Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How sisters grow apart: mycobacterial growth and division

Key Points

  • The cell wall of mycobacteria is composed of complex macromolecules, and its composition differs from many other bacterial species, owing to the presence of mycolic acid and arabinogalactan layers. Cell wall synthesis is highly plastic, which leads to the generation of single cells that have distinct surfaces.

  • Mycobacterial growth is distinct from that of other rod-shaped bacteria. Rather than elongating by inserting peptidoglycan into the lateral cell wall, mycobacteria grow from their poles and divide asymmetrically. Two models that describe the processes of polar growth and asymmetric cell division are discussed.

  • The macromolecular machineries that are involved in cell growth and division in mycobacteria are organized differently from those in other model organisms. Many of the enzymes that form these complexes are required for the normal growth of mycobacteria, especially during infection.

  • Mycobacteria regulate cell proliferation via atypical mechanisms, including protein processing, phosphorylation of unique targets and pupylation (which is analogous to eukaryotic ubiquitylation).

  • The mycobacterial cell cycle produces population heterogeneity, owing to asymmetric cell division and stochastic epigenetic changes. This variability could facilitate the survival of M. tuberculosis in disparate physiological niches in the human host and promote antibiotic tolerance.

  • Substantial cell wall remodelling, particularly of the peptidoglycan and mycolic acid layers, occurs during infection. These changes increase the inherent population heterogeneity and may also promote survival in the human host.

Abstract

Mycobacterium tuberculosis, which is the aetiological agent of tuberculosis, owes much of its success as a pathogen to its unique cell wall and unusual mechanism of growth, which facilitate its adaptation to the human host and could have a role in clinical latency. Asymmetric growth and division increase population heterogeneity, which may promote antibiotic tolerance and the fitness of single cells. In this Review, we describe the unusual mechanisms of mycobacterial growth, cell wall biogenesis and division, and discuss how these processes might affect the survival of M. tuberculosis in vivo and contribute to the persistence of infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Elongation and division of mycobacteria generates asymmetric daughter cells.
Figure 2: Protein machineries direct cell growth and division.
Figure 3: Regulatory mechanisms that control synthesis of the mycobacterial cell wall.
Figure 4: Cell wall remodelling may promote survival during infection.

Similar content being viewed by others

References

  1. World Health Organization. Global tuberculosis report 2013 (WHO, 2013).

  2. Das, B. et al. CD271+ bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. Sci. Transl. Med. 5, 170ra13 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Ernst, J. D. The immunological life cycle of tuberculosis. Nature Rev. Immunol. 12, 581–591 (2012).

    Article  CAS  Google Scholar 

  4. Philips, J. A. & Ernst, J. D. Tuberculosis pathogenesis and immunity. Annu. Rev. Pathol. Mech. Dis. 7, 353–384 (2012).

    Article  CAS  Google Scholar 

  5. Barry, C. E. et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Rev. Microbiol. 7, 845–855 (2009).

    Article  CAS  Google Scholar 

  6. Davis, J. M. & Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136, 37–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin, P. L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nature Med. 20, 75–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333–2340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mattila, J. T. et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J. Immunol. 191, 773–784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aldridge, B. B. et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335, 100–104 (2012). This study presents a model for asymmetric mycobacterial polar growth and division and finds that the poles elongate at different rates throughout the cell cycle.

    Article  CAS  PubMed  Google Scholar 

  11. Joyce, G. et al. Cell division site placement and asymmetric growth in mycobacteria. PLoS ONE 7, e44582 (2012). This study identifies the irregularity of septal site selection in mycobacteria, underscoring additional population heterogeneity as a result of compartmentalization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh, B. et al. Asymmetric growth and division in Mycobacterium spp.: compensatory mechanisms for non-medial septa. Mol. Microbiol. 88, 64–76 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Santi, I., Dhar, N., Bousbaine, D., Wakamoto, Y. & McKinney, J. D. Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nature Commun. 4, 1–10 (2013). This study presents a model of mycobacterial growth and division and finds that asymmetric elongation of the cell poles only occurs after cytokinesis.

    Google Scholar 

  14. Seiler, P. et al. Cell-wall alterations as an attribute of Mycobacterium tuberculosis in latent infection. J. Infect. Dis. 188, 1326–1331 (2003).

    Article  PubMed  Google Scholar 

  15. Bhamidi, S. et al. A bioanalytical method to determine the cell wall composition of Mycobacterium tuberculosis grown in vivo. Anal. Biochem. 421, 240–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Rachman, H. et al. Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect. Immun. 74, 1233–1242 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jain, M. et al. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc. Natl Acad. Sci. USA 104, 5133–5138 (2007). This paper reports the discovery that the cell wall lipids of M. tuberculosis change in relation to the anabolism of host carbon sources.

    Article  CAS  PubMed  Google Scholar 

  18. Typas, A., Banzhaf, M., Gross, C. A. & Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Rev. Microbiol. 10, 123–136 (2012).

    Article  CAS  Google Scholar 

  19. Meniche, X. et al. Sub-polar addition of new cell wall is directed by DivIVA in mycobacteria. Proc. Natl Acad. Sci. USA (in the press).

  20. Wakamoto, Y. et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339, 91–95 (2013). This study shows that, in addition to deterministic processes, stochastic processes generate population heterogeneity in mycobacteria and contribute to mycobacterial persistence.

    Article  CAS  PubMed  Google Scholar 

  21. Gee, C. L. et al. A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci. Signal. 5, ra7 (2012). This study identifies MviN as an essential transporter of peptidoglycan subunits in mycobacteria and describes a unique phosphorylation network that regulates its activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Flärdh, K. Cell polarity and the control of apical growth in Streptomyces. Curr. Opin. Microbiol. 13, 758–765 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Hett, E. C. & Rubin, E. J. Bacterial growth and cell division: a mycobacterial perspective. Microbiol. Mol. Biol. Rev. 72, 126–156 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang, C.-M., Nyayapathy, S., Lee, J.-Y., Suh, J.-W. & Husson, R. N. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154, 725–735 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Jani, C. et al. Regulation of polar peptidoglycan biosynthesis by Wag31 phosphorylation in mycobacteria. BMC Microbiol. 10, 327 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Plocinski, P. et al. Mycobacterium tuberculosis CwsA interacts with CrgA and Wag31, and the CrgA–CwsA complex is involved in peptidoglycan synthesis and cell shape determination. J. Bacteriol. 194, 6398–6409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plocinski, P. et al. Mycobacterium tuberculosis CwsA overproduction modulates cell division and cell wall synthesis. Tuberculosis 93, S21–S27 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen, L. et al. Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J. Bacteriol. 189, 7896–7910 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hett, E. C., Chao, M. C. & Rubin, E. J. Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria. PLoS Pathog. 6, e1001020 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, Y. J. et al. Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing. Cell 155, 1296–1308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dasgupta, A., Datta, P., Kundu, M. & Basu, J. The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152, 493–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Schoonmaker, M. K., Bishai, W. R. & Lamichhane, G. Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, cytosolic matrix, protein localization, virulence and resistance to β-lactams. J. Bacteriol. 196, 1394–1402 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Ploeg, R. et al. Colocalization and interaction between elongasome and divisome during a preparative cell division phase in Escherichia coli. Mol. Microbiol. 87, 1074–1087 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Kysela, D. T., Brown, P. J. B., Huang, K. C. & Brun, Y. V. Biological consequences and advantages of asymmetric bacterial growth. Annu. Rev. Microbiol. 67, 417–435 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Adams, D. W. & Errington, J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nature Rev. Microbiol. 7, 642–653 (2009).

    Article  CAS  Google Scholar 

  36. Li, Y. et al. FtsZ protofilaments use a hinge-opening mechanism for constrictive force generation. Science 341, 392–395 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. England, K., Crew, R. & Slayden, R. Mycobacterium tuberculosis septum site determining protein, Ssd encoded by rv3660c, promotes filamentation and elicits an alternative metabolic and dormancy stress response. BMC Microbiol. 11, 79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thakur, M. & Chakraborti, P. K. GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J. Biol. Chem. 281, 40107–40113 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Dziedzic, R. et al. Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. PLoS ONE 5, e11058 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chauhan, A. et al. Interference of Mycobacterium tuberculosis cell division by Rv2719c, a cell wall hydrolase. Mol. Microbiol. 62, 132–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Sureka, K. et al. Novel role of phosphorylation-dependent interaction between FtsZ and FipA in mycobacterial cell division. PLoS ONE 5, e8590 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Datta, P. et al. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol. Microbiol. 62, 1655–1673 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Plocinski, P. et al. Characterization of CrgA, a new partner of the Mycobacterium tuberculosis peptidoglycan polymerization complexes. J. Bacteriol. 193, 3246–3256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y. J. et al. Global assessment of genomic regions required for growth in Mycobacterium tuberculosis. PLoS Pathog. 8, e1002946 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Slayden, R. A. & Belisle, J. T. Morphological features and signature gene response elicited by inactivation of FtsI in Mycobacterium tuberculosis. J. Antimicrob. Chemother. 63, 451–457 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Mukherjee, P. et al. Novel role of Wag31 in protection of mycobacteria under oxidative stress. Mol. Microbiol. 73, 103–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Hett, E. C., Chao, M. C., Deng, L. L. & Rubin, E. J. A. Mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog. 4, e1000001 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hett, E. C. et al. A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis. Mol. Microbiol. 66, 658–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Deng, L. L. et al. Identification of a novel peptidoglycan hydrolase CwlM in Mycobacterium tuberculosis. Biochim. Biophys. Acta 1747, 57–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Machowski, E. E., Senzani, S., Ealand, C. & Kana, B. D. Comparative genomics for mycobacterial peptidoglycan remodelling enzymes reveals extensive genetic multiplicity. BMC Microbiol. 14, 75 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mavrici, D. et al. Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC. Proc. Natl Acad. Sci. USA 111, 8037–8042 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Avery, S. V. Microbial cell individuality and the underlying sources of heterogeneity. Nature Rev. Microbiol. 4, 577–587 (2006).

    Article  CAS  Google Scholar 

  53. Sharma, K. et al. Transcriptional control of the mycobacterial embCAB operon by PknH through a regulatory protein, EmbR, in vivo. J. Bacteriol. 188, 2936–2944 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Salzman, V. et al. Transcriptional regulation of lipid homeostasis in mycobacteria. Mol. Microbiol. 78, 64–77 (2010).

    CAS  PubMed  Google Scholar 

  55. Mondino, S., Gago, G. & Gramajo, H. Transcriptional regulation of fatty acid biosynthesis in mycobacteria. Mol. Microbiol. 89, 372–387 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rajagopalan, M. et al. Mycobacterium tuberculosis origin of replication and the promoter for immunodominant secreted antigen 85B are the targets of MtrA, the essential response regulator. J. Biol. Chem. 285, 15816–15827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Plocinska, R. et al. Septal localization of the Mycobacterium tuberculosis MtrB sensor kinase promotes MtrA regulon expression. J. Biol. Chem. 287, 23887–23899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rohde, K. H., Abramovitch, R. B. & Russell, D. G. Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe 2, 352–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Kang, C.-M. et al. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev. 19, 1692–1704 (2005). This paper describes the essential role of the serine/threonine kinases PknA and PknB in the regulation of cell morphogenesis in mycobacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Prisic, S. et al. Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc. Natl Acad. Sci. USA 107, 7521–7526 (2010).

    Article  PubMed  Google Scholar 

  61. Molle, V. et al. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis. Mol. Microbiol. 78, 1591–1605 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Veyron-Churlet, R., Zanella-Cleon, I., Cohen-Gonsaud, M., Molle, V. & Kremer, L. Phosphorylation of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J. Biol. Chem. 285, 12714–12725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Corrales, R. M. et al. Phosphorylation of mycobacterial PcaA inhibits mycolic acid cyclopropanation: consequences for intracellular survival and phagosome maturation block. J. Biol. Chem. 287, 26187–26199 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Molle, V. & Kremer, L. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol. Microbiol. 75, 1064–1077 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Chao, M. C. et al. Protein complexes and proteolytic activation of the cell wall hydrolase RipA regulate septal resolution in mycobacteria. PLoS Pathog. 9, e1003197 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ruggiero, A. et al. Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separation. Structure 18, 1184–1190 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Pearce, M. J., Mintseris, J., Ferryera, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1101–1104 (2008). This paper describes the discovery of a prokaryotic version of the eukaryotic ubiquitin system, which is known as pupylation. Pupylation seems to be analogous, but not homologous, to ubiquitylation, as not all pupylated proteins are targeted to the proteasome.

    Article  CAS  Google Scholar 

  68. Festa, R. A. et al. Prokayrotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis. PLoS ONE 5, e8589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Burns, K. E. et al. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol. Cell 39, 821–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cambier, C. J. et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505, 218–222 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Farhat, M. R. et al. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nature Genet. 45, 1183–1189 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Kumar, P. et al. Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol. Microbiol. 86, 367–381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mahapatra, S., Scherman, H., Brennan, P. J. & Crick, D. C. N. Glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J. Bacteriol. 187, 2341–2347 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Skovierova, H. et al. Biosynthetic origin of the galactosamine substituent of arabinogalactan in Mycobacterium tuberculosis. J. Biol. Chem. 285, 41348–41355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lavollay, M. et al. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J. Bacteriol. 190, 4360–4366 (2008). This paper describes the discovery that non-traditional 3–3 crosslinks are prevalent in mycobacterial peptidoglycan — a feature that is distinct from the peptidoglycan of other model organisms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barry, C. E., Crick, D. C. & McNeil, M. R. Targeting the formation of the cell wall core of M. tuberculosis. Infect. Disord. Drug Targets 7, 182–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takayama, K., Wang, C. & Besra, G. S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 18, 81–101 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Barkan, D., Hedhli, D., Yan, H. G., Huygen, K. & Glickman, M. S. Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice. Infect. Immun. 80, 1958–1968 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vander Beken, S. et al. Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur. J. Immunol. 41, 450–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Dubnau, E. et al. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol. 36, 630–637 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Griffin, J. E. et al. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem. Biol. 19, 218–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lee, W., VanderVen, B. C., Fahey, R. J. & Russell, D. G. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 288, 6788–6800 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pandey, A. K. & Sassetti, C. M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA 105, 4376–4380 (2008).

    Article  PubMed  Google Scholar 

  84. Gupta, R. et al. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nature Med. 16, 466–469 (2010). This study shows that the non-traditional 3–3 peptide crosslinks that are formed by LdtB are required for bacterial survival during chronic infection and for survival of amoxicillin treatment in a mouse model of TB.

    Article  CAS  PubMed  Google Scholar 

  85. Saxena, A. Srivastava, V. Srivastava, R. & Srivastava, B. S. Identification of genes of Mycobacterium tuberculosis upregulated during anaerobic persistence by fluorescence and kanamycin resistance selection. Tuberculosis 88, 518–525 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Vandal, O. H. et al. Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J. Bacteriol. 191, 625–631 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Patru, M.-M. & Pavelka, M. S. A. Role for the class A penicillin-binding protein PonA2 in the survival of Mycobacterium smegmatis under conditions of nonreplication. J. Bacteriol. 192, 3043–3054 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Keer, J., Smeulders, M. J., Gray, K. M. & Williams, H. D. Mutants of Mycobacterium smegmatis impaired in stationary-phase survival. Microbiology 146, 2209–2217 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Dutta, N. K. et al. Genetic requirements for the survival of tubercle bacilli in primates. J. Infect. Dis. 201, 1743–1752 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Griffin, J. E. et al. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 7, e1002251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rengarajan, J., Bloom, B. R. & Rubin, E. J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl Acad. Sci. USA 102, 8327–8332 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Sassetti, C. M. & Rubin, E. J. Genetic requirements for mycobacterial survival during infection. Proc. Natl Acad. Sci. USA 100, 12989–12994 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Eoh, H. & Rhee, K. Y. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 110, 6554–6559 (2013).

    Article  PubMed  Google Scholar 

  94. Gill, W. P. et al. A replication clock for Mycobacterium tuberculosis. Nature Med. 15, 211–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Ford, C. B. et al. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nature Genet. 43, 482–486 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Chao, M. C. & Rubin, E. J. Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu. Rev. Microbiol. 64, 293–311 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Beste, D. J. V. et al. The genetic requirements for fast and slow growth in mycobacteria. PLoS ONE 4, e5349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cunningham, A. F. & Spreadbury, C. L. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton α-crystallin homolog. J. Bacteriol. 180, 801–808 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Galagan, J. E. et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bhatt, A. et al. Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc. Natl Acad. Sci. USA 104, 5157–5162 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Balaban, N. Q. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Lenaerts, A. J. et al. Location of persisting mycobacteria in a guinea pig model of tuberculosis revealed by R207910. Antimicrob. Agents Chemother. 51, 3338–3345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Baek, S.-H., Li, A. H. & Sassetti, C. M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 9, e1001065 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ojha, A. K. et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69, 164–174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kaur, D., Guerin, M. E., Skovierová, H., Brennan, P. J. & Jackson, M. Chapter 2: biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv. Appl. Microbiol. 69, 23–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bansal-Mutalik, R. & Nikaido, H. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc. Natl Acad. Sci. USA 111, 4958–4963 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Sani, M. et al. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog. 6, e1000794 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zumla, A., Nahid, P. & Cole, S. T. Advances in the development of new tuberculosis drugs and treatment regimens. Nature Rev. Drug Discov. 12, 388–404 (2013).

    Article  CAS  Google Scholar 

  109. Hancock, I. C., Carman, S., Besra, G. S., Brennan, P. J. & Waite, E. Ligation of arabinogalactan to peptidoglycan in the cell wall of Mycobacterium smegmatis requires concomitant synthesis of the two wall polymers. Microbiology 148, 3059–3067 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Raymond, J. B., Mahapatra, S., Crick, D. C. & Pavelka, M. S. Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J. Biol. Chem. 280, 326–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Mahapatra, S. et al. Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J. Bacteriol. 187, 2747–2757 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Girardin, S. E. et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702–41708 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Coulombe, F. et al. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J. Exp. Med. 206, 1709–1716 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hansen, J. M. et al. N-glycolylated peptidoglycan contributes to the immunogenicity but not pathogenicity of Mycobacterium tuberculosis. J. Infect. Dis. 209, 1045–1054 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Makarov, V. et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324, 801–804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Crick, D. C., Mahapatra, S. & Brennan, P. J. Biosynthesis of the arabinogalactan–peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology 11, 107R–;118R (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Skovierova, H. et al. AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology 19, 1235–1247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Layre, E. et al. A comparative lipidomics platform for chemotaxonomic analysis of Mycobacterium tuberculosis. Chem. Biol. 18, 1537–1549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sacco, E. et al. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 104, 14628–14633 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Lea-Smith, D. J. et al. The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J. Biol. Chem. 282, 11000–11008 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Leger, M. et al. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Chem. Biol. 16, 510–519 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Grzegorzewicz, A. E. et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nature Chem. Biol. 8, 334–341 (2012).

    Article  CAS  Google Scholar 

  123. Pacheco, S. A., Hsu, F. F., Powers, K. M. & Purdy, G. E. MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis. J. Biol. Chem. 288, 24213–24222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Varela, C. et al. MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem. Biol. 19, 498–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carel, C. et al. Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum. PLoS ONE 9, e97148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Scheffers, D.-J. & Pinho, M. G. Bacterial cell wall synthesis: new insights from localization studies. Microbiol. Mol. Biol. Rev. 69, 585–607 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Singh, S. K., SaiSree, L., Amrutha, R. N. & Reddy, M. Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol. Microbiol. 86, 1036–1051 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Meisner, J. et al. FtsEX is required for CwlO peptidoglycan hydrolase activity during cell wall elongation in Bacillus subtilis. Mol. Microbiol. 89, 1069–1083 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kawai, Y., Daniel, R. A. & Errington, J. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix. Mol. Microbiol. 71, 1131–1144 (2009).

    Article  CAS  PubMed  Google Scholar 

  130. Garner, E. C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fenton, A. K. & Gerdes, K. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli. EMBO J. 32, 1953–1965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Errington, J., Daniel, R. A. & Scheffers, D. J. Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52–65 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Smith, T. J., Blackman, S. A. & Foster, S. J. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiol. 146, 249–262 (2000).

    Article  CAS  Google Scholar 

  134. de Boer, P. A. J. Advances in understanding E. coli cell fission. Curr. Opin. Microbiol. 13, 730–737 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank S. Dove, C. Sassetti and S. Fortune for discussion of the ideas presented in this Review and C. Boutte, M. Chao and N. Peters for critical reading of the manuscript. The authors thank J. McKinney and anonymous referees for excellent suggestions and improvements and A. Goranov for discussion of cell growth models. Support was provided by the US National Institutes of Health (NIH) (grant number U01-GM094568 to E.J.R.) and the US National Science Foundation (NSF) Graduate Research Fellowship (grant number DGE-1144152 to K.J.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Rubin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Main cell elongation and division proteins (PDF 201 kb)

Glossary

Granuloma

An organized cellular structure that forms owing to the immune response to an invading pathogen. An array of immune and fibrotic cells 'wall-off' the invading pathogen in an attempt to limit its spread within the host.

Latency

An asymptomatic disease state in which the bacterial burden is low or undetectable.

Non-traditional 3–3 peptide crosslinks

Peptide bonds between the third residues (meso-diaminopimelic acid (mDAP) in mycobacteria) of two peptide tails in peptidoglycan; a traditional crosslink is a peptide bond between the third and fourth residues (between DAP and D-Ala in mycobacteria) of two peptide tails.

Cytokinesis

The process in which a plasma membrane forms in the mid-cell region of a mother cell during cell division.

Septum

A layer of peptidoglycan that is formed at approximately mid-cell (in mycobacteria) that generates a physical barrier between nascent daughter cells.

Microfluidics

A technology in which small fabricated chambers are used to isolate and image single cells.

Microcolonies

Groups of progeny cells that are generated from the growth and division of single cells.

Periplasm

The extracellular space between the plasma membrane and the outer membrane of Gram-negative bacteria. The mycolic acid layer of mycobacteria functions analogously to an outer membrane, and thus, the space between the plasma membrane and the mycolic acid layer is known as the periplasm in mycobacteria.

Actinobacteria

A phylum of bacteria to which mycobacteria belong. This phylum also includes species such as Streptomyces coelicolor and Corynebacterium glutamicum.

Phosphomimetic

An amino acid substitution, typically by an aspartic acid or glutamic acid, at the site of a phosphorylated residue in a protein, which mimics constitutive phosphorylation.

MinCDE system

A protein system in Escherichia coli that regulates placement of the division septum in the cell. MinCDE oscillate from pole-to-pole and establish a concentration gradient to prevent Z-ring formation at the cell poles.

SOS response

A response to DNA damage in which bacteria halt cell cycle progression and induce DNA repair mechanisms in an effort to repair the chromosome before continuing division.

FASI and FASII complexes

(Fatty acid synthase I and II complexes). Complexes that are involved in mycolic acid synthesis. FASI, which is composed of the protein Fas, synthesizes the initial C20–C26 α-branch of mycolic acids. This branch is joined to a C60–C90 meromycolate branch that is synthesized by the FASII complex, which is composed of MabA, HadABC, InhA, KasAB and an unidentified isomerase.

Pupylation

A system that typically targets proteins for proteasomal degradation by the addition of a small prokaryotic ubiquitin-like protein (Pup). Pupylation directs some, but not all, of its targets to the proteasome, which suggests that pupylation may have additional roles in regulating protein activity.

Chemostat

A closed system for bacterial growth that is used to control the bacterial replication rate and/or metabolism by the use of chemically defined media.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kieser, K., Rubin, E. How sisters grow apart: mycobacterial growth and division. Nat Rev Microbiol 12, 550–562 (2014). https://doi.org/10.1038/nrmicro3299

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3299

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology