The microbial ecology of permafrost

Journal name:
Nature Reviews Microbiology
Year published:
Published online


Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost features and between sites. Some microorganisms are even active at subzero temperatures in permafrost. An emerging concern is the impact of climate change and the possibility of subsequent permafrost thaw promoting microbial activity in permafrost, resulting in increased potential for greenhouse-gas emissions. This Review describes new data on the microbial ecology of permafrost and provides a platform for understanding microbial life strategies in frozen soil as well as the impact of climate change on permafrost microorganisms and their functional roles.

At a glance


  1. Changes in landscape caused by permafrost thaw and cryoperturbation.
    Figure 1: Changes in landscape caused by permafrost thaw and cryoperturbation.

    a | The terrestrial landscape of the Barrow Environmental Observatory (BEO) at the North Slope of Alaska contains a network of polygonal features owing to ice-wedge formation. b | The image shows different polygon types: high-centred polygons with raised centres to the left, transitioning to low-centred polygons to the right and a polygonal pond at the top. c | The image shows a low-centred polygon with a depressed and wet centre and highly vegetated troughs. d | The image shows a flat-centred polygon in transition between high and low-centred polygons. e | The image shows unvegetated frost boils (approximately 1.5–2 m in diameter) at Disko Island, Greenland. Scale bars in parts ac represent 20 m distances. Images in parts ac taken using a kite with attached camera, courtesy of Baptiste Dafflon (Lawrence Berkeley National Laboratory, University of California, USA). Image in part d courtesy of Berkeley lab — Roy Kaltschmidt, photographer.

  2. Permafrost thaw features at lowland and highland elevations.
    Figure 2: Permafrost thaw features at lowland and highland elevations.

    The permafrost is overlain by a seasonally thawed active layer (brown). The bold dashed line indicates the surface of the permafrost table. The lowland is characterized by polygons that are separated by ice wedges (white) in the permafrost layer (grey). A thermokarst lake is indicated by a deepening of the active layer and pooling of thaw water at the surface. At high elevations, permafrost thaw results in drainage of the soil moisture and subsidence, which leads to the 'drunken tree' phenomenon. In these locations, permafrost thaw can also originate from the heat that is generated by wildfires. The upper panel and lower right-hand panel indicate differences in redox chemistry, soil and moisture with depth. The lower left-hand panels show close-ups of individual soil microaggregates (brown, active layer; grey, permafrost) and microcolonies of bacterial or archaeal cells in the pores containing free water — that is, brine veins. Figure is not drawn to scale.

  3. Microbial composition of permafrost from different geographical locations.
    Figure 3: Microbial composition of permafrost from different geographical locations.

    a | Taxonomic distribution of bacteria in different permafrost environments20, 28, 46, 47, 50, 53, 61, 63 based on their 16S rRNA gene classifications. Pie charts represent relative abundances of different phyla in a sample set. Note that the differences in community composition could be a result of differences in sample origin as well as differences in the techniques that were used. All studies characterized a single (that is, non-replicated) permafrost sample, except Mackelprang et al.47, which analysed two cores, and Taş et al.20 and Mondav et al.53, which analysed three replicate permafrost samples per sampling location. b | Phylogenetic representation of permafrost collected from two samples at Hess Creek, Alaska47, on the basis of the average relative abundances of 18S and 16S rRNA genes in metagenomic sequence-reads at the domain level (that is, the level of the Eukarya, Archaea and Bacteria). c | Phylogenetic representation of permafrost collected from two samples at Hess Creek, Alaska47, on the basis of the average relative abundances of 18S and 16S rRNA genes in metagenomic sequence-reads at the phylum level for Bacteria. Within each bacterial phylum, several dominant genera were observed.


  1. Shur, Y. & Jorgenson, M. Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost Periglac. 18, 719 (2007).
  2. Romanovsky, V. E., Smith, S. L. & Christiansen, H. H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafrost Periglac. 21, 106116 (2010).
  3. Vieira, G. et al. Thermal state of permafrost and active-layer monitoring in the antarctic: advances during the international polar year 2007–2009. Permafrost Periglac. 21, 182197 (2010).
  4. Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 7175 (2006).
  5. Aislabie, J., Jordan, S. & Barker, G. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144, 920 (2008).
  6. Guglielmin, M. Advances in permafrost and periglacial research in Antarctica: a review. Geomorphology 155, 16 (2012).
  7. Campbell, I. B. & Claridge, G. G. in Permafrost Soils (ed. Margesin, R.) 1731 (Springer, 2009).
  8. Guglielmin, M. & Cannone, N. A permafrost warming in a cooling Antarctica? Clim. Chan. 111, 177195 (2012).
  9. Gilichinsky, D. et al. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53, 117128 (2005).
  10. Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 1476914774 (2011).
  11. Yoshikawa, K. & Hinzman, L. D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafrost Periglac. 14, 151160 (2003).
  12. Raffi, R. & Stenni, B. Isotopic composition and thermal regime of ice wedges in northern Victoria Land, East Antarctica. Permafrost Periglac. 22, 6583 (2011).
  13. Morse, P. & Burn, C. Field observations of syngenetic ice-wedge polygons, outer Mackenzie Delta, western Arctic coast, Canada. J. Geom. Phys. 118, 13201332 (2013).
  14. Fitzsimons, S. J. Reinterpretation of pingos in Antarctica. Quaternary Res. 32, 114116 (1989).
  15. Guglielmin, M., Lewkowicz, A. G., French, H. M. & Strini, A. Lake-ice blisters, Terra Nova Bay area, Northern Victoria Land. Geogr. Ann. 91, 99111 (2009).
  16. Walker, D. A. et al. Frost-boil ecosystems: complex interactions between landforms, soils, vegetation and climate. Permafrost Periglac. 15, 171188 (2004).
  17. Kaiser, C. et al. Storage and mineralization of carbon and nitrogen in soils of a frost-boil tundra ecosystem in Siberia. Appl. Soil Ecol. 29, 173183 (2005).
  18. Nossov, D. R., Jorgenson, M. T., Kielland, K. & Kanevskiy, M. Z. Edaphic and microclimatic controls over permafrost response to fire in interior Alaska. Environ. Res. Lett. 8, 035013 (2013).
  19. Jorgenson, M. T. et al. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. 8, 035017 (2013).
  20. Taş, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. (2014).
  21. Gilichinsky, D. et al. in Psychrophiles: From Biodiversity to Biotechnology (eds Margesin, R., Schinner, F., Marx, J. C. & Gerday, C.) 83102 (Springer, 2008).
  22. Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA 111, 42744279 (2014).
  23. Roads, E., Longton, R. E. & Convey, P. Millennial timescale regeneration in a moss from Antarctica. Curr. Biol. 24, R222R223 (2014).
  24. Kirschvink, J. L. in The Proterozoic Biosphere: A Multidisciplinary Study (ed. Schopf, J. W.) 567580 (Cambridge Univ. Press, 1992).
  25. Gilichinsky, D., Rivkina, E., Shcherbakova, V., Laurinavichuis, K. & Tiedje, J. Supercooled water brines within permafrost — an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3, 331341 (2003).
    This study demonstrates microbial metabolism in biomass that was isolated from cryopegs (such as brine lenses) in permafrost and discusses this as a potential analogue for extraterrestrial life.
  26. Nersesova, Z. & Tsytovich, N. in Permafrost: Proceedings of the International Conference on Permafrost. 230234 (National Academy of Sciences–National Research Council, 1963).
  27. Spirina, E. & Fedorov-Davydov, D. Microbiological characterization of cryogenic soils in the Kolymskaya Lowland. Eurasian Soil Sci. 31, 13311344 (1998).
  28. Wilhelm, R. C., Radtke, K. J., Mykytczuk, N. C., Greer, C. W. & Whyte, L. G. Life at the wedge: the activity and diversity of Arctic ice wedge microbial communities. Astrobiology 12, 347360 (2012).
    This study found that ice wedges contains a psychrotolerant and halotolerant microbial community with a relatively high number of culturable cells that plausibly maintain low rates of basal activity.
  29. Biasi, C. et al. Temperature-dependent shift from labile to recalcitrant carbon sources of arctic heterotrophs. Rapid Commun. Mass Sp. 19, 14011408 (2005).
  30. Feller, G. & Gerday, C. Psychrophilic enzymes: hot topics in cold adaptation. Nature Rev. Microbiol. 1, 200208 (2003).
  31. Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds — from one strategy to four. Nature Rev. Microbiol. 9, 803816 (2011).
  32. Nogi, Y. in Cold-Adapted Microorganisms (ed. Yumato, I.) 3350 (Caister Academic Press, 2013).
  33. Panikov, N., Flanagan, P., Oechel, W., Mastepanov, M. & Christensen, T. Microbial activity in soils frozen to below −39 °C. Soil Biol. Biochem. 38, 785794 (2006).
  34. Pointing, S. B. et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 1996419969 (2009).
  35. Yergeau, E. et al. Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments. Appl. Environ. Microbiol. 75, 62586267 (2009).
  36. Zeglin, L. H., Sinsabaugh, R. L., Barrett, J. E., Gooseff, M. N. & Takacs-Vesbach, C. D. Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology, and geochemistry in a cold desert ecosystem. Ecosystems 12, 562573 (2009).
  37. Hoehler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. Nature Rev. Microbiol. 11, 8394 (2013).
  38. Lewin, A., Wentzel, A. & Valla, S. Metagenomics of microbial life in extreme temperature environments. Curr. Opin. Biotechnol. 24, 516525 (2012).
  39. Chattopadhyay, M. Mechanism of bacterial adaptation to low temperature. J. Biosci. 31, 157165 (2006).
  40. D'Amico, S., Collins, T., Marx, J.-C., Feller, G. & Gerday, C. Psychrophilic microorganisms: challenges for life. EMBO Rep. 7, 385389 (2006).
  41. Bakermans, C., Bergholz, P. W., Ayala-del-Río, H. & Tiedje, J. in Permafrost Soils (ed. Margesin, R.) 159168 (Springer, 2009).
  42. Denich, T., Beaudette, L., Lee, H. & Trevors, J. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods 52, 149182 (2003).
  43. Mykytczuk, N. C. et al. Bacterial growth at −15 °C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 7, 12111226 (2013).
    This study shows an Arctic permafrost bacterial isolate to be capable of growth at −15 °C and capable of metabolic activity at −25 °C in permafrost microcosms.
  44. Unell, M., Kabelitz, N., Jansson, J. K. & Heipieper, H. J. Adaptation of the psychrotroph Arthrobacter chlorophenolicus A6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol. Lett. 266, 138143 (2007).
  45. Bowman, J. P. in Psychrophiles: from Biodiversity to Biotechnology (eds Margesin, R., Schinner, F., Marx, J. C. & Gerday, C.) 265284 (Springer, 2008).
  46. Yergeau, E., Hogues, H., Whyte, L. G. & Greer, C. W. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4, 12061214 (2010).
    This paper provides the first detailed functional analysis of potential functions in permafrost on the basis of metagenome sequencing of a permafrost core.
  47. Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368371 (2011).
    This paper provides the first comparison of active layer and permafrost layer metagenomes before and after thawand reveals a rapid shift in the structure and function of the microbial community post-thaw.
  48. Steven, B. et al. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol. Ecol. 59, 513523 (2007).
  49. Steven, B., Niederberger, T. D. & Whyte, L. G. in Permafrost Soils (ed. Margesin, R.) 5972 (Springer, 2009).
  50. Steven, B., Pollard, W. H., Greer, C. W. & Whyte, L. G. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic. Environ. Microbiol. 10, 33883403 (2008).
  51. Rivkina, E., Gilichinsky, D., Wagener, S., Tiedje, J. & McGrath, J. Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol. J. 15, 187193 (1998).
  52. Trotsenko, Y. A. & Khmelenina, V. N. Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol. Ecol. 53, 1526 (2005).
  53. Mondav, R. et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nature Commun. 5, 3212 (2014).
  54. Gilichinsky, D. et al. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7, 275311 (2007).
  55. Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 1440114405 (2007).
  56. Wilhelm, R. C., Niederberger, T. D., Greer, C. & Whyte, L. G. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can. J. Microbiol. 57, 303315 (2011).
  57. Costello, E. K. Molecular Phylogenetic Characterization of High Altitude Soil Microbial Communities and Novel, Uncultivated Bacterial Lineages (ProQuest, 2007).
  58. Smith, J. J., Tow, L. A., Stafford, W., Cary, C. & Cowan, D. A. Bacterial diversity in three different Antarctic cold desert mineral soils. Microb. Ecol. 51, 413421 (2006).
  59. Takacs-Vesbach, C., Zeglin, L., Priscu, J., Barrett, J. & Gooseff, M. in Life in Antarctic Deserts And Other Cold Dry Environments: Astrobiological Analogues (eds Doran, P. T., Lyons, W. B. & McKnight, D. M.) 221257 (Cambridge Univ. Press, 2010).
  60. Stomeo, F. et al. Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol. Ecol. 82, 326340 (2012).
  61. Blanco, Y. et al. Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica). Environ. Microbiol. 14, 24952510 (2012).
  62. Rivkina, E. et al. Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol. Ecol. 61, 115 (2007).
  63. Steven, B., Niederberger, T. D., Bottos, E. M., Dyen, M. R. & Whyte, L. G. Development of a sensitive radiorespiration method for detecting microbial activity at subzero temperatures. J. Microbiol. Methods 71, 275280 (2007).
  64. Bakermans, C. et al. Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int. J. Syst. Evol. Microbiol. 56, 12851291 (2006).
  65. Finster, K. W., Herbert, R. A., Kjeldsen, K. U., Schumann, P. & Lomstein, B. A. Demequina lutea sp. nov., isolated from a high Arctic permafrost soil. Int. J. Syst. Evol. Microbiol. 59, 649653 (2009).
  66. Katayama, T. et al. Glaciibacter superstes gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from a permafrost ice wedge. Int. J. Syst. Evol. Microbiol. 59, 482486 (2009).
  67. Mevs, U., Stackebrandt, E., Schumann, P., Gallikowski, C. A. & Hirsch, P. Modestobacter multiseptatus gen. nov., sp. nov., a budding actinomycete from soils of the Asgard Range (Transantarctic Mountains). Int. J. Syst. Evol. Microbiol. 50, 337346 (2000).
  68. Wagner, D., Schirmack, J., Ganzert, L., Morozova, D. & Mangelsdorf, K. Methanosarcina soligelidi sp. nov., a desiccation and freeze-thaw resistant methanogenic archaeon isolated from a Siberian permafrost-affected soil. Int. J. Syst. Evol. Microbiol. 63, 29862991 (2013).
  69. Niederberger, T. D., Steven, B., Charvet, S., Barbier, B. & Whyte, L. G. Virgibacillus arcticus sp. nov., a moderately halophilic, endospore-forming bacterium from permafrost in the Canadian high Arctic. Int. J. Syst. Evol. Microbiol. 59, 22192225 (2009).
  70. Groves, M. R. & de Orué Lucana, D. O. in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (ed. Mendez-Vilas, A.) 3342 (Formatex Research Center, 2010).
  71. Johnson, A. P. et al. Extended survival of several organisms and amino acids under simulated Martian surface conditions. Icarus 211, 11621178 (2011).
  72. Shi, T., Reeves, R., Gilichinsky, D. & Friedmann, E. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb. Ecol. 33, 169179 (1997).
  73. Vishnivetskaya, T., Kathariou, S., McGrath, J., Gilichinsky, D. & Tiedje, J. M. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4, 165173 (2000).
  74. Nicholson, W. L., Krivushin, K., Gilichinsky, D. & Schuerger, A. C. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars. Proc. Natl Acad. Sci. USA 110, 666671 (2013).
    This paper describes six Carnobacterium isolates from Siberian permafrost that are capable of growth under extremes of cold, low-pressure and anoxic conditions.
  75. Shcherbakova, V. et al. Celerinatantimonas yamalensis sp. nov., a cold-adapted diazotrophic bacterium from a cold permafrost brine. Int. J. Syst. Evol. Microbiol. 63, 44214427 (2013).
  76. Krivushin, K. V., Shcherbakova, V. A., Petrovskaya, L. E. & Rivkina, E. M. Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int. J. Syst. Evol. Microbiol. 60, 455459 (2010).
  77. Shcherbakova, V. et al. Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int. J. Syst. Evol. Microbiol. 61, 144147 (2011).
  78. Ozerskaya, S., Kochkina, G., Ivanushkina, N. & Gilichinsky, D. A. in Permafrost soils (ed. Margesin, R.) 8595 (Springer, 2009).
  79. Zucconi, L. et al. Searching for eukaryotic life preserved in Antarctic permafrost. Polar Biol. 35, 749757 (2012).
  80. Price, P. B. & Sowers, T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl Acad. Sci. USA 101, 46314636 (2004).
  81. Amato, P., Doyle, S. M., Battista, J. R. & Christner, B. C. Implications of subzero metabolic activity on long-term microbial survival in terrestrial and extraterrestrial permafrost. Astrobiology 10, 789798 (2010).
  82. Ayala-del-Río, H. L. et al. The genome sequence of Psychrobacter arcticus 273–274, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl. Environ. Microbiol. 76, 23042312 (2010).
    This paper reports the first genome sequencing of a permafrost bacterium — and of a cold-adapted bacterium in general — and reveals several potential strategies for survival in cold temperatures.
  83. Christner, B. C. Incorporation of DNA and protein precursors into macromolecules by bacteria at −15 °C. Appl. Environ. Microbiol. 68, 64356438 (2002).
  84. Junge, K., Eicken, H., Swanson, B. D. & Deming, J. W. Bacterial incorporation of leucine into protein down to −20 °C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52, 417429 (2006).
  85. Panikov, N. S. & Sizova, M. V. Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35 °C. FEMS Microbiol. Ecol. 59, 500512 (2007).
  86. Rivkina, E., Friedmann, E., McKay, C. & Gilichinsky, D. Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66, 32303233 (2000).
  87. Rodrigues, D. F. et al. Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9, 547 (2008).
    This paper uses genome sequence and expression profiles to reveal cold-temperature survival strategies for an Exiguobacterium isolate from ancient permafrost.
  88. Pecheritsyna, S. A., Rivkina, E. M., Akimov, V. N. & Shcherbakova, V. A. Desulfovibrio arcticus sp. nov., a psychrotolerant sulfate-reducing bacterium from a cryopeg. Int. J. Syst. Evol. Microbiol. 62, 3337 (2012).
  89. Zhao, Q. et al. Chryseobacterium xinjiangense sp. nov., isolated from alpine permafrost. Int. J. Syst. Evol. Microbiol. 61, 13971401 (2011).
  90. Pikuta, E. V. et al. Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska. Int. J. Syst. Evol. Microbiol. 55, 473478 (2005).
  91. Shcherbakova, V. et al. Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles 9, 239246 (2005).
  92. Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533538 (2010).
  93. Riley, M. et al. Genomics of an extreme psychrophile, Psychromonas ingrahamii. BMC Genomics 9, 210 (2008).
  94. Bakermans, C. et al. in Polar Microbiology: Life in a Deep Freeze (ed. Miller, R. V.) 126155 (ASM Press, 2011).
  95. Bergholz, P. W., Bakermans, C. & Tiedje, J. M. Psychrobacter arcticus 273–274 uses resource efficiency and molecular motion adaptations for subzero temperature growth. J. Bacteriol. 191, 23402352 (2009).
  96. Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 10561060 (2009).
  97. Woyke, T. et al. One bacterial cell, one complete genome. PLoS ONE 5, e10314 (2010).
  98. Lipson, D. A. et al. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile. PLoS ONE 8, e64659 (2013).
  99. Strom, A. & Kaasen, I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol. Microbiol. 8, 205210 (1993).
  100. Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E. M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 11601172 (2013).
  101. Tuorto, S. J. et al. Bacterial genome replication at subzero temperatures in permafrost. ISME J. 8, 139149 (2014).
    This paper uses stable-isotope probing to demonstrate subzero DNA synthesis in permafrost at temperatures as low as −20 °C.
  102. Khmelenina, V. et al. Discovery of viable methanotrophic bacteria in permafrost sediments of Northeast Siberia. Doklady Biol. Sci. 235237 (Springer, 2002).
  103. Lacelle, D. et al. Geomicrobiology and occluded O2–CO2–Ar gas analyses provide evidence of microbial respiration in ancient terrestrial ground ice. Earth Planet. Sci. Lett. 306, 4654 (2011).
  104. Sommerkorn, M., Bölter, M. & Kappen, L. Carbon dioxide fluxes of soils and mosses in wet tundra of Taimyr Peninsula, Siberia: controlling factors and contribution to net system fluxes. Polar Res. 18, 253260 (1999).
  105. Torn, M., Swanston, C., Castanha, C. & Trumbore, S. in Biophysico-chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems. (eds Senesi, N., Xing, B. & Huang, P. M.) 219272 (Wiley, 2009).
  106. Anthony, K. M. W., Anthony, P., Grosse, G. & Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geosci. 5, 419426 (2012).
  107. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cyc. 23, GB2023 (2009).
  108. Graham, D. E. et al. Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J. 6, 709712 (2011).
  109. Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 11601172 (2013).
  110. Seneviratne, S. et al. Changes in climate extremes and their impacts on the natural physical environment: an overview of the IPCC SREX report. EGU General Assembly Conference Abstracts 14, 12566 (2012).
  111. Schwalm, C. R. et al. A model-data intercomparison of CO2 exchange across North America: results from the North American Carbon Program site synthesis. J. Geophys. Res. 115, G00H05 (2010).
  112. Fanale, F. P., Salvail, J. R., Zent, A. P. & Postawko, S. E. Global distribution and migration of subsurface ice on Mars. Icarus 67, 118 (1986).
  113. Kreslavsky, M. A., Head, J. W. & Marchant, D. R. Periods of active permafrost layer formation during the geological history of Mars: implications for circum-polar and mid-latitude surface processes. Planet. Space Sci. 56, 289302 (2008).
  114. Suetin, S. V. et al. Clostridium tagluense sp. nov., a psychrotolerant, anaerobic, spore-forming bacterium from permafrost. Int. J. Syst. Evol. Microbiol. 59, 14211426 (2009).
  115. Vatsurina, A., Badrutdinova, D., Schumann, P., Spring, S. & Vainshtein, M. Desulfosporosinus hippei sp. nov., a mesophilic sulfate-reducing bacterium isolated from permafrost. Int. J. Syst. Evol. Microbiol. 58, 12281232 (2008).
  116. Sleator, R. D. & Hill, C. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26, 4971 (2002).

Download references

Author information


  1. Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 70A-3317 Berkeley, California 94720, USA.

    • Janet K. Jansson &
    • Neslihan Taş
  2. Joint Genome Institute (JGI), 2800 Mitchell Drive, Walnut Creek, California 94598, USA.

    • Janet K. Jansson
  3. Joint BioEnergy Institute (JBEI), 5885 Hollis Street, Emeryville, California 94608, USA.

    • Janet K. Jansson
  4. Danish Center for Permafrost (CENPERM), University of Copenhagen, Oester Voldgade 10, DK-1350 Copenhagen, Denmark.

    • Janet K. Jansson
  5. Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, California 94720-3102, USA.

    • Janet K. Jansson

Competing interests statement

The authors declare no competing interests.

Corresponding author

Correspondence to:

Author details

  • Janet K. Jansson

    Janet K. Jansson is a senior staff scientist at the Lawrence Berkeley National Laboratory (LBNL), University of California, USA, and is Ecosystems Biology Program Lead for the Earth Sciences Division at LBNL, with Adjunct Professor positions at the University of California, Berkeley, USA, and the University of Copenhagen, Denmark. She is an expert in the application of molecular 'omics' tools for gaining an understanding of microbial communities in complex environments, including soil, sediments and the human gut.

  • Neslihan Taş

    Neslihan Taş is a postdoctoral researcher at the Lawrence Berkeley National Laboratory (LBNL), University of California, USA. Her research involves using next-generation sequencing technologies to understand microbial community functioning and ecology in boreal and temporal soils.

Supplementary information

PDF files

  1. Supplementary information S1 (table) (438 KB)

    Permafrost isolates and characteristics of interest

Additional data