Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Revealing a world of biofilms — the pioneering research of Bill Costerton

Subjects

Abstract

Bill Costerton is recognized as the founding father of the field of biofilms, which is the study of microorganisms attached to surfaces. He was a true pioneer and was passionate about directly observing living complex microbial communities to learn how they function in different ecosystems. His multidisciplinary approach to the study of biofilms forged a common way of thinking about the ways in which microorganisms survive and function in the environment as well as in medical, dental, industrial, agricultural, engineering and other contexts. In this Essay, we outline some of the achievements that Bill made during his scientific journey.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bill Costerton relaxing in his office with a picture of his beloved mountains in the background.
Figure 2: A timeline of Bill's research interests and publications spanning his entire career.
Figure 3: The power of the image.

References

  1. McLean, R. J. C., Lam, J. S. & Graham, L. L. Training the biofilm generation — a tribute to J. W. Costerton. J. Bacteriol. 194, 6706–6711 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ehrlich, G. D. & Arciola, C. R. From Koch's postulates to biofilm theory. The lesson of Bill Costerton. Int. J. Artif. Organs 35, 695–699 (2012).

    Article  PubMed  Google Scholar 

  3. Shirtliff, M. E., Post, J. C. & Ehrlich, G. D. Bill Costerton: leader as servant. FEMS Immunol. Med. Microbiol. 66, 269–272 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Cheng, K. J. & Costerton, J. W. Ultrastructure of cell envelopes of bacteria of the bovine rumen. Appl. Microbiol. 29, 841–849 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Patterson, H., Irvin, R., Costerton, J. W. & Cheng, K. J. Ultrastructure and adhesion properties of Ruminococcus albus. J. Bacteriol. 122, 278–287 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheng, K. J., Akin, D. E. & Costerton, J. W. Rumen bacteria: interaction with particulate dietary components and response to dietary variation. Fed. Proc. 36, 193–197 (1977).

    CAS  PubMed  Google Scholar 

  7. Costerton, J. W., Irvin, R. T. & Cheng, K. J. The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 35, 299–324 (1981).

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, K. J., Gardiner, E. E. & Costerton, J. W. Bacteria associated with beak necrosis in broiler breeder hens. Vet. Rec. 99, 503–505 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Zobell, C. E. & Allen, E. C. The significance of marine bacteria in the fouling of submerged surfaces. J. Bacteriol. 29, 239–251 (1935).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Henrici, A. T. Studies of freshwater bacteria. 1. A direct microscopic technique. J. Bacteriol. 25, 277–286 (1933).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Geesey, G. G., Mutch, R., Costerton, J. W. & Green, R. B. Sessile bacteria: an important component of the microbial population in small mountain streams. Limnol. Oceanogr. 23, 1214–1223 (1978).

    Article  CAS  Google Scholar 

  12. Wyndham, R. C. & Costerton, J. W. In vitro microbial degradation of bituminous hydrocarbons and in situ colonization of bitumen surfaces within the athabasca oil sands deposit. Appl. Environ. Microbiol. 41, 791–800 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Costerton, J. W. in Microbial Biofilms (eds O'Toole, G. A. & Ghannoum, M. A.) 4–19 (ASM Press, 2004).

    Book  Google Scholar 

  14. Costerton, J. W., Geesey, G. G. & Cheng, K. J. How bacteria stick. Sci. Am. 238, 86–95 (1978).

    Article  CAS  PubMed  Google Scholar 

  15. McCowan, R. P., Cheng, K. J., Bailey, C. B. M. & Costerton, J. W. Adhesion of bacteria to epithelial cell surfaces within the reticulo-rumen of cattle. Appl. Environ. Microbiol. 35, 149–155 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lappin-Scott, H. M. & Costerton, J. W. (eds) Microbial Biofilms (Cambridge University Press, 1995).

    Book  Google Scholar 

  17. McCoy, W. F., Bryers, J. D., Robbins, J. & Costerton, J. W. Observations of fouling biofilm formation. Can. J. Microbiol. 27, 910–917 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Ruseska, I., Robbins, J., Costerton, J. W. & Lashen, E. S. Biocide testing against corrosion-causing oil field bacteria helps control plugging. Oil Gas J. 8, 253–264 (1982).

    Google Scholar 

  19. Obuekwe, C. O., Westlake, D. W. S., Cook, F. D. & Costerton, J. W. Surface changes in mild steel coupons from the action of corrosion-causing bacteria. Appl. Environ. Microbiol. 41, 766–774 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng K. J., Irvin, R. T. & Costerton, J. W. Autochthonous and pathogenic colonization of animal tissues by bacteria. Can. J. Microbiol. 27, 461–490 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. McCoy, W. F. & Costerton, J. W. Growth of sessile Sphaerotilus natans in a tubular recycle system. Appl. Environ. Microbiol. 43, 1490–1494 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Costerton, J. W., Rozee, K. R. & Cheng, K. J. Colonization of particulates, mucous, and intestinal tissue. Prog. In Food Nutr. Sci. 7, 91–105 (1983).

    CAS  Google Scholar 

  23. Costerton, J. W. in Action of Antibiotics in Patients. 160–176 (Hans Huber, 1982).

    Google Scholar 

  24. Costerton, J. W. The formation of biocide-resistant biofilms in industrial, natural, and medical systems. Devel. Indust. Microbiol. 25, 363–372 (1984).

    CAS  Google Scholar 

  25. Jass, J., Costerton, J. W. & Lappin-Scott, H. M. The effect of electrical currents and tobramycin on Pseudomonas aeruginosa biofilms. J. Ind. Microbiol. 15, 234–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Jones, S. M., Morgan, M., Humphry, T. J. & Lappin-Scott, H. Effect of vancomycin and rifampicin on meticillin-resistant Staphylococcus aureus biofilms. Lancet 357, 40–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Nickel, J. C., Ruseska, I., Wright, J. B. & Costerton, J. W. Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27, 619–624 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayberry-Carson, K. J., Tober-Meyer, B., Lambe, D. W. Jr & Costerton, J. W. An electron microscopic study of the effect of clindamycin therapy on bacterial adherence and glycocalyx formation in experimental Staphylococcus aureus osteomyelitis. Microbios 48, 189–206 (1986).

    CAS  PubMed  Google Scholar 

  29. Del Pozo, J. L., Rouse, M. S. & Patel, R. Bioelectric effect and bacterial biofilms. A systematic review. Int. J. Artif. Organs. 31, 786–795 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suci, P. A., Mittelman, M. W., Yu, F. P. & Geesey, G. G. Investigation of Ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 38, 2125–2133 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gristina, A. G., Dobbins, J. J., Giamara, B., Lewis, J. C. & DeVries, W. C. Biomaterial-centered sepsis and the total artificial heart: microbial adhesion versus tissue integration. J. Am. Med. Assoc. 259, 870–877 (1988).

    Article  CAS  Google Scholar 

  32. Savage, V. J., Chopra, I. & O'Neill, A. J. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 57, 1968–1970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Costerton, J. W. How bacteria stick — a citation classic commentary on How Bacteria Stick by Costerton, J. W., Geesey, G. G., and Cheng, K. J. Curr. Contents Clin. Med. 48, 18 (1989).

    Google Scholar 

  34. Lam, J., Chan, R., Lam, K. & Costerton, J. W. Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect. Immun. 28, 546–556 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Marrie, T. J. & Costerton, J. W. A scanning and transmission electron microscopic study of the surfaces of intrauterine contraceptive devices. Am. J. Obstet. Gynecol. 146, 384–394 (1983).

    Article  CAS  PubMed  Google Scholar 

  36. Marrie, T. J., Lam, J. & Costerton, J. W. Bacterial adhesion to uroepithelial cells: a morphologic study. J. Infect. Dis. 142, 239–246 (1980).

    Article  CAS  PubMed  Google Scholar 

  37. Nickel, J. C., Gristina, A. G. & Costerton, J. W. Electron microscopic study of an infected Foley catheter. Can. J. Surg. 28, 50–51 (1985).

    CAS  PubMed  Google Scholar 

  38. Gristina, A. G. & Costerton, J. W. Bacterial adherence and the glycocalyx and their role in musculoskeletal infection. Orthop. Clin. North Am. 15, 517–535 (1984).

    CAS  PubMed  Google Scholar 

  39. Gristina, A. G. & Costerton, J. W. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J. Bone Joint Surg. Am. 67, 264–273 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Dasgupta, M. K. et al. Biofilm producing adherent bacterial microcolonies in peritonitis associated with chronic ambulatory peritoneal-dialysis (capd). Kidney International 29, 230 (1986).

    Google Scholar 

  41. Tchekmedyian, N. S. et al. Special studies of the Hickman catheter of a patient with recurrent bacteremia and candidemia. Am. J. Med. Sci. 291, 419–424 (1986).

    Article  CAS  PubMed  Google Scholar 

  42. Walsh, T. J., Schlegel, R., Moody, M. M., Costerton, J. W. & Salcman, M. Ventriculoatrial shunt infection due to Cryptococcus neoformans — an ultrastructural and quantitative microbiological study. Neurosurgery 18, 373–375 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. Sottile, F. D. et al. Nosocomial pulmonary infection: possible etiologic significance of bacterial adhesion to endotracheal tubes. Crit. Care Med. 14, 265–270 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Marrie, T. J., Nelligan, J. & Costerton, J. W. A. Scanning and transmission electron-microscopic study of an infected endocardial pacemaker lead. Circulation 66, 1339–1341 (1982).

    Article  CAS  PubMed  Google Scholar 

  45. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ward, D. M., Weller, R. & Bateson, M. M. 16S rRNA sequences reveal uncultured inhabitants of a well-studied thermal community. FEMS Microbiol. Rev. 6, 105–115 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W. & Caldwell, D. E. Optical sectioning of microbial biofilms. J. Bacteriol. 173, 6558–6567 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Beer, D., Stoodley, P., Roe, F. & Lewandowski, Z. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43, 1131–1138 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Stoodley, P., Debeer, D. & Lewandowski, Z. Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60, 2711–2716 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stoodley, P., DeBeer, D., Boyle, J. D. & Lappin-Scott, H. M. Evolving perspectives of biofilm structure. Biofouling 14, 75–94 (1999).

    Article  Google Scholar 

  51. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Costerton, J. W. et al. Biofilms, the customized microniche. J. Bacteriol. 176, 2137–2142 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davies, D. G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184, 1140–1154 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leid, J. G., Shirtliff, M. E., Costerton, J. W. & Stoodley, P. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect. Immun. 70, 6339–6345 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wanger, G. et al. Electrically conductive bacterial nanowires in bisphosphonate-related osteonecrosis of the jaw biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 115, 71–78 (2013).

    Article  PubMed  Google Scholar 

  57. Sedghizadeh, P. P. et al. Microbial biofilms in osteomyelitis of the jaw and osteonecrosis of the jaw secondary to bisphosphonate therapy. J. Am. Dent. Assoc. 140, 1259–1265 (2009).

    Article  PubMed  Google Scholar 

  58. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  Google Scholar 

  60. Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gambello, M. J. & Iglewski, B. H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173, 3000–3009 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pesci, E. C. et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 96, 11229–11234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nature Rev. Microbiol. 4, 597–607 (2006).

    Article  CAS  Google Scholar 

  65. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Pan, J., Bahar, A. A., Syed, H. & Ren, D. Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfur an-2(5H)- one. PLoS ONE 7, e45778 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brady, R. A., Leid, J. G., Costerton, J. W. & Shirtliff, M. E. Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect. Immun. 6, 3415–3426 (2006).

    Article  Google Scholar 

  68. Brady, R. A. et al. Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infect. Immun. 79, 1797–1803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dandekar, A. A., Chugani, S. & Greenberg, E. P. Bacterial quorum sensing and metabolic incentives to cooperate. Science 338, 264–266 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Palmer, M. P. et al. Can we trust intraoperative culture results in nonunions? J. Orthop. Trauma 28, 384–390 (2013).

    Article  Google Scholar 

  71. Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Schaudinn, C. et al. Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM). J. Microsc. 235, 124–127 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all of Bill's colleagues over the years for their contributions to developing his theories and thinking; they gratefully acknowledge Bill's family for sharing him with his scientific family. They also thank M. Parsek and J. Lam for carefully reviewing the manuscript and providing valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hilary Lappin-Scott or Paul Stoodley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lappin-Scott, H., Burton, S. & Stoodley, P. Revealing a world of biofilms — the pioneering research of Bill Costerton. Nat Rev Microbiol 12, 781–787 (2014). https://doi.org/10.1038/nrmicro3343

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3343

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology