Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sticking together: building a biofilm the Bacillus subtilis way

Key Points

  • Bacillus subtilis is a model non-pathogenic Gram-positive bacterium that has been used to study biofilms. These ubiquitous communities of tightly associated bacteria are encased in a self-produced extracellular matrix that holds the constituent cells together.

  • Within a biofilm, genetically identical B. subtilis cells differentiate, and cells expressing different sets of genes have distinct functions.

  • B. subtilis cells are able to sense and respond to diverse extracellular cues using a complex regulatory network composed of several overlapping subnetworks, all of which control the genes involved in biofilm formation. These cues range from self-produced signals, such as surfactin, to natural products produced by other organisms found in the soil.

  • Several self-produced molecules, such as d-amino acids and polyamines, are secreted late during the life cycle of a biofilm and trigger disassembly of the community. These molecules also seem to be effective in the dissolution of biofilms formed by other bacteria.

  • B. subtilis is a natural colonizer of plant roots and is commonly used as a biocontrol agent. Biofilm formation is important for plant root colonization and plant protection.

  • Although researchers have uncovered the multiple mechanisms controlling biofilm formation in B. subtilis, understanding how this organism integrates these regulatory inputs is one of the major outstanding challenges in the field.

Abstract

Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long served as a robust model organism to examine the molecular mechanisms of biofilm formation, and a number of studies have revealed that this process is regulated by several integrated pathways. In this Review, we focus on the molecular mechanisms that control B. subtilis biofilm assembly, and then briefly summarize the current state of knowledge regarding biofilm disassembly. We also discuss recent progress that has expanded our understanding of B. subtilis biofilm formation on plant roots, which are a natural habitat for this soil bacterium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The life cycle of a Bacillus subtilis biofilm.
Figure 2: Laboratory-grown Bacillus subtilis biofilms.
Figure 3: Simplified schematic of the regulatory network that controls biofilm formation in Bacillus subtilis.

Similar content being viewed by others

References

  1. Sanderson, J. B. Appendix no. 5 in 13th Report of the Medical Officer of the Privy Council [John Simon], with Appendix, 1870 56–66 (Her Majesty's Stationery Office, London, 1871).

    Google Scholar 

  2. Cohn, F. Untersuchungen über bacterien. IV. Beiträge zur biologie der Bacillen. Beiträge zur biologie der Pflanzen 7, 249–276 (1877).

    Google Scholar 

  3. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004).

    Article  CAS  Google Scholar 

  4. Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nature Rev. Microbiol. 6, 199–210 (2008).

    Article  CAS  Google Scholar 

  5. Davies, D. Understanding biofilm resistance to antibacterial agents. Nature Rev. Drug Discov. 2, 114–122 (2003).

    Article  CAS  Google Scholar 

  6. Mah, T. F. & O'Toole, G. A. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Stewart, P. S. Mechanisms of antibiotic resistance in bacterial biofilms. Int. J. Med. Microbiol. 292, 107–113 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Hall-Stoodley, L. & Stoodley, P. Evolving concepts in biofilm infections. Cell. Microbiol. 11, 1034–1043 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Erable, B., Duteanu, N. M., Ghangrekar, M. M., Dumas, C. & Scott, K. Application of electro-active biofilms. Biofouling 26, 57–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol. 7, 375–381 (2009).

    Article  CAS  Google Scholar 

  11. Singh, R., Paul, D. & Jain, R. K. Biofilms: implications in bioremediation. Trends Microbiol. 14, 389–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Monds, R. D. & O'Toole, G. A. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17, 73–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Branda, S. S., Chu, F., Kearns, D. B., Losick, R. & Kolter, R. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 59, 1229–1238 (2006). A study showing that TasA and EPS are components of the extracellular matrix and essential for biofilm formation.

    Article  CAS  PubMed  Google Scholar 

  14. Branda, S. S., Gonzalez-Pastor, J. E., Ben-Yehuda, S., Losick, R. & Kolter, R. Fruiting body formation by Bacillus subtilis. Proc. Natl Acad. Sci. USA 98, 11621–11626 (2001). The first paper describing B. subtilis colony and pellicle biofilms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kobayashi, K. Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes. J. Bacteriol. 189, 4920–4931 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Branda, S. S., Vik, S., Friedman, L. & Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Marvasi, M., Visscher, P. T. & Casillas Martinez, L. Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiol. Lett. 313, 1–9 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Flemming, H. C. & Wingender, J. The biofilm matrix. Nature Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  Google Scholar 

  19. Lopez, D., Vlamakis, H. & Kolter, R. Biofilms. Cold Spring Harb. Perspect. Biol. 2, a000398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vlamakis, H. & Kolter, R. in Bacterial Stress Responses 2nd edn (eds Storz, G. & Hengge, R.) 365–373 (American Society for Microbiology Press, 2011).

    Google Scholar 

  21. Vlamakis, H., Aguilar, C., Losick, R. & Kolter, R. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22, 945–953 (2008). This work describes the spatiotemporal regulation of gene expression within biofilms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dubnau, D. & Losick, R. Bistability in bacteria. Mol. Microbiol. 61, 564–572 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Smits, W. K., Kuipers, O. P. & Veening, J. W. Phenotypic variation in bacteria: the role of feedback regulation. Nature Rev. Microbiol. 4, 259–271 (2006).

    Article  CAS  Google Scholar 

  24. Veening, J. W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008). An excellent review discussing phenotypic variability in clonal bacterial populations.

    Article  CAS  PubMed  Google Scholar 

  25. Lopez, D. & Kolter, R. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiol. Rev. 34, 134–149 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Kolodkin-Gal, I. et al. A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell 149, 1–9 (2012). The B. subtilis -produced compound norspermidine is described as an inhibitor of EPS in B. subtilis biofilms.

    Article  CAS  Google Scholar 

  27. Kolodkin-Gal, I. et al. d-amino acids trigger biofilm disassembly. Science 328, 627–629 (2010). This work determined that d -amino acids, which are secreted late in biofilm formation, inhibit B. subtilis biofilms, as well as those of other species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Asally, M. et al. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc. Natl Acad. Sci. USA 109, 18891–18896 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Epstein, A. K., Pokroy, B., Seminara, A. & Aizenberg, J. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc. Natl Acad. Sci. USA 108, 995–1000 (2011).

    Article  PubMed  Google Scholar 

  30. Chagneau, C. & Saier, M. H. Jr. Biofilm-defective mutants of Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 8, 177–188 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Seminara, A. et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl Acad. Sci. USA 109, 1116–1121 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hamon, M. A. & Lazazzera, B. A. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol. Microbiol. 42, 1199–1209 (2001). The first paper describing submerged, surface-adhered B. subtilis biofilms.

    Article  CAS  PubMed  Google Scholar 

  33. Kearns, D. B., Chu, F., Branda, S. S., Kolter, R. & Losick, R. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55, 739–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Terra, R., Stanley-Wall, N. R., Cao, G. & Lazazzera, B. A. Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation. J. Bacteriol. 194, 2781–2790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Branda, S. S. et al. Genes involved in formation of structured multicellular communities by Bacillus subtilis. J. Bacteriol. 186, 3970–3979 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lazarevic, V. et al. Bacillus subtilis α-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl. Environ. Microbiol. 71, 39–45 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chai, Y., Beauregard, P. B., Vlamakis, H., Losick, R. & Kolter, R. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. mBio 3, e00184–e00112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ren, D. et al. Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol. Bioeng. 86, 344–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Nagorska, K., Ostrowski, A., Hinc, K., Holland, I. B. & Obuchowski, M. Importance of eps genes from Bacillus subtilis in biofilm formation and swarming. J. Appl. Genet. 51, 369–381 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Nagorska, K., Hinc, K., Strauch, M. A. & Obuchowski, M. Influence of the σB stress factor and yxaB, the gene for a putative exopolysaccharide synthase under σB control, on biofilm formation. J. Bacteriol. 190, 3546–3556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blair, K. M., Turner, L., Winkelman, J. T., Berg, H. C. & Kearns, D. B. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320, 1636–1638 (2008). A beautiful example of the multiple levels of regulation which ensure that matrix-producing cells are non-motile.

    Article  CAS  PubMed  Google Scholar 

  42. Guttenplan, S. B., Blair, K. M. & Kearns, D. B. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLoS Genet. 6, e1001243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Aguilar, C., Vlamakis, H., Guzman, A., Losick, R. & Kolter, R. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms. mBio 1, e00035–e00010 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morikawa, M. et al. Biofilm formation by a Bacillus subtilis strain that produces γ-polyglutamate. Microbiology 152, 2801–2807 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Stanley, N. R. & Lazazzera, B. A. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-dl-glutamic acid production and biofilm formation. Mol. Microbiol. 57, 1143–1158 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Romero, D., Aguilar, C., Losick, R. & Kolter, R. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc. Natl Acad. Sci. USA 107, 2230–2234 (2010). In this work, TasA is shown to form amyloid-like fibres in the extracellular matrix.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Romero, D., Vlamakis, H., Losick, R. & Kolter, R. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol. Microbiol. 80, 1155–1168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stover, A. G. & Driks, A. Control of synthesis and secretion of the Bacillus subtilis protein YqxM. J. Bacteriol. 181, 7065–7069 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Stover, A. G. & Driks, A. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J. Bacteriol. 181, 5476–5481 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tjalsma, H. et al. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev. 12, 2318–2331 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hamon, M. A., Stanley, N. R., Britton, R. A., Grossman, A. D. & Lazazzera, B. A. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol. Microbiol. 52, 847–860 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kobayashi, K. & Iwano, M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol. Microbiol. 85, 51–66 (2012). A recent study showing that BslA has a role in conferring hydrophobicity to B. subtilis biofilms.

    Article  CAS  PubMed  Google Scholar 

  53. Kobayashi, K. Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol. Microbiol. 66, 395–409 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Kovacs, A. T. & Kuipers, O. P. Rok regulates yuaB expression during architecturally complex colony development of Bacillus subtilis 168. J. Bacteriol. 193, 998–1002 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Verhamme, D. T., Murray, E. J. & Stanley-Wall, N. R. DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J. Bacteriol. 191, 100–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Ostrowski, A., Mehert, A., Prescott, A., Kiley, T. B. & Stanley-Wall, N. R. YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. J. Bacteriol. 193, 4821–4831 (2011). The first paper to describe BslA as a matrix protein that is required, in addition to TasA, for biofilm formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fujita, M., Gonzalez-Pastor, J. E. & Losick, R. High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J. Bacteriol. 187, 1357–1368 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Molle, V. et al. The Spo0A regulon of Bacillus subtilis. Mol. Microbiol. 50, 1683–1701 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Jiang, M., Shao, W., Perego, M. & Hoch, J. A. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38, 535–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. McLoon, A. L., Kolodkin-Gal, I., Rubinstein, S. M., Kolter, R. & Losick, R. Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J. Bacteriol. 193, 679–685 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Piggot, P. J. & Hilbert, D. W. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7, 579–586 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Perego, M. & Hoch, J. A. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proc. Natl Acad. Sci. USA 93, 1549–1553 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lopez, D., Fischbach, M. A., Chu, F., Losick, R. & Kolter, R. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc. Natl Acad. Sci. USA 106, 280–285 (2009).

    Article  PubMed  Google Scholar 

  64. Chu, F., Kearns, D. B., Branda, S. S., Kolter, R. & Losick, R. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol. Microbiol. 59, 1216–1228 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Chu, F. et al. A novel regulatory protein governing biofilm formation in Bacillus subtilis. Mol. Microbiol. 68, 1117–1127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lewis, R. J., Brannigan, J. A., Smith, I. & Wilkinson, A. J. Crystallisation of the Bacillus subtilis sporulation inhibitor SinR, complexed with its antagonist, SinI. FEBS Lett. 378, 98–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Chai, Y., Chu, F., Kolter, R. & Losick, R. Bistability and biofilm formation in Bacillus subtilis. Mol. Microbiol. 67, 254–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Chai, Y., Norman, T., Kolter, R. & Losick, R. Evidence that metabolism and chromosome copy number control mutually exclusive cell fates in Bacillus subtilis. EMBO J. 30, 1402–1413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Strauch, M., Webb, V., Spiegelman, G. & Hoch, J. A. The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl Acad. Sci. USA 87, 1801–1805 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Strauch, M. A. et al. Abh and AbrB control of Bacillus subtilis antimicrobial gene expression. J. Bacteriol. 189, 7720–7732 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chai, Y., Kolter, R. & Losick, R. Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis. Mol. Microbiol. 74, 876–887 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kobayashi, K. SlrR/SlrA control the initiation of biofilm formation in Bacillus subtilis. Mol. Microbiol. 69, 1399–1410 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Chai, Y., Kolter, R. & Losick, R. Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability. Mol. Microbiol. 78, 218–229 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chai, Y., Norman, T., Kolter, R. & Losick, R. An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev. 24, 754–765 (2010). This study shows that SlrR binds to and re-purposes the repressor SinR to regulate a different set of genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murray, E. J., Strauch, M. A. & Stanley-Wall, N. R. SigmaX is involved in controlling Bacillus subtilis biofilm architecture through the AbrB homologue Abh. J. Bacteriol. 191, 6822–6832 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, X., Fredrick, K. L. & Helmann, J. D. Promoter recognition by Bacillus subtilis σW: autoregulation and partial overlap with the σX regulon. J. Bacteriol. 180, 3765–3770 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, X. & Helmann, J. D. Identification of target promoters for the Bacillus subtilis σX factor using a consensus-directed search. J. Mol. Biol. 279, 165–173 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Luo, Y., Asai, K., Sadaie, Y. & Helmann, J. D. Transcriptomic and phenotypic characterization of a Bacillus subtilis strain without extracytoplasmic function σ factors. J. Bacteriol. 192, 5736–5745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mascher, T., Hachmann, A. B. & Helmann, J. D. Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function σ factors. J. Bacteriol. 189, 6919–6927 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Helmann, J. D. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46, 47–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Diethmaier, C. et al. A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation. J. Bacteriol. 193, 5997–6007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Winkelman, J. T., Blair, K. M. & Kearns, D. B. RemA (YlzA) and RemB (YaaB) regulate extracellular matrix operon expression and biofilm formation in Bacillus subtilis. J. Bacteriol. 191, 3981–3991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Verhamme, D. T., Kiley, T. B. & Stanley-Wall, N. R. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol. Microbiol. 65, 554–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Murray, E. J., Kiley, T. B. & Stanley-Wall, N. R. A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology 155, 1–8 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Irnov, I. & Winkler, W. C. A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales. Mol. Microbiol. 76, 559–575 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Kearns, D. B. A field guide to bacterial swarming motility. Nature Rev. Microbiol. 8, 634–644 (2010).

    Article  CAS  Google Scholar 

  87. James, B. L., Kret, J., Patrick, J. E., Kearns, D. B. & Fall, R. Growing Bacillus subtilis tendrils sense and avoid each other. FEMS Microbiol. Lett. 298, 12–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Das, P., Mukherjee, S. & Sen, R. Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol. Genet. Engineer. Rev. 25, 165–185 (2008).

    Article  CAS  Google Scholar 

  89. Lopez, D., Vlamakis, H., Losick, R. & Kolter, R. Paracrine signaling in a bacterium. Genes Dev. 23, 1631–1638 (2009). This work finds that not all of the genes in a clonal population produce quorum sensing signals and that the cells which produce the signal are not the cells that respond to it.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shank, E. A. & Kolter, R. Extracellular signaling and multicellularity in Bacillus subtilis. Curr. Opin. Microbiol. 14, 741–747 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Lopez, D. & Kolter, R. Functional microdomains in bacterial membranes. Genes Dev. 24, 1893–1902 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shemesh, M., Kolter, R. & Losick, R. The biocide chlorine dioxide stimulates biofilm formation in Bacillus subtilis by activation of the histidine kinase KinC. J. Bacteriol. 192, 6352–6356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Laub, M. T. & Goulian, M. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41, 121–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Shank, E. A. et al. Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus. Proc. Natl Acad. Sci. USA 108, E1236–1243 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chen, Y. et al. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Mol. Microbiol. 85, 418–430 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gonzalez-Pastor, J. E., Hobbs, E. C. & Losick, R. Cannibalism by sporulating bacteria. Science 301, 510–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez-Pastor, J. E. Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol. Rev. 35, 415–424 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Ellermeier, C. D., Hobbs, E. C., Gonzalez-Pastor, J. E. & Losick, R. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell 124, 549–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Lopez, D., Vlamakis, H., Losick, R. & Kolter, R. Cannibalism enhances biofilm development in Bacillus subtilis. Mol. Microbiol. 74, 609–618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nandy, S. K., Bapat, P. M. & Venkatesh, K. V. Sporulating bacteria prefers predation to cannibalism in mixed cultures. FEBS Lett. 581, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Liu, W. T. et al. Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc. Natl Acad. Sci. USA 107, 16286–16290 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kaplan, J. B. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res. 89, 205–218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Rev. Microbiol. 10, 39–50 (2012).

    Article  CAS  Google Scholar 

  104. Lam, H. et al. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325, 1552–1555 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Burrell, M., Hanfrey, C. C., Murray, E. J., Stanley-Wall, N. R. & Michael, A. J. Evolution and multiplicity of arginine decarboxylases in polyamine biosynthesis and essential role in Bacillus subtilis biofilm formation. J. Biol. Chem. 285, 39224–39238 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hochbaum, A. I. et al. Inhibitory effects of d-amino acids on Staphylococcus aureus biofilm development. J. Bacteriol. 193, 5616–5622 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sanchez, Z., Tani, A. & Kimbara, K. Extensive reduction in cell viability and enhanced matrix production in Pseudomonas aeruginosa PAO1 flow biofilms treated with D-amino acid mixture. Appl. Environ. Microbiol. 7 Dec 2012 (doi:10.1128/AEM.02911-12).

  108. Liu, C. I. et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319, 1391–1394 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Richards, J. J. & Melander, C. Controlling bacterial biofilms. Chembiochem 10, 2287–2294 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Zeigler, D. R. et al. The origins of 168, W23, and other Bacillus subtilis legacy strains. J. Bacteriol. 190, 6983–6995 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. McLoon, A. L., Guttenplan, S. B., Kearns, D. B., Kolter, R. & Losick, R. Tracing the domestication of a biofilm-forming bacterium. J. Bacteriol. 193, 2027–2034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lazazzera, B. A. The intracellular function of extracellular signaling peptides. Peptides 22, 1519–1527 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Srivatsan, A. et al. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet. 4, e1000139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Earl, A. M., Losick, R. & Kolter, R. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16, 269–275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Danhorn, T. & Fuqua, C. Biofilm formation by plant-associated bacteria. Annu. Rev. Microbiol. 61, 401–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Lugtenberg, B. & Kamilova, F. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Ramey, B. E., Koutsoudis, M., von Bodman, S. B. & Fuqua, C. Biofilm formation in plant-microbe associations. Curr. Opin. Microbiol. 7, 602–609 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Morikawa, M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J. Biosci. Bioeng. 101, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Emmert, E. A. & Handelsman, J. Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol. Lett. 171, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Kloepper, J. W., Ryu, C. M. & Zhang, S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94, 1259–1266 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Ryu, C. M., Murphy, J. F., Mysore, K. S. & Kloepper, J. W. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J. 39, 381–392 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Choudhary, D. K. & Johri, B. N. Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol. Res. 164, 493–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Perez-Garcia, A., Romero, D. & de Vicente, A. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22, 187–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Vessey, J. K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586 (2003).

    Article  CAS  Google Scholar 

  125. Fall, R., Kinsinger, R. F. & Wheeler, K. A. A simple method to isolate biofilm-forming Bacillus subtilis and related species from plant roots. Syst. Appl. Microbiol. 27, 372–379 (2004).

    Article  PubMed  Google Scholar 

  126. Chen, Y. et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 30 Aug 2012 (doi:10.1111/j.1462-2920.2012.02860.x).

  127. Bais, H. P., Fall, R. & Vivanco, J. M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134, 307–319 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rudrappa, T., Czymmek, K. J., Pare, P. W. & Bais, H. P. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148, 1547–1556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rudrappa, T., Quinn, W. J., Stanley-Wall, N. R. & Bais, H. P. A degradation product of the salicylic acid pathway triggers oxidative stress resulting in down-regulation of Bacillus subtilis biofilm formation on Arabidopsis thaliana roots. Planta 226, 283–297 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Ongena, M. et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9, 1084–1090 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Donovan, C. & Bramkamp, M. Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology 155, 1786–1799 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Huang, X., Gaballa, A., Cao, M. & Helmann, J. D. Identification of target promoters for the Bacillus subtilis extracytoplasmic function σ factor, σW. Mol. Microbiol. 31, 361–371 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to E. Shank for her invaluable feedback on the preparation of this Review. Work in the authors' laboratories related to B. subtilis biofilms was funded by the US National Institutes of Health grants GM58213 (to R.K.) and GM18546 (to R.L.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Kolter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Roberto Kolter's homepage

Supplementary information

Supplementary Information S1 (movie)

Movie of Bacillus subtilis cells forming a colony biofilm at room temperature over a period of approximately 9 days on MSgg medium. (MOV 12837 kb)

Glossary

Rhizosphere

A narrow region of soil that surrounds the root of a plant and is directly influenced by plant root secretions and associated soil microorganisms.

Biocontrol

The protection of plants against diseases by using biological control agents such as beneficial bacteria.

Chaining

An event that occurs when daughter cells divide but remain connected by polar cell wall peptidoglycans.

Epigenetic switch

A regulatory switch that imposes heritable changes in gene expression by a mechanism that does not involve genetic mutation.

TetR-type transcriptional repressor

A two-domain protein with a DNA-binding domain and a small ligand-binding domain. Normally, repression is relieved when a specific small molecule binds to the ligand-binding domain.

Cannibalism

In the context of Bacillus subtilis: killing of siblings through the secretion of a toxin. In a genetically identical population, some cells will secrete a toxin, but these cells also express the genes that confer resistance. Siblings that do not express the toxin or resistance genes will be killed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlamakis, H., Chai, Y., Beauregard, P. et al. Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11, 157–168 (2013). https://doi.org/10.1038/nrmicro2960

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2960

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology