Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors

Key Points

  • Bacterial effector proteins have the ability to modulate a variety of host cell functions to promote bacterial survival and replication. In some cases, numerous effectors with diverse biochemical activities are delivered into host cells, and the spatial regulation of these activities is crucial for bacterial infection.

  • Many bacterial effectors have evolved targeting mechanisms that use the host cell machinery. Some of these mechanisms use signal sequences embedded within the effector, and others require post-translational modification of the effector before subcellular targeting.

  • Three well-characterized effector-targeting mechanisms are effector lipidation, effector ubiquitylation and effector binding to phospholipids. In addition, bacterial effectors can engage organelle import pathways to localize to specific organelles within the host cell.

  • It is clear that, despite the unique subcellular organization within host cells, many bacterial effectors have evolved the ability to selectively target precise eukaryotic compartments by exploiting a variety of eukaryotic targeting mechanisms to ensure proper effector function during infection.

Abstract

Several bacterial species have evolved specialized secretion systems to deliver bacterial effector proteins into eukaryotic cells. These effectors have the capacity to modulate host cell pathways in order to promote bacterial survival and replication. The spatial and temporal context in which the effectors exert their biochemical activities is crucial for their function. To fully understand effector function in the context of infection, we need to understand the mechanisms that lead to the precise subcellular localization of effectors following their delivery into host cells. Recent studies have shown that bacterial effectors exploit host cell machinery to accurately target their biochemical activities within the host cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane targeting of effectors by host-mediated lipidation.
Figure 2: Membrane targeting of effectors by host-mediated ubiquitylation.
Figure 3: Effector targeting to mitochondria.
Figure 4: Effector targeting to the nucleus.

Similar content being viewed by others

References

  1. Christie, P., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005).

    CAS  PubMed  Google Scholar 

  2. Galán, J. E. & Wolf-Watz, H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573 (2006).

    PubMed  Google Scholar 

  3. Galán, J. Common themes in the design and function of bacterial effectors. Cell Host Microbe 5, 571–579 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Ashida, H. et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKγ to dampen the host NF-κB-mediated inflammatory response. Nature Cell Biol. 12, 66–73 (2010).

    CAS  PubMed  Google Scholar 

  5. Xin, D. W. et al. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathog. 8, e1002707 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Linder, M. E. & Deschenes, R. J. Palmitoylation: policing protein stability and traffic. Nature Rev. Mol. Cell Biol. 8, 74–84 (2007).

    CAS  Google Scholar 

  7. Resh, M. D. Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci. STKE 2006, re14 (2006).

    PubMed  Google Scholar 

  8. Smotrys, J. E. & Linder, M. E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem. 73, 559–587 (2004).

    CAS  PubMed  Google Scholar 

  9. Greaves, J. & Chamberlain, L. H. Palmitoylation-dependent protein sorting. J. Cell Biol. 176, 249–254 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hicks, S. W., Charron, G., Hang, H. C. & Galán, J. E. Subcellular targeting of Salmonella virulence proteins by host-mediated S-palmitoylation. Cell Host Microbe 10, 9–20 (2011). The first study to demonstrate S -palmitoylation of a bacterially translocated effector during infection. This study also shows the direct S -palmitoylation of these effector in vitro by host cell enzymes.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Quezada, C. M., Hicks, S. W., Galán, J. E. & Stebbins, C. E. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl Acad. Sci. USA 106, 4864–4869 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hicks, S. W. & Galán, J. E. Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr. Opin. Microbiol. 13, 41–46 (2010).

    CAS  PubMed  Google Scholar 

  13. McLaughlin, L. M. et al. The Salmonella SPI2 effector SseI mediates long-term systemic infection by modulating host cell migration. PLoS Pathog. 5, e1000671 (2009).

    PubMed  PubMed Central  Google Scholar 

  14. Worley, M. J., Nieman, G. S., Geddes, K. & Heffron, F. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. Proc. Natl Acad. Sci. USA 103, 17915–17920 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Farazi, T. A., Waksman, G. & Gordon, J. I. The biology and enzymology of protein N-myristoylation. J. Biol. Chem. 276, 39501–39504 (2001).

    CAS  PubMed  Google Scholar 

  16. Towler, D. A., Eubanks, S. R., Towery, D. S., Adams, S. P. & Glaser, L. Amino-terminal processing of proteins by N-myristoylation. Substrate specificity of N-myristoyl transferase. J. Biol. Chem. 262, 1030–1036 (1987).

    CAS  PubMed  Google Scholar 

  17. Block, A. & Alfano, J. Plant targets for Pseudomonas syringae type III effectors: virulence targets or guarded decoys? Curr. Opin. Microbiol. 14, 39–46 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng, F. & Zhou, J. Plant–bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol. 15, 469–476 (2012).

    PubMed  Google Scholar 

  19. Nimchuk, Z. et al. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101, 353–363 (2000). An investigation which shows that AvrB and AvrRpm1 are both S -palmitoylated and N -myristoylated in host cells and that these modifications are required for virulence in susceptible hosts.

    CAS  PubMed  Google Scholar 

  20. Lewis, J. D., Abada, W., Ma, W., Guttman, D. S. & Desveaux, D. The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana. J. Bacteriol. 190, 2880–2891 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Robert-Seilaniantz, A., Shan, L., Zhou, J. M. & Tang, X. The Pseudomonas syringae pv. tomato DC3000 type III effector HopF2 has a putative myristoylation site required for its avirulence and virulence functions. Mol. Plant Microbe Interact. 19, 130–138 (2006).

    CAS  PubMed  Google Scholar 

  22. Thornbrough, J. M. & Worley, M. J. A naturally occurring single nucleotide polymorphism in the Salmonella SPI-2 type III effector srfH/sseI controls early extraintestinal dissemination. PLoS ONE 7, e45245 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Marathe, R. & Dinesh-Kumar, S. P. Plant defense: one post, multiple guards?! Mol. Cell 11, 284–286 (2003).

    CAS  PubMed  Google Scholar 

  24. Dowen, R. H., Engel, J. L., Shao, F., Ecker, J. R. & Dixon, J. E. A family of bacterial cysteine protease type III effectors utilizes acylation-dependent and -independent strategies to localize to plasma membranes. J. Biol. Chem. 284, 15867–15879 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin, D. D., Beauchamp, E. & Berthiaume, L. G. Post-translational myristoylation: fat matters in cellular life and death. Biochimie 93, 18–31 (2011).

    CAS  PubMed  Google Scholar 

  26. Shao, F. et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301, 1230–1233 (2003).

    CAS  PubMed  Google Scholar 

  27. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A. Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002).

    CAS  PubMed  Google Scholar 

  28. Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996).

    CAS  PubMed  Google Scholar 

  29. Boyartchuk, V. L., Ashby, M. N. & Rine, J. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275, 1796–1800 (1997).

    CAS  PubMed  Google Scholar 

  30. Dai, Q. et al. Mammalian prenylcysteine carboxyl methyltransferase is in the endoplasmic reticulum. J. Biol. Chem. 273, 15030–15034 (1998).

    CAS  PubMed  Google Scholar 

  31. Ivanov, S. S., Charron, G., Hang, H. C. & Roy, C. R. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J. Biol. Chem. 285, 34686–34698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Price, C. T., Al-Quadan, T., Santic, M., Jones, S. C. & Abu Kwaik, Y. Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila. J. Exp. Med. 207, 1713–1726 (2010). Work finding that AnkB is targeted to the LCV via prenylation, and that AnkB prenylation influences disease severity.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Price, C. T., Jones, S. C., Amundson, K. E. & Kwaik, Y. A. Host-mediated post-translational prenylation of novel Dot/Icm-translocated effectors of Legionella pneumophila. Front. Microbiol. 1, 131 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Reinicke, A. T. et al. A Salmonella typhimurium effector protein SifA is modified by host cell prenylation and S-acylation machinery. J. Biol. Chem. 280, 14620–14627 (2005).

    CAS  PubMed  Google Scholar 

  35. Boucrot, E., Beuzon, C. R., Holden, D. W., Gorvel, J. P. & Meresse, S. Salmonella typhimurium SifA effector protein requires its membrane-anchoring C-terminal hexapeptide for its biological function. J. Biol. Chem. 278, 14196–14202 (2003).

    CAS  PubMed  Google Scholar 

  36. Stein, M. A., Leung, K. Y., Zwick, M., Garcia-del Portillo, F. & Finlay, B. B. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20, 151–164 (1996).

    CAS  PubMed  Google Scholar 

  37. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    CAS  PubMed  Google Scholar 

  38. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. EMBO Rep. 9, 536–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Haglund, K. & Dikic, I. Ubiquitylation and cell signaling. EMBO J. 24, 3353–3359 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol. 19, 141–172 (2003).

    CAS  PubMed  Google Scholar 

  41. Huang, J., Xu, L. G., Liu, T., Zhai, Z. & Shu, H. B. The p53-inducible E3 ubiquitin ligase p53RFP induces p53-dependent apoptosis. FEBS Lett. 580, 940–947 (2006).

    CAS  PubMed  Google Scholar 

  42. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kubori, T. & Nagai, H. Bacterial effector-involved temporal and spatial regulation by hijack of the host ubiquitin pathway. Front. Microbiol. 2, 145 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Collins, C. A. & Brown, E. J. Cytosol as battleground: ubiquitin as a weapon for both host and pathogen. Trends Cell Biol. 20, 205–213 (2010).

    CAS  PubMed  Google Scholar 

  46. Kubori, T. & Galan, J. E. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115, 333–342 (2003).

    CAS  PubMed  Google Scholar 

  47. Kubori, T., Shinzawa, N., Kanuka, H. & Nagai, H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog. 6, e1001216 (2010).

    PubMed  PubMed Central  Google Scholar 

  48. Patel, J. C. & Galán, J. E. Differential activation and function of Rho GTPases during Salmonella–host cell interactions. J. Cell Biol. 175, 453–463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Steele-Mortimer, O. et al. Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector SigD. J. Biol. Chem. 275, 37718–37724 (2000).

    CAS  PubMed  Google Scholar 

  50. Hernandez, L. D., Hueffer, K., Wenk, M. R. & Galán, J. E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807 (2004).

    CAS  PubMed  Google Scholar 

  51. Knodler, L. A., Winfree, S., Drecktrah, D., Ireland, R. & Steele-Mortimer, O. Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane. Cell. Microbiol. 11, 1652–1670 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Patel, J. C., Hueffer, K., Lam, T. T. & Galán, J. E. Diversification of a Salmonella virulence protein function by ubiquitin-dependent differential localization. Cell 137, 283–294 (2009). An investigation which demonstrates that SopB is monoubiquitylated and that this results in SopB removal from the plasma membrane and delivery to the SCV.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sorkin, A. & Goh, L. K. Endocytosis and intracellular trafficking of ErbBs. Exp. Cell Res. 315, 683–696 (2009).

    CAS  PubMed  Google Scholar 

  54. von Zastrow, M. & Sorkin, A. Signaling on the endocytic pathway. Curr. Opin. Cell Biol. 19, 436–445 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. De Matteis, M. A. & Godi, A. PI-loting membrane traffic. Nature Cell Biol. 6, 487–492 (2004).

    CAS  PubMed  Google Scholar 

  56. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    CAS  PubMed  Google Scholar 

  57. Michell, R. H. Inositol derivatives: evolution and functions. Nature Rev. Mol. Cell Biol. 9, 151–161 (2008).

    CAS  Google Scholar 

  58. Pizarro-Cerda, J. & Cossart, P. Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nature Cell Biol. 6, 1026–1033 (2004).

    CAS  PubMed  Google Scholar 

  59. Weber, S. S., Ragaz, C. & Hilbi, H. Pathogen trafficking pathways and host phosphoinositide metabolism. Mol. Microbiol. 71, 1341–1352 (2009).

    CAS  PubMed  Google Scholar 

  60. Weber, S. S., Ragaz, C., Reus, K., Nyfeler, Y. & Hilbi, H. Legionella pneumophila exploits PI(4)P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog. 2, e46 (2006).

    PubMed  PubMed Central  Google Scholar 

  61. Ragaz, C. et al. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell. Microbiol. 10, 2416–2433 (2008).

    CAS  PubMed  Google Scholar 

  62. Brombacher, E. et al. Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J. Biol. Chem. 284, 4846–4856 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Machner, M. P. & Isberg, R. R. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 11, 47–56 (2006).

    CAS  PubMed  Google Scholar 

  64. Jank, T. et al. Domain organization of Legionella effector SetA. Cell. Microbiol. 14, 852–868 (2012).

    CAS  PubMed  Google Scholar 

  65. Stebbins, C. E. & Galán, J. E. Structural mimicry in bacterial virulence. Nature 412, 701–705 (2001).

    CAS  PubMed  Google Scholar 

  66. Rabin, S. D., Veesenmeyer, J. L., Bieging, K. T. & Hauser, A. R. A. C-terminal domain targets the Pseudomonas aeruginosa cytotoxin ExoU to the plasma membrane of host cells. Infect. Immun. 74, 2552–2561 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gendrin, C. et al. Structural basis of cytotoxicity mediated by the type III secretion toxin ExoU from Pseudomonas aeruginosa. PLoS Pathog. 8, e1002637 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Finck-Barbancon, V. et al. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol. Microbiol. 25, 547–557 (1997).

    CAS  PubMed  Google Scholar 

  69. Allewelt, M., Coleman, F. T., Grout, M., Priebe, G. P. & Pier, G. B. Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect. Immun. 68, 3998–4004 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Marshall, B. & Windsor, H. The relation of Helicobacter pylori to gastric adenocarcinoma and lymphoma: pathophysiology, epidemiology, screening, clinical presentation, treatment, and prevention. Med. Clin. North Am. 89, 313–344 (2005).

    PubMed  Google Scholar 

  71. Murata-Kamiya, N. Pathophysiological functions of the CagA oncoprotein during infection by Helicobacter pylori. Microbes Infect. 13, 799–807 (2011).

    CAS  PubMed  Google Scholar 

  72. Murata-Kamiya, N., Kikuchi, K., Hayashi, T., Higashi, H. & Hatakeyama, M. Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe. 7, 399–411 (2010).

    CAS  PubMed  Google Scholar 

  73. Higashi, H. et al. EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J. Biol. Chem. 280, 23130–23137 (2005).

    CAS  PubMed  Google Scholar 

  74. Neupert, W. Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917 (1997).

    CAS  PubMed  Google Scholar 

  75. Schatz, G. The protein import system of mitochondria. J. Biol. Chem. 271, 31763–31766 (1996).

    CAS  PubMed  Google Scholar 

  76. Wiedemann, N., Frazier, A. E. & Pfanner, N. The protein import machinery of mitochondria. J. Biol. Chem. 279, 14473–14476 (2004).

    CAS  PubMed  Google Scholar 

  77. Guttman, D. S. et al. A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295, 1722–1726 (2002).

    CAS  PubMed  Google Scholar 

  78. Jelenska, J. et al. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr. Biol. 17, 499–508 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Block, A. et al. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell. Microbiol. 12, 318–330 (2010).

    CAS  PubMed  Google Scholar 

  80. Kenny, B. & Jepson, M. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell. Microbiol. 2, 579–590 (2000). A study showing that the E. coli effector Map is found in the host cell mitochondrial matrix and that this can disrupt mitochondrial membrane potential.

    CAS  PubMed  Google Scholar 

  81. Nougayrede, J. P. & Donnenberg, M. S. Enteropathogenic Escherichia coli EspF is targeted to mitochondria and is required to initiate the mitochondrial death pathway. Cell. Microbiol. 6, 1097–1111 (2004).

    CAS  PubMed  Google Scholar 

  82. Papatheodorou, P. et al. The enteropathogenic Escherichia coli (EPEC) Map effector is imported into the mitochondrial matrix by the TOM/Hsp70 system and alters organelle morphology. Cell. Microbiol. 8, 677–689 (2006).

    CAS  PubMed  Google Scholar 

  83. Alto, N. M. et al. Identification of a bacterial type III effector family with G protein mimicry functions. Cell 124, 133–145 (2006).

    CAS  PubMed  Google Scholar 

  84. Bulgin, R. et al. Bacterial guanine nucleotide exchange factors SopE-like and WxxxE effectors. Infect. Immun. 78, 1417–1425 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hodges, K., Alto, N. M., Ramaswamy, K., Dudeja, P. K. & Hecht, G. The enteropathogenic Escherichia coli effector protein EspF decreases sodium hydrogen exchanger 3 activity. Cell. Microbiol. 10, 1735–1745 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Simpson, N. et al. The enteropathogenic Escherichia coli type III secretion system effector Map binds EBP50/NHERF1: implication for cell signalling and diarrhoea. Mol. Microbiol. 60, 349–363 (2006).

    CAS  PubMed  Google Scholar 

  87. Alto, N. M. et al. The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J. Cell Biol. 178, 1265–1278 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dean, P. et al. The enteropathogenic E. coli effector EspF targets and disrupts the nucleolus by a process regulated by mitochondrial dysfunction. PLoS Pathog. 6, e1000961 (2010).

    PubMed  PubMed Central  Google Scholar 

  89. Marches, O. et al. EspF of enteropathogenic Escherichia coli binds sorting nexin 9. J. Bacteriol. 188, 3110–3115 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Wong, A. R. et al. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol. Microbiol. 80, 1420–1438 (2011).

    CAS  PubMed  Google Scholar 

  91. Holmes, A., Muhlen, S., Roe, A. J. & Dean, P. The EspF effector, a bacterial pathogen's Swiss army knife. Infect. Immun. 78, 4445–4453 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pistor, S., Chakraborty, T., Niebuhr, K., Domann, E. & Wehland, J. The ActA protein of Listeria monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton. EMBO J. 13, 758–763 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zurawski, D., Mumy, K., Faherty, C., McCormick, B. & Maurelli, A. Shigella flexneri T3SS effectors OspB and OspF target the nucleus to down-regulate the host inflammatory response via interactions with retinoblastoma protein. Mol. Microbiol. 71, 350–368 (2009).

    CAS  PubMed  Google Scholar 

  94. Bogdanove, A. J., Schornack, S. & Lahaye, T. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol. 13, 394–401 (2010).

    CAS  PubMed  Google Scholar 

  95. Boch, J. & Bonas, U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48, 419–436 (2010).

    CAS  PubMed  Google Scholar 

  96. Howard, E. A., Zupan, J. R., Citovsky, V. & Zambryski, P. C. The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 68, 109–118 (1992).

    CAS  PubMed  Google Scholar 

  97. Rossi, L., Hohn, B. & Tinland, B. The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. Mol. Gen. Genet. 239, 345–353 (1993).

    CAS  PubMed  Google Scholar 

  98. Gelvin, S. Finding a way to the nucleus. Curr. Opin. Microbiol. 13, 53–58 (2010).

    CAS  PubMed  Google Scholar 

  99. Daniel, V. et al. Shigella flexneri T3SS effectors OspB and OspF target the nucleus to down-regulate the host inflammatory response via interactions with retinoblastoma protein. Mol. Microbiol. 71, 350–368 (2009).

    Google Scholar 

  100. Haraga, A. & Miller, S. I. A. Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell. Microbiol. 8, 837–846 (2006).

    CAS  PubMed  Google Scholar 

  101. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    CAS  PubMed  Google Scholar 

  102. Gorlich, D. et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr. Biol. 5, 383–392 (1995).

    CAS  PubMed  Google Scholar 

  103. Gorlich, D., Prehn, S., Laskey, R. A. & Hartmann, E. Isolation of a protein that is essential for the first step of nuclear protein import. Cell 79, 767–778 (1994).

    CAS  PubMed  Google Scholar 

  104. Gorlich, D., Vogel, F., Mills, A. D., Hartmann, E. & Laskey, R. A. Distinct functions for the two importin subunits in nuclear protein import. Nature 377, 246–248 (1995).

    CAS  PubMed  Google Scholar 

  105. Lee, S. J., Matsuura, Y., Liu, S. M. & Stewart, M. Structural basis for nuclear import complex dissociation by RanGTP. Nature 435, 693–696 (2005).

    CAS  PubMed  Google Scholar 

  106. Marois, E., Van den Ackerveken, G. & Bonas, U. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant Microbe Interact. 15, 637–646 (2002).

    CAS  PubMed  Google Scholar 

  107. Van den Ackerveken, G., Marois, E. & Bonas, U. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87, 1307–1316 (1996).

    CAS  PubMed  Google Scholar 

  108. Lahaye, T. & Bonas, U. Molecular secrets of bacterial type III effector proteins. Trends Plant Sci. 6, 479–485 (2001).

    CAS  PubMed  Google Scholar 

  109. Yang, Y. & Gabriel, D. W. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol. Plant Microbe Interact. 8, 627–631 (1995).

    CAS  PubMed  Google Scholar 

  110. Szurek, B., Marois, E., Bonas, U. & Van den Ackerveken, G. Eukaryotic features of the Xanthomonas type III effector AvrBs3: protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. Plant J. 26, 523–534 (2001). The discovery that AvrBs3 interacts with two importin-α proteins via the AvrBs3 NLS.

    CAS  PubMed  Google Scholar 

  111. Pitzschke, A. & Hirt, H. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 29, 1021–1032 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Citovsky, V., Zupan, J., Warnick, D. & Zambryski, P. Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science 256, 1802–1805 (1992).

    CAS  PubMed  Google Scholar 

  113. Zupan, J. R., Citovsky, V. & Zambryski, P. Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc. Natl Acad. Sci. USA 93, 2392–2397 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ballas, N. & Citovsky, V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc. Natl Acad. Sci. USA 94, 10723–10728 (1997). A paper reporting that VirD2 binds to the A. thaliana nuclear import receptor, KAPα1, via the VirD2 NLS.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Citovsky, V., Warnick, D. & Zambryski, P. Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. Proc. Natl Acad. Sci. USA 91, 3210–3214 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nagai, T., Abe, A. & Sasakawa, C. Targeting of enteropathogenic Escherichia coli EspF to host mitochondria is essential for bacterial pathogenesis: critical role of the 16th leucine residue in EspF. J. Biol. Chem. 280, 2998–3011 (2005).

    CAS  PubMed  Google Scholar 

  117. Hartland, E. L. et al. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol. Microbiol. 32, 151–158 (1999).

    CAS  PubMed  Google Scholar 

  118. Liu, H. et al. Point mutants of EHEC intimin that diminish Tir recognition and actin pedestal formation highlight a putative Tir binding pocket. Mol. Microbiol. 45, 1557–1573 (2002).

    CAS  PubMed  Google Scholar 

  119. Luo, Y. et al. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405, 1073–1077 (2000).

    CAS  PubMed  Google Scholar 

  120. Murata, T. et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nature Cell Biol. 8, 971–977 (2006).

    CAS  PubMed  Google Scholar 

  121. de Vries, J. S., Andriotis, V. M. E., Wu, A.-J. & Rathjen, J. P. Tomato Pto encodes a functional N-myristoylation motif that is required for signal transduction in Nicotiana benthamiana. Plant J. 45, 31–45 (2006).

    CAS  PubMed  Google Scholar 

  122. Hernandez, L. D., Pypaert, M., Flavell, R. A. & Galán, J. E. A. Salmonella protein causes macrophage cell death by inducing autophagy. J. Cell Biol. 163, 1123–1131 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Layton, A. N., Brown, P. J. & Galyov, E. E. The Salmonella translocated effector SopA is targeted to the mitochondria of infected cells. J. Bacteriol. 187, 3565–3571 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Zou, H. et al. Identification of an avirulence gene, avrxa5, from the rice pathogen Xanthomonas oryzae pv. oryzae. Sci. China Life Sci. 53, 1440–1449 (2010).

    CAS  PubMed  Google Scholar 

  125. Yang, B., Zhu, W., Johnson, L. B. & White, F. F. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. Proc. Natl Acad. Sci. USA 97, 9807–9812 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the J.E.G. laboratory on the subjects discussed in this article has been supported by US National Institutes of Health (NIH) grants AI055472 and AI079022 to J.E.G. S.W.H. was supported by a National Research Service Award fellowship from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Galán.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Jorge E. Galán's homepage

TargetP

PowerPoint slides

Glossary

Lipid rafts

Small (70 nm width), dynamic microdomains of the plasma membrane that are enriched in cholesterol, and in sphingolipids and phospholipids with saturated acyl chains.

Caveolae

Specialized lipid raft regions of the plasma membrane that contain the protein caveolin and form flask-shaped, cholesterol-rich invaginations of the membrane.

E3 ligase

An enzyme that is required to attach the molecular tag ubiquitin to proteins, This tag modifies protein function or targets the protein for proteosomal degradation.

Caspases

A family of Cys-Asp proteases involved in apoptosis, necrosis and inflammasome activation.

Legionella-containing vacuole

A host cell membrane-dervived compartment in which intracellular growth of Legionella spp. occurs.

Salmonella-induced filaments

A tubular network of membranes that extend from the Salmonella-containing vacuole.

ESCRT

(Endosomal sorting complex required for transport). A conserved cellular machinery for the sorting of ubiquitylated cargo proteins into vesicles and the subsequent scission of the membrane neck.

Guanine nucleotide exchange factor

(GEF). A protein that induces a GTPase to exchange GTP for GDP, resulting in activation of the GTPase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicks, S., Galán, J. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat Rev Microbiol 11, 316–326 (2013). https://doi.org/10.1038/nrmicro3009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3009

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology