Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Geminiviruses: masters at redirecting and reprogramming plant processes

Key Points

  • Geminiviruses constitute a large family of plant-infecting DNA viruses. They cause severe disease and significant losses in diverse crops worldwide and contribute to food insecurity in developing countries.

  • Because of their small genomes and limited coding capacities, geminiviruses rely heavily on host machineries for infection. They interact with a wide range of plant proteins and processes to support viral DNA replication, gene expression and trafficking, and to counteract host defences. Many of these interactions affect plant developmental pathways, resulting in symptoms that include stunting, leaf deformation and suppression of fruit production.

  • Geminviruses reprogramme plant cell cycle controls to induce the synthesis of host DNA replication enzymes, which are recruited to viral DNA by interactions with viral proteins.

  • Geminiviruses interact with multiple plant protein kinases and hormone pathways to modulate host signalling networks.

  • Some geminivirus proteins can interact with or modify components of the host ubiquitylation and sumoylation machinery, resulting in global or targeted changes in host protein modifications.

  • Plants use a combination of transcriptional gene silencing and post-transcriptional gene silencing as defences against geminivirus infection. Geminiviruses encode viral suppressors of RNA silencing that interfere with both of these pathways.

Abstract

The family Geminiviridae is one of the largest and most important families of plant viruses. The small, single-stranded DNA genomes of geminiviruses encode 5–7 proteins that redirect host machineries and processes to establish a productive infection. These interactions reprogramme plant cell cycle and transcriptional controls, inhibit cell death pathways, interfere with cell signalling and protein turnover, and suppress defence pathways. This Review describes our current knowledge of how geminiviruses interact with their plant hosts and the functional consequences of these interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The begomovirus life cycle.
Figure 2: Reprogramming plant cell cycle and methyl cycle controls.
Figure 3: Modulation of ubiquitylation and ubiquitylation-like pathways.
Figure 4: Silencing pathways targeting geminiviruses.

Similar content being viewed by others

References

  1. Mansoor, S., Zafar, Y. & Briddon, R. W. Geminivirus disease complexes: the threat is spreading. Trends Plant Sci. 11, 209–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Navas-Castillo, J., Fiallo-Olive, E. & Sanchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49, 219–248 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Shepherd, D. N. et al. Maize streak virus: an old and complex 'emerging' pathogen. Mol. Plant Pathol. 11, 1–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. 56, 585–599 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Sattar, M. N., Kvarnheden, A., Saeed, M. & Briddon, R. W. Cotton leaf curl disease — an emerging threat to cotton production worldwide. J. Gen. Virol. 94, 695–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Scholthof, K. B. et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. 12, 938–954 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Nawaz-ul-Rehman, M. S. & Fauquet, C. M. Evolution of geminiviruses and their satellites. FEBS Lett. 583, 1825–1832 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Duffy, S. & Holmes, E. C. Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J. Virol. 82, 957–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Harkins, G. W. et al. Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virol. J. 6, 104 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Martin, D. P. et al. Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks. PLoS Pathog. 7, e1002203 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lima, A. T. et al. Synonymous site variation due to recombination explains higher variability in begomovirus populations infecting non-cultivated hosts. J. Gen. Virol. 94, 418–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Lefeuvre, P. et al. The spread of tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog. 6, e1001164 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Tahir, M. N., Amin, I., Briddon, R. W. & Mansoor, S. The merging of two dynasties — identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan. PLoS ONE 6, e20366 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. De Bruyn, A. et al. East African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular diversity, evolutionary history and geographical dissemination of a bipartite begomovirus. BMC Evol. Biol. 12, 228 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang, W. et al. Structure of the maize streak virus geminate particle. Virology 279, 471–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Rojas, M. R., Hagen, C., Lucas, W. J. & Gilbertson, R. L. Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43, 361–394 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Nash, T. E. et al. Functional analysis of a novel motif conserved across geminivirus Rep proteins. J. Virol. 85, 1182–1192 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Briddon, R. W., Pinner, M. S., Stanley, J. & Markham, P. G. Geminivirus coat protein gene replacement alters insect specificity. Virology 177, 85–94 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Briddon, R. W. & Stanley, J. Subviral agents associated with plant single-stranded DNA viruses. Virology 344, 198–210 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Saunders, K., Lucy, A. & Stanley, J. RNA-primed complementary-sense DNA synthesis of the geminivirus African cassava mosaic virus. Nucleic Acids Res. 20, 6311–6315 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Donson, J., Morris-Krsinich, B. A., Mullineaux, P. M., Boulton, M. I. & Davies, J. W. A putative primer for second-strand DNA synthesis of Maize streak virus is virion-associated. EMBO J. 3, 3069–3073 (1984).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jeske, H., Lutgemeier, M. & Preiss, W. DNA forms indicate rolling circle and recombination-dependent replication of Abutilion mosaic virus. EMBO J. 20, 6158–6167 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Noueiry, A. O., Lucas, W. J. & Gilbertson, R. L. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76, 925–932 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Sanderfoot, A. A. & Lazarowitz, S. G. Cooperation in viral movement: the geminivirus BL1 movement protein interacts with BR1 and redirects it from the nucleus to the cell periphery. Plant Cell 7, 1185–1194 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mansoor, S., Briddon, R. W., Zafar, Y. & Stanley, J. Geminivirus disease complexes: an emerging threat. Trends Plant Sci. 8, 128–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ascencio-Ibanez, J. T. et al. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 148, 436–454 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Pierce, E. J. & Rey, M. E. Assessing global transcriptome changes in response to South African cassava mosaic virus [ZA-99] infection in susceptible Arabidopsis thaliana. PLoS ONE 8, e67534 (2013). References 26 and 27 describe the global impact of geminivirus infection on the host transcriptome and highlight the diversity of plant pathways that are altered during the infection process.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Naqvi, A. R., Haq, Q. M. & Mukherjee, S. K. MicroRNA profiling of Tomato leaf curl New Delhi virus (ToLCNDV) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virol. J. 7, 281 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Amin, I., Patil, B. L., Briddon, R. W., Mansoor, S. & Fauquet, C. M. A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. Virol. J. 8, 143 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Laufs, J. et al. In vitro cleavage and joining at the viral origin of replication by the replication initiator protein of tomato yellow leaf curl virus. Proc. Natl Acad. Sci. USA 92, 3879–3883 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanley-Bowdoin, L., Settlage, S. B. & Robertson, D. Reprogramming plant gene expression: a prerequisite to geminivirus DNA replication. Mol. Plant Pathol. 5, 149–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Settlage, S. B., See, R. G. & Hanley-Bowdoin, L. Geminivirus C3 protein: replication enhancement and protein interactions. J. Virol. 79, 9885–9895 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Castillo, A. G., Collinet, D., Deret, S., Kashoggi, A. & Bejarano, E. R. Dual interaction of plant PCNA with geminivirus replication accessory protein (Ren) and viral replication protein (Rep). Virology 312, 381–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Bagewadi, B., Chen, S., Lal, S. K., Choudhury, N. R. & Mukherjee, S. K. PCNA interacts with Indian mung bean yellow mosaic virus rep and downregulates Rep activity. J. Virol. 78, 11890–11903 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Luque, A., Sanz-Burgos, A. P., Ramirez-Parra, E., Castellano, M. M. & Gutierrez, C. Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 302, 83–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Singh, D. K., Islam, M. N., Choudhury, N. R., Karjee, S. & Mukherjee, S. K. The 32 kDa subunit of replication protein A (RPA) participates in the DNA replication of mung bean yellow mosaic India virus (MYMIV) by interacting with the viral Rep protein. Nucleic Acids Res. 35, 755–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Kaliappan, K., Choudhury, N. R., Suyal, G. & Mukherjee, S. K. A novel role for RAD54: this host protein modulates geminiviral DNA replication. FASEB J. 26, 1142–1160 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Pilartz, M. & Jeske, H. Abutilon mosaic geminivirus double-stranded DNA is packed into minichromosomes. Virology 189, 800–802 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Kong, L. J. & Hanley-Bowdoin, L. A geminivirus replication protein interacts with a protein kinase and a motor protein that display different expression patterns during plant development and infection. Plant Cell 14, 1817–1832 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Raja, P., Sanville, B. C., Buchmann, R. C. & Bisaro, D. M. Viral genome methylation as an epigenetic defense against geminiviruses. J. Virol. 82, 8997–9007 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Suyal, G., Mukherjee, S. K. Srivastava, P. S. & Choudhury, N. R. Arabidopsis thaliana MCM2 plays role(s) in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch. Virol. 158, 981–992 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Nagar, S., Pedersen, T. J., Carrick, K. M., Hanley-Bowdoin, L. & Robertson, D. A geminivirus induces expression of a host DNA synthesis protein in terminally differentiated plant cells. Plant Cell 7, 705–719 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Egelkrout, E. M., Robertson, D. & Hanley-Bowdoin, L. Proliferating cell nuclear antigen transcription is repressed through an E2F consensus element and activated by geminivirus infection in mature leaves. Plant Cell 13, 1437–1452 (2001). References 42 and 43 demonstrate that geminiviruses induce the expression of the host DNA replication machinery in infected cells and that viral Rep is sufficient for this induction.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lageix, S. et al. The nanovirus-encoded Clink protein affects plant cell cycle regulation through interaction with the retinoblastoma-related protein. J. Virol. 81, 4177–4185 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gutzat, R., Borghi, L. & Gruissem, W. Emerging roles of RETINOBLASTOMA-RELATED proteins in evolution and plant development. Trends Plant Sci. 17, 139–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Kong, L. J. et al. A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 19, 3485–3495 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Desvoyes, B., Ramirez-Parra, E., Xie, Q., Chua, N. H. & Gutierrez, C. Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. Plant Physiol. 140, 67–80 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Liu, L., Saunders, K., Thomas, C. L., Davies, J. W. & Stanley, J. Bean yellow dwarf virus RepA, but not Rep, binds to maize retinoblastoma protein, and the virus tolerates mutations in the consensus binding motif. Virology 256, 270–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Arguello-Astorga, G. et al. A novel motif in geminivirus replication proteins interacts with the plant retinoblastoma-related protein. J. Virol. 78, 4817–4826 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. McGivern, D. R., Findlay, K. C., Montague, N. P. & Boulton, M. I. An intact RBR-binding motif is not required for infectivity of maize streak virus in cereals, but is required for invasion of mesophyll cells. J. Gen. Virol. 86, 797–801 (2005). References 46 and 50 show that geminiviruses impaired for Rep–RBR interactions cause fewer symptoms and display a restricted tissue tropism.

    Article  CAS  PubMed  Google Scholar 

  51. Settlage, S. B., Miller, A. B., Gruissem, W. & Hanley-Bowdoin, L. Dual interaction of a geminivirus replication accessory factor with a viral replication protein and a plant cell cycle regulator. Virology 279, 570–576 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Bruce, G., Gu, M., Shi, N., Liu, Y. & Hong, Y. Influence of retinoblastoma-related gene silencing on the initiation of DNA replication by African cassava mosaic virus Rep in cells of mature leaves in Nicotiana benthamiana plants. Virol. J. 8, 561 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Selth, L. A. et al. A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17, 311–325 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nagar, S., Hanley-Bowdoin, L. & Robertson, D. Host DNA replication is induced by geminivirus infection of differentiated plant cells. Plant Cell 14, 2995–3007 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Bass, H. W., Nagar, S., Hanley-Bowdoin, L. & Robertson, D. Chromosome condensation induced by geminivirus infection of mature plant cells. J. Cell Sci. 113, 1149–1160 (2000).

    CAS  PubMed  Google Scholar 

  56. Briddon, R. W. Cotton leaf curl disease, a multicomponent begomovirus complex. Mol. Plant Pathol. 4, 427–434 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Park, J. et al. Altered cell shapes, hyperplasia, and secondary growth in Arabidopsis caused by beet curly top geminivirus infection. Mol. Cells 17, 117–124 (2004).

    CAS  PubMed  Google Scholar 

  58. Lai, J. et al. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle. Plant J. 57, 905–917 (2009). This paper shows that a viral C4 protein can cause plant cell proliferation by inducing the synthesis of a host RING finger protein that targets host cyclin kinase inhibitors for degradation. These results establish that geminiviruses use multiple mechanisms to alter plant cell cycle controls.

    Article  CAS  PubMed  Google Scholar 

  59. Yang, J. Y. et al. βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev. 22, 2564–2577 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Fontes, E. P., Santos, A. A., Luz, D. F., Waclawovsky, A. J. & Chory, J. The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev. 18, 2545–2556 (2004). This paper shows that a geminivirus NSP interacts with and inhibits a small family of plant receptor kinases to suppress the host defence response.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Santos, A. A., Carvalho, C. M., Florentino, L. H., Ramos, H. J. & Fontes, E. P. Conserved threonine residues within the A-loop of the receptor NIK differentially regulate the kinase function required for antiviral signaling. PLoS ONE 4, e5781 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Rocha, C. S., Santos, A. A., Machado, J. P. & Fontes, E. P. The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling. Virology 380, 165–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Carvalho, C. M. et al. Regulated nuclear trafficking of rpL10A mediated by NIK1 represents a defense strategy of plant cells against virus. PLoS Pathog. 4, e1000247 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Santos, A. A., Lopes, K. V., Apfata, J. A. & Fontes, E. P. NSP-interacting kinase, NIK: a transducer of plant defence signalling. J. Exp. Bot. 61, 3839–3845 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Shen, W. & Hanley-Bowdoin, L. Geminivirus infection up-regulates the expression of two Arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. Plant Physiol. 142, 1642–1655 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Shen, W., Reyes, M. I. & Hanley-Bowdoin, L. Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol. 150, 996–1005 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hao, L., Wang, H., Sunter, G. & Bisaro, D. M. Geminivirus AL2 and L2 proteins interact with and inactivate SNF1 kinase. Plant Cell 15, 1034–1048 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Shen, Q. et al. Tomato SlSnRK1 protein interacts with and phosphorylates betaC1, a pathogenesis protein encoded by a geminivirus beta-satellite. Plant Physiol. 157, 1394–1406 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Piroux, N., Saunders, K., Page, A. & Stanley, J. Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKη, a component of the brassinosteroid signalling pathway. Virology 362, 428–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Dogra, S. C., Eini, O., Rezaian, M. A. & Randles, J. W. A novel shaggy-like kinase interacts with the tomato leaf curl virus pathogenicity determinant C4 protein. Plant Mol. Biol. 71, 25–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Lozano-Duran, R., Rosas-Diaz, T., Luna, A. P. & Bejarano, E. R. Identification of host genes involved in geminivirus infection using a reverse genetics approach. PLoS ONE 6, e22383 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mills-Lujan, K. & Deom, C. M. Geminivirus C4 protein alters Arabidopsis development. Protoplasma 239, 95–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, H. et al. Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway. Plant J. 62, 12–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Garcia-Neria, M. A. & Rivera-Bustamante, R. F. Characterization of geminivirus resistance in an accession of Capsicum chinense Jacq. Mol. Plant Microbe Interact. 24, 172–182 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Lozano-Duran, R. et al. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell 23, 1014–1032 (2011). The paper describes the interaction of a geminivirus C2 protein with a host hub protein, leading to changes in several plant hormone signalling pathways.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Soitamo, A. J., Jada, B. & Lehto, K. Expression of geminiviral AC2 RNA silencing suppressor changes sugar and jasmonate responsive gene expression in transgenic tobacco plants. BMC Plant Biol. 12, 204 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Baliji, S., Lacatus, G. & Sunter, G. The interaction between geminivirus pathogenicity proteins and adenosine kinase leads to increased expression of primary cytokinin-responsive genes. Virology 402, 238–247 (2010).

    Article  PubMed  CAS  Google Scholar 

  78. Wang, H., Hao, L., Shung, C. Y., Sunter, G. & Bisaro, D. M. Adenosine kinase is inactivated by geminivirus AL2 and L2 proteins. Plant Cell 15, 3020–3032 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Hussain, M., Mansoor, S., Iram, S., Fatima, A. N. & Zafar, Y. The nuclear shuttle protein of tomato leaf curl New Delhi virus is a pathogenicity determinant. J. Virol. 79, 4434–4439 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Amin, I., Patil, B. L., Briddon, R. W., Mansoor, S. & Fauquet, C. M. Comparison of phenotypes produced in response to transient expression of genes encoded by four distinct begomoviruses in Nicotiana benthamiana and their correlation with the levels of developmental miRNAs. Virol. J. 8, 238 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Luna, A. P., Morilla, G., Voinnet, O. & Bejarano, E. R. Functional analysis of gene-silencing suppressors from Tomato yellow leaf curl disease viruses. Mol. Plant Microbe Interact. 25, 1294–1306 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Jordan, C. V., Shen, W., Hanley-Bowdoin, L. K. & Robertson, D. N. Geminivirus-induced gene silencing of the tobacco retinoblastoma-related gene results in cell death and altered development. Plant Mol. Biol. 65, 163–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Mubin, M., Amin, I., Amrao, L., Briddon, R. W. & Mansoor, S. The hypersensitive response induced by the V2 protein of a monopartite begomovirus is countered by the C2 protein. Mol. Plant Pathol. 11, 245–254 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Trinks, D. et al. Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J. Virol. 79, 2517–2527 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Marino, D., Peeters, N. & Rivas, S. Ubiquitination during plant immune signaling. Plant Physiol. 160, 15–27 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Castro, P. H., Tavares, R. M., Bejarano, E. R. & Azevedo, H. SUMO, a heavyweight player in plant abiotic stress responses. Cell. Mol. Life Sci. 69, 3269–3283 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Alcaide-Loridan, C. & Jupin, I. Ubiquitin and plant viruses, let's play together! Plant Physiol. 160, 72–82 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhang, Z. et al. BSCTV C2 attenuates the degradation of SAMDC1 to suppress DNA methylation-mediated gene silencing in Arabidopsis. Plant Cell 23, 273–288 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Eini, O. et al. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA β satellite. Mol. Plant Microbe Interact. 22, 737–746 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Bachmair, A., Becker, F., Masterson, R. V. & Schell, J. Perturbation of the ubiquitin system causes leaf curling, vascular tissue alterations and necrotic lesions in a higher plant. EMBO J. 9, 4543–4549 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Aronson, M. N. et al. Clink, a nanovirus-encoded protein, binds both pRB and SKP1. J. Virol. 74, 2967–2972 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Castillo, A. G., Kong, L. J., Hanley-Bowdoin, L. & Bejarano, E. R. Interaction between a geminivirus replication protein and the plant sumoylation system. J. Virol. 78, 2758–2769 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sanchez-Duran, M. A. et al. Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J. Virol. 85, 9789–9800 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Blevins, T. et al. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 34, 6233–6246 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Garcia-Ruiz, H. et al. Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip mosaic virus infection. Plant Cell 22, 481–496 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Wang, X. B. et al. The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative Argonautes in Arabidopsis thaliana. Plant Cell 23, 1625–1638 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Akbergenov, R. et al. Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res. 34, 462–471 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Rodriguez-Negrete, E. A., Carrillo-Tripp, J. & Rivera-Bustamante, R. F. RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J. Virol. 83, 1332–1340 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Yang, X. et al. Characterization of small interfering RNAs derived from the geminivirus/βsatellite complex using deep sequencing. PLoS ONE 6, e16928 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Aregger, M. et al. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. 8, e1002941 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Brough, C. L. et al. DNA methylation inhibits propagation of tomato golden mosaic virus DNA in transfected protoplasts. Plant Mol. Biol. 18, 703–712 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Paprotka, T., Deuschle, K., Metzler, V. & Jeske, H. Conformation-selective methylation of geminivirus DNA. J. Virol. 85, 12001–12012 (2011). This paper uses two-dimensional electrophoresis to assess viral DNA methylation, showing that most methylation occurs on non-productive, linear products. Circular viral DNA, which is the propagated form, has minimal methylation, suggesting that geminviruses escape TGS by replication.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Wang, H., Buckley, K. J., Yang, X., Buchmann, R. C. & Bisaro, D. M. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J. Virol. 79, 7410–7418 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Yang, X. et al. Suppression of methylation-mediated transcriptional gene silencing by βC1–SAHH protein interaction during geminivirus-betasatellite infection. PLoS Pathog. 7, e1002329 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Rodriguez-Negrete, E. et al. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol. 199, 464–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Hagen, C., Rojas, M. R., Kon, T. & Gilbertson, R. L. Recovery from Cucurbit leaf crumple virus (family Geminiviridae, genus Begomovirus) infection is an adaptive antiviral response associated with changes in viral small RNAs. Phytopath. 98, 1029–1037 (2008).

    Article  CAS  Google Scholar 

  107. Muangsan, N., Beclin, C., Vaucheret, H. & Robertson, D. Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant J. 38, 1004–1014 (2004). References 94 and 107 show that an RDR participates in host defence against geminiviruses and that PTGS affects the levels of wild-type viral DNA.

    Article  CAS  PubMed  Google Scholar 

  108. Donaire, L. et al. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J. Virol. 82, 5167–5177 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Liang, D., White, R. G. & Waterhouse, P. M. Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement. Plant Physiol. 159, 984–1000.

  110. Brosnan, C. A. & Voinnet, O. Cell-to-cell and long-distance siRNA movement in plants: mechanisms and biological implications. Curr. Opin. Plant Biol. 14, 580–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Fukunaga, R. & Doudna, J. A. dsRNA with 5′ overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J. 28, 545–555 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Glick, E. et al. Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proc. Natl Acad. Sci. USA 105, 157–161 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Amin, I. et al. Suppressors of RNA silencing encoded by the components of the cotton leaf curl begomovirus-betasatellite complex. Mol. Plant Microbe Interact. 24, 973–983 (2011). References 40, 112 and 113 show that geminivirus VSRs target both TGS and PTGS pathways and that as many as four different viral proteins in a geminivirus complex can show VSR activity.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, J., Dong, J., Xu, Y. & Wu, J. V2 protein encoded by tomato yellow leaf curl China virus is an RNA silencing suppressor. Virus Res. 163, 51–58 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Verlaan, M. G. et al. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-class RNA-dependent RNA polymerases. PLoS Genet. 9, e1003399 (2013). This study shows that TY1 , the first geminivirus resistance gene to be identified, has homology to an uncharacterized RDR class.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Yadav, R. K. & Chattopadhyay, D. Enhanced viral intergenic region-specific short interfering RNA accumulation and DNA methylation correlates with resistance against a geminivirus. Mol. Plant Microbe Interact. 24, 1189–1197 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Cuperus, J. T. et al. Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nature Struct. Mol. Biol. 17, 997–1003 (2010).

    Article  CAS  Google Scholar 

  118. Jouannet, V. et al. Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis. EMBO J. 31, 1704–1713 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Pontier, D. et al. NERD, a plant-specific GW protein, defines an additional RNAi-dependent chromatin-based pathway in Arabidopsis. Mol. Cell 48, 121–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Miozzi, L., Gambino, G., Burgyan, J. & Pantaleo, V. Genome-wide identification of viral and host transcripts targeted by viral siRNAs in Vitis vinifera. Mol. Plant Pathol. 14, 30–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Hanley-Bowdoin, L., Settlage, S. B., Orozco, B. M., Nagar, S. & Robertson, D. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Biochem. Mol. Biol. 35, 105–140 (2000).

    CAS  PubMed  Google Scholar 

  122. Poornima Priyadarshini, C. G., Ambika, M. V., Tippeswamy, R. & Savithri, H. S. Functional characterization of coat protein and V2 involved in cell to cell movement of cotton leaf curl Kokhran virus-Dabawali. PLoS ONE 6, e26929 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Wright, E. A., Heckel, T., Groenendijk, J., Davies, J. W. & Boulton, M. I. Splicing features in maize streak virus virion- and complementary-sense gene expression. Plant J. 12, 1285–1297 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Sunter, G. & Bisaro, D. M. Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4, 1321–1331 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  125. Nawaz-Ul-Rehman, M. S., Nahid, N., Mansoor, S., Briddon, R. W. & Fauquet, C. M. Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. Virology 405, 300–308 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Krenz, B., Jeske, H. & Kleinow, T. The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. Front. Plant Sci. 3, 291 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rojas, M. R. et al. Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291, 110–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Zhou, Y. et al. Histone H3 interacts and colocalizes with the nuclear shuttle protein and the movement protein of a geminivirus. J. Virol. 85, 11821–11832 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Carvalho, M. F. & Lazarowitz, S. G. Interaction of the movement protein NSP and the Arabidopsis acetyltransferase AtNSI is necessary for cabbage leaf curl geminivirus infection and pathogenicity. J. Virol. 78, 11161–11171 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Carvalho, M. F., Turgeon, R. & Lazarowitz, S. G. The geminivirus nuclear shuttle protein NSP inhibits the activity of AtNSI, a vascular-expressed Arabidopsis acetyltransferase regulated with the sink-to-source transition. Plant Physiol. 140, 1317–1330 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Ward, B. M., Medville, R., Lazarowitz, S. G. & Turgeon, R. The geminivirus BL1 movement protein is associated with endoplasmic reticulum-derived tubules in developing phloem cells. J. Virol. 71, 3726–3733 (1997).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Carvalho, C. M. et al. A novel nucleocytoplasmic traffic GTPase identified as a functional target of the bipartite geminivirus nuclear shuttle protein. Plant J. 55, 869–880 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Carvalho, C. M., Machado, J. P., Zerbini, F. M. & Fontes, E. P. NSP-interacting GTPase: a cytosolic protein as cofactor for nuclear shuttle proteins. Plant Signal Behav. 3, 752–754 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Krenz, B., Windeisen, V., Wege, C., Jeske, H. & Kleinow, T. A plastid-targeted heat shock cognate 70kDa protein interacts with the Abutilon mosaic virus movement protein. Virology 401, 6–17 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Lewis, J. D. & Lazarowitz, S. G. Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc. Natl Acad. Sci. USA 107, 2491–2496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ghanim, M., Morin, S. & Czosnek, H. Rate of tomato yellow leaf curl virus translocation in the circulative transmission pathway of its vector, the whitefly Bemisia tabaci. Phytopathology 91, 188–196 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Rana, V. S., Singh, S. T., Priya, N. G., Kumar, J. & Rajagopal, R. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PLoS ONE 7, e42168 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Ohnesorge, S. & Bejarano, E. R. Begomovirus coat protein interacts with a small heat-shock protein of its transmission vector (Bemisia tabaci). Insect Mol. Biol. 18, 693–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Gottlieb, Y. et al. The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J. Virol. 84, 9310–9317 (2010). This paper demonstrates that the interactions of geminivirus proteins with proteins produced by endosymbiotic bacteria play a part in vector transmission.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Luan, J. B. et al. Global analysis of the transcriptional response of whitefly to tomato yellow leaf curl China virus reveals the relationship of coevolved adaptations. J. Virol. 85, 3330–3340 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge T. Ascencio-Ibáñez (NCSU Biochemistry) for critical reading of the manuscript. L.H.-B. is supported by a grant (DBI-1110050) from the BREAD program of the National Science Foundation. E.R.B. is supported by grants from the Spanish Ministerio de Ciencia y Tecnología (AGL2007-66062-C02-02/AGR and AGL2010-22287-C02-02) and FEDER

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Hanley-Bowdoin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Geminivirus/host interactions (PDF 386 kb)

PowerPoint slides

Glossary

Disease complexes

A mixture of viral species, isolates and DNA satellites that together cause a disease. The genomic sequences of viral species differ by ≥89%, whereas isolates show ≤89% sequence variation.

Vector

An insect that acquires virions during feeding on an infected plant and subsequently transmits the virions to a healthy plant during feeding.

Satellite DNAs

A DNA or RNA episome that affects disease aetiology and depends on a virus for its replication and/or transmission.

Phloem

The plant tissue responsible for the transport of nutrients.

Rolling-circle replication

A DNA replication mechanism that starts with nicking of one strand of a double-stranded DNA template and that can produce multiple single-stranded DNA copies.

Recombination-dependent replication

A DNA replication mechanism that depends on the recombination of homologous DNA sequences and leads to the production of single-stranded and double-stranded DNA copies.

Enations

Leaf-like structures that form on leaves during some viral infections.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanley-Bowdoin, L., Bejarano, E., Robertson, D. et al. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11, 777–788 (2013). https://doi.org/10.1038/nrmicro3117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing