).

    Article  CAS  PubMed  Google Scholar 

  105. Ledeen, R. W., Diebler, M. F., Wu, G., Lu, Z. H. & Varoqui, H. Ganglioside composition of subcellular fractions, including pre- and postsynaptic membranes, from Torpedo electric organ. Neurochem. Res. 18, 1151–1155 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Bychkova, V. E., Pain, R. H. & Ptitsyn, O. B. The 'molten globule' state is involved in the translocation of proteins across membranes. FEBS Lett. 238, 231–234 (1988).

    Article  CAS  PubMed  Google Scholar 

  107. Ptitsyn, O. B., Pain, R. H., Semisotnov, G. V., Zerovnik, E. & Razgulyaev, O. I. Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262, 20–24 (1990).

    Article  CAS  PubMed  Google Scholar 

  108. van der Goot, F. G., Gonzalez-Manas, J. M., Lakey, J. H. & Pattus, F. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. Nature 354, 408–410 (1991). This paper provides the first evidence that a bacterial toxin adopts a molten globular state during membrane translocation.

    Article  CAS  PubMed  Google Scholar 

  109. Kukreja, R. & Singh, B. Biologically active novel conformational state of botulinum, the most poisonous poison. J. Biol. Chem. 280, 39346–39352 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Meyer, Y., Buchanan, B. B., Vignols, F. & Reichheld, J. P. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu. Rev. Genet. 43, 335–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Hanschmann, E. M., Godoy, J. R., Berndt, C., Hudemann, C. & Lillig, C. H. Thioredoxins, glutaredoxins, and peroxiredoxins — molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19, 1539–1605 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Berndt, C., Lillig, C. H. & Holmgren, A. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim. Biophys. Acta 1783, 641–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Pirazzini, M. et al. The thioredoxin reductase–thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals. FEBS Lett. 587, 150–155 (2013). This study provides the first evidence that the thioredoxin reductase–thioredoxin protein disulphide-reducing system reduces the inter-chain disulphide bond of clostridial neurotoxins in the neuronal cytosol.

    Article  CAS  PubMed  Google Scholar 

  114. Dekker, C., Willison, K. R. & Taylor, W. R. On the evolutionary origin of the chaperonins. Proteins 79, 1172–1192 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Sudhof, T. C. & Rizo, J. Synaptic vesicle exocytosis. Cold Spring Harb. Perspect. Biol. 3, a005637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pantano, S. & Montecucco, C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell. Mol. Life Sci. 71, 793–811 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Binz, T. Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. Curr. Top. Microbiol. Immunol. 364, 139–157 (2013).

    CAS  PubMed  Google Scholar 

  118. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994). This study shows that VAMP, SNAP25 and syntaxin form a tight coiled-coil complex that is resistant to proteolysis by tetanus and botulinum neurotoxins and to SDS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998). This fundamental paper describes the atomic coiled-coil structure of the SNARE complex and its importance for neurotransmitter release.

    Article  CAS  PubMed  Google Scholar 

  120. Megighian, A. et al. Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction. J. Cell Sci. 126, 3134–3140 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Kalb, S. R. et al. Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5. FEBS Lett. 586, 109–115 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Schiavo, G., Shone, C. C., Rossetto, O., Alexander, F. C. & Montecucco, C. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem. 268, 11516–11519 (1993).

    CAS  PubMed  Google Scholar 

  123. Whitemarsh, R. C. et al. Characterization of botulinum neurotoxin a subtypes1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect. Immun. 81, 3894–3902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang, D. et al. Comparison of the catalytic properties of the botulinum neurotoxin subtypes A1 and A5. Biochim. Biophys. Acta 1834, 2722–2728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shoemaker, C. B. & Oyler, G. A. Persistence of botulinum neurotoxin inactivation of nerve function. Curr. Top. Microbiol. Immunol. 364, 179–196 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Whitemarsh, R. C., Tepp, W. H., Johnson, E. A. & Pellett, S. Persistence of botulinum neurotoxin A subtypes 1–5 in primary rat spinal cord cells. PLoS ONE. 9, e90252 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Naumann, M. et al. Evidence-based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. Toxicon 67, 141–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Wang, J. et al. A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. J. Biol. Chem. 286, 6375–6385 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Guo, J., Pan, X., Zhao, Y. & Chen, S. Engineering clostridia neurotoxins with elevated catalytic activity. Toxicon 74c, 158–166 (2013).

  130. Ma, L. et al. Single application of A2 NTX, a botulinum toxin A2 subunit, prevents chronic pain over long periods in both diabetic and spinal cord injury-induced neuropathic pain models. J. Pharmacol. Sci. 119, 282–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Chen, S. & Barbieri, J. T. Engineering botulinum neurotoxin to extend therapeutic intervention. Proc. Natl Acad. Sci. USA 106, 9180–9184 (2009).

    Article  PubMed  Google Scholar 

  132. Wang, D. et al. Syntaxin requirement for Ca2+-triggered exocytosis in neurons and endocrine cells demonstrated with an engineered neurotoxin. Biochemistry 50, 2711–2713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Franciosa, G., Ferreira, J. L. & Hatheway, C. L. Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms. J. Clin. Microbiol. 32, 1911–1917 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Luquez, C., Raphael, B. H. & Maslanka, S. E. Neurotoxin gene clusters in Clostridium botulinum type Ab strains. Appl. Environ. Microbiol. 75, 6094–6101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Carter, A. T., Stringer, S. C., Webb, M. D. & Peck, M. W. The type F6 neurotoxin gene cluster locus of group II Clostridium botulinum has evolved by successive disruption of two different ancestral precursors. Genome Biol. Evol. 5, 1032–1037 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dover, N. et al. Clostridium botulinum strain Af84 contains three neurotoxin gene clusters: BoNT/A2, BoNT/F4 and BoNT/F5. PLoS ONE 8, e61205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Jahn, R. & Fasshauer, D. Molecular machines governing exocytosis of synaptic vesicles. Nature 490, 201–207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Harlow, M. L. et al. Alignment of synaptic vesicle macromolecules with the macromolecules in active zone material that direct vesicle docking. PLoS ONE 8, e69410 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhai, R. G. & Bellen, H. J. The architecture of the active zone in the presynaptic nerve terminal. Physiol. (Bethesda) 19, 262–270 (2004).

    Google Scholar 

  140. Kasai, H., Takahashi, N. & Tokumaru, H. Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol. Rev. 92, 1915–1964 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Chernomordik, L. V. & Kozlov, M. M. Mechanics of membrane fusion. Nature Struct. Mol. Biol. 15, 675–683 (2008).

    Article  CAS  Google Scholar 

  142. Middlebrook, J. L. & Brown, J. E. Immunodiagnosis and immunotherapy of tetanus and botulinum neurotoxins. Curr. Top. Microbiol. Immunol. 195, 89–122 (1995).

    CAS  PubMed  Google Scholar 

  143. Fairweather, N. F., Lyness, V. A. & Maskell, D. J. Immunization of mice against tetanus with fragments of tetanus toxin synthesized in Escherichia coli. Infect. Immun. 55, 2541–2545 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Byrne, M. P. & Smith, L. A. Development of vaccines for prevention of botulism. Biochimie 82, 955–966 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Smith, L. A. Botulism and vaccines for its prevention. Vaccine 27, D33–D39 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Karalewitz, A. P.-A. & Barbieri, J. T. Vaccines against botulism. Curr. Opin. Microbiol. 15, 317–324 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Arnon, S. S., Schechter, R., Maslanka, S. E., Jewell, N. P. & Hatheway, C. L. Human botulism immune globulin for the treatment of infant botulism. N. Engl. J. Med. 354, 462–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Garcia-Rodriguez, C. et al. Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin. Nature Biotech. 25, 107–116 (2007).

    Article  CAS  Google Scholar 

  149. Lou, J. et al. Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Eng. Des. Sel. 23, 311–319 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Cheng, L. W., Stanker, L. H., Henderson, T. D., Lou, J. & Marks, J. D. Antibody protection against botulinum neurotoxin intoxication in mice. Infect. Immun. 77, 4305–4313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Conway, J. O., Sherwood, L. J., Collazo, M. T., Garza, J. A. & Hayhurst, A. Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. PLoS ONE 5, e8818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Thanongsaksrikul, J. & Chaicumpa, W. Botulinum neurotoxins and botulism: a novel therapeutic approach. Toxins (Basel) 3, 469–488 (2011).

    Article  CAS  Google Scholar 

  153. Li, B. et al. Small molecule inhibitors as countermeasures for botulinum neurotoxin intoxication. Molecules 16, 202–220 (2011).

    Article  CAS  Google Scholar 

  154. Lee, K. et al. Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex R. Science 344, 1405–1410 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. Binz, G. Franciosa, R. Kammerer, F. Lista, M. Montal, S. Pellet and G. Schiavo for their comments. The authors apologize to colleagues whose work could not be cited owing to space limitations. Research in the authors' laboratory is supported by University of Padova, Italy, Fondazione CARIPARO, the Axonomics Poject of the Provincia Autonoma di Trento and the Italian Ministry of Defence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Montecucco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

3BTA

1EPW

3FFZ

3VOC

PowerPoint slides

Glossary

Neurotransmitter

An endogenous chemical that transmits signals across a synapse from a neuron to a postsynaptic cell.

Metalloprotease

A proteolytic enzyme that is defined by the presence of an essential active-site metal ion, which is most often zinc.

Mouse lethal dose

Corresponds to the toxin dose that is required to kill 50% of exposed mice; it is usually expressed as the median lethal dose (LD50). The mouse LD50 of BoNTs is 0.1–1 ng per kg for subtype 1 of the seven serotypes.

Cholinergic nerve terminals

Axonal terminals that use acetylcholine for neurotransmission.

M cells

Specialized epithelial cells of the follicle-associated epithelium of the gastrointestinal tract that are involved in the rapid uptake and presentation of particular antigens and microorganisms to immune cells of the lymphoid follicle, thereby inducing an effective immune response.

Neuroendocrine crypt cells

Cells that are distributed throughout the intestinal epithelium and that secrete peptide hormones in an endocrine or paracrine manner from dense core or neurosecretory granules.

Synaptic vesicles

Neuronal vesicles that store and release neurotransmitters or neuropeptides at the synapse.

Presynaptic receptor

A receptor that is localized on the surface of the presynaptic membrane; it is either protein or lipid in nature.

Synaptotagmin

(Syt). A protein that spans the membrane of synaptic vesicles and binds to Ca2+ to trigger the fusion of synaptic vesicles with the plasma membrane of the neuron.

SV2

A protein that spans the membrane of synaptic vesicles and has an unknown function. Following fusion of the synaptic vesicle to the plasma membrane, the luminal domain of SV2 becomes exposed to the extracellular medium and functions as a receptor for botulinum neurotoxins.

Phrenic nerve hemidiaphragm

An ex vivo preparation that includes a portion of the diaphragm, as well as the axon and nerve terminal of the phrenic nerve. This nerve contains motor, as well as sensory and sympathetic, fibres and controls the contraction of the diaphragm muscle via the release of acetylcholine. Its inhibition by botulinum neurotoxins blocks respiration, which causes death.

Patch clamp technique

An electrophysiological technique that is based on microelectrodes that are sealed on the plasma membrane of a cell, which enables the measurement of electrical activity and the properties of ion channels.

pH sensor

In the context of this Review; amino acid residues that change protonation state according to variations in pH. A change in protein structure may consequently occur, owing to altered hydrogen bonding and electrostatic interactions.

Neuroexocytosis nanomachine

A molecular machine of nanometre dimensions that is used for the release of neurotransmitters.

Serum sickness

An illness of humans that is caused by a hypersensitive reaction to proteins in antiserum derived from a non-human source; it usually occurs 4–10 days after exposure.

Camelid-like antibodies

Single-domain antibodies that are derived from the heavy-chain antibodies of camelids; they are a new generation of therapeutic agents and immunoreagents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossetto, O., Pirazzini, M. & Montecucco, C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 12, 535–549 (2014). https://doi.org/10.1038/nrmicro3295

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing