Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Filamentous plant pathogen effectors in action

Key Points

  • The use of live-cell fluorescence imaging as eukaryotic filamentous pathogens invade living plant cells has generated a detailed picture of the focused secretory 'warfare' that occurs between plants and potential pathogens, beginning even before the pathogen breaches the host surface.

  • Fungi and oomycete pathogens use diverse biotrophic strategies to invade living plant cells, but they all secrete a considerable range of effector proteins, including apoplastic effectors that remain in the plant extracellular space and cytoplasmic effectors that move across the plant plasma membrane into plant cells.

  • Effector secretion seems to be precisely controlled in time and space, as waves of effectors are secreted at different invasion stages and effector secretion is targeted to specific locations. Some effectors are secreted through appressorium pores before penetration and others are secreted into specialized compartments at the biotrophic interface inside plant cells.

  • After delivery into plant cells, cytoplasmic effectors target diverse cellular locations and some even move into uninvaded plant cells, presumably to prepare these before invasion. Many effectors function to defeat the plant's defences, but most host targets of effectors are unknown.

  • At least one fungal pathogen has evolved distinct secretion systems to target effectors to the plant's extracellular and cytoplasmic compartments. Multivesicular bodies and exosomes have been implicated in the secretion of defence components by plants and in the secretion of virulence factors by fungi.

Abstract

Live-cell imaging assisted by fluorescent markers has been fundamental to understanding the focused secretory 'warfare' that occurs between plants and biotrophic pathogens that feed on living plant cells. Pathogens succeed through the spatiotemporal deployment of a remarkably diverse range of effector proteins to control plant defences and cellular processes. Some effectors can be secreted by appressoria even before host penetration, many enter living plant cells where they target diverse subcellular compartments and others move into neighbouring cells to prepare them before invasion. This Review summarizes the latest advances in our understanding of the cell biology of biotrophic interactions between plants and their eukaryotic filamentous pathogens based on in planta analyses of effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biotrophic strategies and identified secreted effectors for diverse pathogens.
Figure 2: Structure and secretion dynamics at the biotrophic interface.
Figure 3: Focal effector secretion in melanized appressoria.
Figure 4: Effector secretion and accumulation during live cell invasions.
Figure 5: Pathogen-dependent and pathogen-independent effector translocation assays.

Similar content being viewed by others

References

  1. Sayer, J. & Cassman, K. G. Agricultural innovation to protect the environment. Proc. Natl Acad. Sci. USA 110, 8345–8348 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gerbens-Leenes, P., Nonhebel, S. & Krol, M. Food consumption patterns and economic growth. Increasing affluence and the use of natural resources. Appetite 55, 597–608 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. García-Mier, L., Guevara-González, R. G., Mondragón-Olguín, V. M., del Rocío Verduzco-Cuellar, B. & Torres-Pacheco, I. Agriculture and bioactives: achieving both crop yield and phytochemicals. Int. J. Mol. Sci. 14, 4203–4222 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Wilson, R. A. & Talbot, N. J. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Rev. Microbiol. 7, 185–195 (2009).

    Article  CAS  Google Scholar 

  6. Duplessis, S.B. et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc. Natl Acad. Sci. USA 108, 9166–9171 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vleeshouwers, V. et al. Understanding and exploiting late blight resistance in the age of effectors. Annu. Rev. Phytopathol. 49, 507–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Singh, R. P. et al. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49, 465–481 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Kohli, M. et al. Pyricularia blast – a threat to wheat cultivation. Czech J. Genet. Plant Breed. 47, S130–134 (2011).

    Article  Google Scholar 

  10. Valent, B. & Khang, C. H. Recent advances in rice blast effector research. Curr. Opin. Plant Biol. 13, 434–441 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. de Jonge, R., Bolton, M. D. & Thomma, B. P. H. J. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr. Opin. Plant Biol. 14, 400–406 (2011).

    Article  PubMed  Google Scholar 

  12. Bozkurt, T. O., Schornack, S., Banfield, M. J. & Kamoun, S. Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol. 15, 483–492 (2012).

    Article  PubMed  Google Scholar 

  13. Doehlemann, G. & Hemetsberger, C. Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytol. 198, 1001–1016 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Rafiqi, M., Ellis, J. G., Ludowici, V. A., Hardham, A. R. & Dodds, P. N. Challenges and progress towards understanding the role of effectors in plant-fungal interactions. Curr. Opin. Plant Biol. 15, 477–482 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Beck, M., Heard, W., Mbengue, M. & Robatzek, S. The INs and OUTs of pattern recognition receptors at the cell surface. Curr. Opin. Plant Biol. 15, 367–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Dodds, P. N. & Rathjen, J. P. Plant immunity: towards an integrated view of plant-pathogen interactions. Nature Rev. Genet. 11, 539–548 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, W. et al. Recent progress in understanding PAMP- and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol. Plant 6, 605–620 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Hogenhout, S. A., Van der Hoorn, R. A. L., Terauchi, R. & Kamoun, S. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interact. 22, 115–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. van der Hoorn, R. A. L. & Kamoun, S. From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20, 2009–2017 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Stergiopoulos, I. & de Wit, P. J. G. M. Fungal effector proteins. Annu. Rev. Phytopathol. 47, 233–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. McDonald, B. A. & Linde, C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu. Rev. Phytopathol. 40, 349–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Yi, M. & Valent, B. Communication between filamentous pathogens and plants at the biotrophic interface. Annu. Rev. Phytopathol. 51, 587–611 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Oliver, R. P., Friesen, T. L., Faris, J. D. & Solomon, P. S. Stagonospora nodorum: from pathology to genomics and host resistance. Annu. Rev. Phytopathol. 50, 23–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Tyler, B. M. et al. Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Mol. Plant-Microbe Interact. 26, 611–616 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wawra, S. et al. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. Mol. Plant Microbe Interact. 26, 528–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Djamei, A. & Kahmann, R. Ustilago maydis: dissecting the molecular interface between pathogen and plant. PLoS Pathog. 8, e1002955 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. O'Connell, R. J. et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genet. 44, 1060–1065 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. de Wit, P. J. et al. The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry. PLoS Genet. 8, e1003088 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Baxter, L. et al. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330, 1549–1551 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Raffaele, S. et al. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330, 1540–1543 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Spanu, P. D. et al. Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330, 1543–1546 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Koh, S., Andre, A., Edwards, H., Ehrhardt, D. & Somerville, S. Arabidopsis thaliana subcellular responses to compatible Erysiphe cichoracearum infections. Plant J. 44, 516–529 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Micali, C. O., Neumann, U., Grunewald, D., Panstruga, R. & O'Connell, R. Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell. Microbiol. 13, 210–226 (2011). This paper reports excellent ultrastructural analysis of the biotrophic interface using TEM with HPF-FS. They present evidence that plant MVB are involved in building the EHMx and that fungal MVB are involved in a putative exosome-mediated secretory pathway in haustoria.

    Article  CAS  PubMed  Google Scholar 

  35. Huckelhoven, R. & Panstruga, R. Cell biology of the plant-powdery mildew interaction. Curr. Opin. Plant Biol. 14, 738–746 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Underwood, W. & Somerville, S. C. Focal accumulation of defences at sites of fungal pathogen attack. J. Exp. Bot. 59, 3501–3508 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Underwood, W., Koh, S. & Somerville, S. C. Visualizing cellular dynamics in plant-microbe interactions using fluorescent-tagged proteins. Methods Mol. Biol. 712, 283–291 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. An, Q., Ehlers, K., Kogel, K. H., van Bel, A. J. & Huckelhoven, R. Multivesicular compartments proliferate in susceptible and resistant MLA12-barley leaves in response to infection by the biotrophic powdery mildew fungus. New Phytol. 172, 563–576 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Mims, C. W., Celio, G. J. & Richardson, E. A. The use of high pressure freezing and freeze substitution to study host-pathogen interactions in fungal diseases of plants. Microsc. Microanal. 9, 522–531 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigues, M. L. et al. Vesicular transport systems in fungi. Future Microbiol. 6, 1371–1381 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Hacquard, S. et al. Mosaic genome structure of the barley powdery mildew pathogen and conservation of transcriptional programs in divergent hosts. Proc. Natl Acad. Sci. USA 110, 2219–2228 (2013).

    Article  Google Scholar 

  42. Nowara, D. et al. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22, 3130–3141 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ridout, C. J. Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18, 2402–2414 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Schirawski, J. et al. Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330, 1546–1548 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, R. H. Y. & Tyler, B. M. Mechanisms and evolution of virulence in oomycetes. Annu. Rev. Phytopathol. 50, 295–318 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Raffaele, S. & Kamoun, S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nature Rev. Microbiol. 10, 417–430 (2012).

    Article  CAS  Google Scholar 

  47. Saitoh, H. et al. Large-scale gene disruption in Magnaporthe oryzae identifies MC69, a secreted protein required for infection by monocot and dicot fungal pathogens. PLoS Pathog. 8, e1002711 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kleemann, J. et al. Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog. 8, e1002643 (2012). The authors identify distinct sets of effectors that are deployed in successive waves by particular fungal cell-types. Some effectors are focally secreted at the appressorium pore; others accumulate in interfacial bodies near primary hyphae. Their findings indicate that appressoria function in effector delivery.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Howard, R. J. & Valent, B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol. 50, 491–512 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Boettger, D. & Hertweck, C. Molecular diversity sculpted by fungal PKS–NRPS hybrids. Chembiochem. 14, 28–42 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Collemare, J. et al. Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism. New Phytol. 179, 196–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Fudal, I., Collemare, J., Böhnert, H. U., Melayah, D. & Lebrun, M. H. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Eukaryot. Cell 6, 546–554 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Doehlemann, G. et al. Pep1, a secreted effector protein of Ustilago maydis is required for successful invasion of plant cells. PLoS Pathog. 5, e1000290 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Khang, C. H. et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22, 1388–1403 (2010). This study characterizes the BIC and provides live-cell imaging of fungus secreting fluorescently labeled effectors during rice cell invasion. A sensitive nuclear targeting assay is described for analyses of effector translocation and cell-to-cell movement.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Hemetsberger, C., Herrberger, C., Zechmann, B., Hillmer, M. & Doehlemann, G. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathog. 8, e1002684 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bozkurt, T. O. et al. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc. Natl Acad. Sci. USA 108, 20832–20837 (2011). This paper characterizes Avrblb2, which is an RXLR-type effector protein of P. infestans . The results suggest that Avrblb2 targets PLCP C14 and prevents its secretion into the apoplast.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Caillaud, M. C. et al. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J. 69, 252–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Koga, H., Dohi, K., Nakayachi, O. & Mori, M. A novel inoculation method of Magnaporthe grisea for cytological observation of the infection process using intact leaf sheaths of rice plants. Physiol. Mol. Plant Pathol. 64, 67–72 (2004).

    Article  Google Scholar 

  59. Sakamoto, M. On the new method of sheath-inoculation of rice plants with blast fungus, Pyricularia oryzae Cav for the study of the disease resistant nature of the plant. Bull. Institute Agric. Res. Tohoku Univers. 1, 120–129 (1949). This is the first report of the rice leaf sheath assay, which is now widely used for in planta analysis and effector localization studies.

    Google Scholar 

  60. Giraldo, M. C. et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Commun. 4, 1996 (2013). The authors further characterize BICs as plant-derived structures external to the hyphae. They provide evidence that M. oryzae has evolved a distinct, Golgi-independent secretion system to deliver effectors to BICs.

    Article  CAS  Google Scholar 

  61. Kankanala, P., Czymmek, K. & Valent, B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19, 706–724 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mentlak, T. A. et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24, 322–335 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Heath, M. C., Valent, B., Howard, R. J. & Chumley, F. G. Interactions of two strains of Magnaporthe grisea with rice, goosegrass, and weeping lovegrass. Can. J. Bot. 68, 1627–1637 (1990).

    Article  Google Scholar 

  64. Mosquera, G., Giraldo, M. C., Khang, C. H., Coughlan, S. & Valent, B. Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21, 1273–1290 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sweigard, J. A. et al. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7, 1221–1233 (1995).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G. & Valent, B. A telomeric avirulence gene AVR-Pita determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12, 2019–2032 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Li, W. et al. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol. Plant Microbe Interact. 22, 411–420 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Park, C.-H. et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress Pathogen-Associated Molecular Pattern-triggered immunity in rice. Plant Cell 24, 4748–4762 (2012). This paper shows that AVR effector AvrPiz-t (which is recognized by rice resistance protein Piz-t) binds to and destabilizes the rice RING E3 ubiquitin ligase APIP6 in a virulence function to suppress chitin-induced PAMP immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ribot, C. et al. The Magnaporthe oryzae effector AVR1–CO39 is translocated into rice cells independently of a fungal-derived machinery. Plant J. 74, 1–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Yi, M. et al. The ER chaperone MoLHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell 21, 681–695 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Read, N. D. Exocytosis and growth do not occur only at hyphal tips. Mol. Microbiol. 81, 4–7 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Gan, P. et al. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol. 197, 1236–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Schornack, S. et al. Ancient class of translocated oomycete effectors targets the host nucleus. Proc. Natl Acad. Sci. USA 107, 17421–17426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thomma, B. P., Nurnberger, T. & Joosten, M. H. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23, 4–15 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. van der Linde, K. et al. A maize cystatin suppresses host immunity by inhibiting apoplastic cysteine proteases. Plant Cell 24, 1285–1300 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Rooney, H. C. et al. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308, 1783–1786 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Song, J. et al. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc. Natl Acad. Sci. USA 106, 1654–1659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaschani, F. et al. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. Plant Physiol. 154, 1794–1804 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Tian, M. et al. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol. 143, 364–377 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Doehlemann, G., Reissmann, S., Assmann, D., Fleckenstein, M. & Kahmann, R. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Mol. Microbiol. 81, 751–766 (2011). The authors describe a novel U. maydis gene cluster that contains two adjacent and divergently arranged genes which encode the fungal membrane protein Pit1 and the apoplastic effector Pit2.

    Article  CAS  PubMed  Google Scholar 

  81. Mueller, A. N., Ziemann, S., Treitschke, S., Aßmann, D. & Doehlemann, G. Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLoS Pathog. 9, e1003177 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Tian, M. Y., Huitema, E., da Cunha, L., Torto-Alalibo, T. & Kamoun, S. A. Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J. Biol. Chem. 279, 26370–26377 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. de Jonge, R. et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329, 953–955 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. van den Burg, H. A. et al. Binding of the AVR4 elicitor of Cladosporium fulvum to chitotriose units is facilitated by positive allosteric protein-protein interactions: the chitin-binding site of AVR4 represents a novel binding site on the folding scaffold shared between the invertebrate and the plant chitin-binding domain. J. Biol. Chem. 279, 16786–16796 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Marshall, R. et al. Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol. 156, 756–769 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Bos, J. I. B. et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc. Natl Acad. Sci. USA 107, 9909–9914 (2010). This study provides genetic evidence that the translocated oomycete AVR effector AVR3a is an essential virulence factor that targets and stabilizes the plant E3 ligase CMPG1, potentially to prevent host cell death during the biotrophic phase of infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Trujillo, M. & Shirasu, K. Ubiquitination in plant immunity. Curr. Opin. Plant Biol. 13, 402–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  88. Djamei, A. et al. Metabolic priming by a secreted fungal effector. Nature 478, 395–398 (2011). The authors show that the secreted U. maydis effector, Cmu1, is required for full virulence and is active as a chorismate mutase. This effector diverts the shikimate pathway away from production of the key defence hormone salicylic acid.

    Article  CAS  PubMed  Google Scholar 

  89. Bouwmeester, K. et al. The lectin receptor kinase LecRK-I.9 is a novel Phytophthora resistance component and a potential host target for a RXLR effector. PLoS Pathog. 7, e1001327 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Mellersh, D. G. & Heath, M. C. Plasma membrane-cell wall adhesion is required for expression of plant defense responses during fungal penetration. Plant Cell 13, 413–424 (2001).

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Singh, P. & Zimmerli, L. Lectin receptor kinases in plant innate immunity. Front. Plant Sci. 4, 124 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kemen, E. et al. Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol. Plant Microbe Interact. 18, 1130–1139 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Hacquard, S. et al. A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsora larici-populina (Poplar Leaf Rust). Mol. Plant Microbe Interact. 25, 279–293 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Pretsch, K. et al. The rust transferred proteins-a new family of effector proteins exhibiting protease inhibitor function. Mol. Plant Pathol. 14, 96–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Kemen, E., Kemen, A., Ehlers, A., Voegele, R. & Mendgen, K. A novel structural effector from rust fungi is capable of fibril formation. Plant J. 75, 767–780 (2013). The authors propose a structural function for the rust effector Rtp1. This protein forms amyloid-like filaments in vitro , and localizes to protuberances of the extrahaustorial matrix that reach into the host cytoplasm.

    Article  CAS  PubMed  Google Scholar 

  96. Saunders, D. G. et al. Host protein BSL1 associates with Phytophthora infestans RXLR effector AVR2 and the Solanum demissum immune receptor R2 to mediate disease resistance. Plant Cell 24, 3420–3434 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Chen, Y., Liu, Z. & Halterman, D. A. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O. PLoS Pathog. 8, e1002595 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P. & Valent, B. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19, 4004–4014 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kanzaki, H. et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J. 72, 894–907 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Cesari, S. et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 25, 1463–1481 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ravensdale, M., Nemri, A., Thrall, P. H., Ellis, J. G. & Dodds, P. N. Co-evolutionary interactions between host resistance and pathogen effector genes in flax rust disease. Mol. Plant Pathol. 12, 93–102 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Dodds, P. N. et al. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc. Natl Acad. Sci. USA 103, 8888–8893 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ravensdale, M. et al. Intramolecular interaction influences binding of the Flax L5 and L6 resistance proteins to their AvrL567 ligands. PLoS Pathog. 8, e1003004 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Catanzariti, A. M. et al. The AvrM effector from flax rust has a structured C-terminal domain and interacts directly with the M resistance protein. Mol. Plant Microbe Interact. 23, 49–57 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Catanzariti, A.-M., Dodds, P. N., Lawrence, G. J., Ayliffe, M. A. & Ellis, J. G. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18, 243–256 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Miki, S. et al. Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. Mol. Plant Pathol. 10, 361–374 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Yoshida, K. et al. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21, 1573–1591 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Chuma, I. et al. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog. 7, e1002147 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Dou, D. et al. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20, 1930–1947 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Kale, S. D. et al. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142, 284–295 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Whisson, S. C. et al. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450, 115–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Yaeno, T. & Shirasu, K. The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates. Plant Signal. Behav. 8 (2013).

  113. Godfrey, D. et al. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics 11, 317 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Pedersen, C. et al. Structure and evolution of barley powdery mildew effector candidates. BMC Genomics 13, 694 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Rafiqi, M. et al. Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen. Plant Cell 22, 2017–2032 (2010). The authors show by immunolocalization that the flax rust AVR effector AvrM is translocated into flax cells during infection. They present evidence that AvrM and AvrL567 can enter plant cells in the absence of the pathogen.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Bell, K. & Oparka, K. Imaging plasmodesmata. Protoplasma 248, 9–25 (2011).

    Article  PubMed  Google Scholar 

  117. Kwaaitaal, M., Keinath, N. F., Pajonk, S., Biskup, C. & Panstruga, R. Combined bimolecular fluorescence complementation and Förster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol. 152, 1135–1147 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Sørensen, C. K., Justesen, A. F. & Hovmøller, M. S. 3D imaging of temporal and spatial development of Puccinia striiformis haustoria in wheat. Mycologia 104, 1381–1389 (2012).

    Article  PubMed  Google Scholar 

  119. Domozych, D. S. The quest for four-dimensional imaging in plant cell biology: it's just a matter of time. Ann. Bot. 110, 461–474 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bell, K., Mitchell, S., Paultre, D., Posch, M. & Oparka, K. Correlative imaging of fluorescent proteins in resin-embedded plant material. Plant Physiol. 161, 1595–1603 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Burch-Smith, T. M. & Zambryski, P. C. Plasmodesmata paradigm shift: regulation from without versus within. Annu. Rev. Plant Biol. 63, 239–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Lee, J.-Y. & Lu, H. Plasmodesmata: the battleground against intruders. Trends Plant Sci. 16, 201–210 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Oparka, K. J. Plasmolysis - new insights into an old process. New Phytol. 126, 571–591 (1994).

    Article  CAS  Google Scholar 

  124. Lang, I., Barton, D. A. & Overall, R. L. Membrane-wall attachments in plasmolysed plant cells. Protoplasma 224, 231–243 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to authors whose work could not be cited as a result of space limitations. They thank M. Dalby for technical support and P. Dodds and M. Yi for comments and discussions. Their research was supported by grants from the National Research Initiative Competitive Grants Program (Grants 2008-35600-18809 and 2010-65108-20538) from the United States Department of Agriculture (USDA) National Institute of Food and Agriculture. They acknowledge support from the Centre of Biomedical Research Excellence (COBRE) Confocal Microfluorometry and Microscopy Core at Kansas State University (KSU), USA, funded by College of Veterinary Medicine, KSU (CVM-KSU) and US National Institutes of Health (NIH) Grant P20 RR-017686. This is contribution no.14-012-J from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Valent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Biotrophic

A biotrophic organism feeds and completes its life cycle on living plant tissue and lacks a necrotrophic phase of killing host cells before feeding.

Hemibiotrophic

A hemibiotropic organism feeds on living tissues for a period of time and then switches to necrotrophic colonization of dead tissues.

Apoplast

Plant extracellular space; a tissue-level compartment outside the plasma membrane that includes the cell walls and xylem vessels, through which water and solutes freely diffuse.

Effectors

Pathogen molecules that modify host cell structure, metabolism and function. They often interfere with signal pathways, either those required for host invasion or those that trigger host resistance.

Avirulence effectors

(AVR effectors). Effectors that are recognized by a corresponding plant resistance (R) protein, triggering the hypersensitive response and rendering pathogen strains expressing these effectors unable to infect (known as avirulent toward) host genotypes expressing the R protein.

Apoplastic effectors

Effectors that are secreted into and function in the plant extracellular space.

Cytoplasmic effectors

Effectors that are secreted and translocated across the plant membrane into the host cytoplasm, where they target different subcellular compartments.

Necrotrophic

An organism that kills host cells before invasion and gains nutrition from the dead cells.

Extrahaustorial matrix

(EHMx). A substance that resides between the pathogen cell wall and the surrounding extrahaustorial membrane. Called the extrainvasive hyphal matrix when it surrounds invasive hyphae.

Neckband

An undefined structure that seals the interface between host and pathogen plasma membranes; sometimes observed as an electron-dense ring around haustorial necks by electron microscopy.

Papilla

Cell wall apposition at a site of attempted penetration; contains callose, phenolic compounds, lignin, reactive oxygen species, proteins and even membranes and exosomes; it is thought to function as a physical barrier to penetration.

Multivesicular bodies

(MVBs). Membrane-bound vesicles associated with late endosomes.

Exosomes

Intact vesicles that are secreted when multivesicular bodies fuse with the plasma membrane; suggested as an alternative route for secretion of virulence and pathogenicity factors into the host.

Appressorium pore

A cell wall-less region of the appressorium adjacent to the plant cuticle that also lacks the melanin layer, which results in fungal plasma membrane in direct contact with the cuticle; it is sealed against the cuticle by a 'pore ring' that surrounds the perimeter of the pore.

Tonoplast

The vacuolar membrane in a plant cell.

Plasmolysis

Shrinkage of the protoplast away from the plant cell wall as a result of the loss of water through osmosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraldo, M., Valent, B. Filamentous plant pathogen effectors in action. Nat Rev Microbiol 11, 800–814 (2013). https://doi.org/10.1038/nrmicro3119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing