Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The type II secretion system: biogenesis, molecular architecture and mechanism

Key Points

  • The type II secretion system (T2SS) is a double-membrane-spanning protein secretion system composed of 12–15 different general secretory pathway (Gsp) proteins that are present in various copy numbers. It is found in a large number of pathogenic and non-pathogenic Gram-negative bacteria.

  • The T2SSs of different species secrete a wide variety of folded exoproteins of different functions, shapes, sizes and quaternary structures. The T2SS secretion signal is still unknown, but it has been suggested that β-complementation is a feature of this signal.

  • The T2SS contains several subassemblies: the outer-membrane secretin, the periplasmic pseudopilus and a cytoplasmic ATPase all interact with components of the inner-membrane platform.

  • Crystal structures have been determined for the majority of T2SS domains, together with binary complexes showing the interaction of the inner-membrane platform with the ATPase and with the outer-membrane secretin, and a ternary complex of three pseudopilins forming the tip of the pseudopilus.

  • Electron microscopy studies indicate that the outer-membrane complex is dodecameric, and indirect evidence suggests that the ATPase is hexameric. The stoichiometry of the inner-membrane platform is still largely a mystery.

  • The current hypothesis regarding the mode of T2SS action is that an exoprotein is captured in the periplasmic vestibule of the outer-membrane secretin, possibly assisted by the inner-membrane protein GspC, and that this induces ATP hydrolysis by the ATPase, leading to conformational changes in the ATPase and the inner-membrane platform. This, in turn, results in elongation of the pseudopilus, which then functions as a piston, opening the periplasmic gate in the outer-membrane secretin to form a channel and then expelling the exoprotein.

Abstract

Many Gram-negative bacteria use the sophisticated type II secretion system (T2SS) to translocate a wide range of proteins from the periplasm across the outer membrane. The inner-membrane platform of the T2SS is the nexus of the system and orchestrates the secretion process through its interactions with the periplasmic filamentous pseudopilus, the dodecameric outer-membrane complex and a cytoplasmic secretion ATPase. Here, recent structural and biochemical information is reviewed to describe our current knowledge of the biogenesis and architecture of the T2SS and its mechanism of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T2SS subassemblies and biogenesis.
Figure 2: Structures of the T2SS pseudopilins.
Figure 3: Structures of the T2SS secretin and pilotin.
Figure 4: Structures and topologies of the secretion ATPase and the inner-membrane components of the T2SS.
Figure 5: A possible mode of action of the T2SS.

Similar content being viewed by others

References

  1. Wooldridge, K. Bacterial Secreted Proteins: Secretory Mechanisms and Role in Pathogenesis (Caister Academic Press, Norfolk, UK, 2009).

    Google Scholar 

  2. Sandkvist, M. et al. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J. Bacteriol. 179, 6994–7003 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tauschek, M., Gorrell, R. J., Strugnell, R. A. & Robins-Browne, R. M. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc. Natl Acad. Sci. USA 99, 7066–7071 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kulkarni, R. et al. Roles of putative type II secretion and type IV pilus systems in the virulence of uropathogenic Escherichia coli. PLoS ONE 4, e4752 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lathem, W. W. et al. StcE, a metalloprotease secreted by Escherichia coli O157:H7, specifically cleaves C1 esterase inhibitor. Mol. Microbiol. 45, 277–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Bally, M. et al. Protein secretion in Pseudomonas aeruginosa: characterization of seven xcp genes and processing of secretory apparatus components by prepilin peptidase. Mol. Microbiol. 6, 1121–1131 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Jyot, J. et al. Type II secretion system of Pseudomonas aeruginosa: in vivo evidence of a significant role in death due to lung infection. J. Infect. Dis. 203, 1369–1377 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. d'Enfert, C. & Pugsley, A. P. Klebsiella pneumoniae pulS gene encodes an outer membrane lipoprotein required for pullulanase secretion. J. Bacteriol. 171, 3673–3679 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Possot, O. & Pugsley, A. P. Molecular characterization of PulE, a protein required for pullulanase secretion. Mol. Microbiol. 12, 287–299 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Rossier, O., Starkenburg, S. R. & Cianciotto, N. P. Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires' disease pneumonia. Infect. Immun. 72, 310–321 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iwobi, A. et al. Novel virulence-associated type II secretion system unique to high-pathogenicity Yersinia enterocolitica. Infect. Immun. 71, 1872–1879 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang, B. & Howard, S. P. The Aeromonas hydrophila exeE gene, required both for protein secretion and normal outer membrane biogenesis, is a member of a general secretion pathway. Mol. Microbiol. 6, 1351–1361 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Toth, I. K. & Birch, P. R. Rotting softly and stealthily. Curr. Opin. Plant Biol. 8, 424–429 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Jha, G., Rajeshwari, R. & Sonti, R. V. Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens. Mol. Plant Microbe Interact. 18, 891–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Shi, L. et al. Direct involvement of type II secretion system in extracellular translocation of Shewanella oneidensis outer membrane cytochromes MtrC and OmcA. J. Bacteriol. 190, 5512–5516 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hobbs, M. & Mattick, J. S. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10, 233–243 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Peabody, C. R. et al. Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh, A. & Albers, S. V. Assembly and function of the archaeal flagellum. Biochem. Soc. Trans. 39, 64–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Burton, B. & Dubnau, D. Membrane-associated DNA transport machines. Cold Spring Harb. Perspect. Biol. 2, a000406 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sandkvist, M. Type II secretion and pathogenesis. Infect. Immun. 69, 3523–3535 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pugsley, A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57, 50–108 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sauvonnet, N., Vignon, G., Pugsley, A. P. & Gounon, P. Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J. 19, 2221–2228 (2000). The first study to show that pseudopilins can assemble into pilus-like structures when overexpressed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Durand, E. et al. Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure. J. Bacteriol. 185, 2749–2758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu, N. T. et al. XpsG, the major pseudopilin in Xanthomonas campestris pv. campestris, forms a pilus-like structure between cytoplasmic and outer membranes. Biochem. J. 365, 205–211 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chami, M. et al. Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem. 280, 37732–37741 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Reichow, S. L., Korotkov, K. V., Hol, W. G. J. & Gonen, T. Structure of the cholera toxin secretion channel in its closed state. Nature Struct. Mol. Biol. 17, 1226–1232 (2010). The electron microscopy reconstruction of a T2SS secretin with the highest resolution to date.

    Article  CAS  Google Scholar 

  27. Korotkov, K. V., Gonen, T. & Hol, W. G. J. Secretins: dynamic channels for protein transport across membranes. Trends Biochem. Sci. 36, 433–443 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bleves, S., Lazdunski, A. & Filloux, A. Membrane topology of three Xcp proteins involved in exoprotein transport by Pseudomonas aeruginosa. J. Bacteriol. 178, 4297–4300 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thomas, J. D., Reeves, P. J. & Salmond, G. P. The general secretion pathway of Erwinia carotovora subsp. carotovora: analysis of the membrane topology of OutC and OutF. Microbiology 143, 713–720 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Francetic, O., Buddelmeijer, N., Lewenza, S., Kumamoto, C. A. & Pugsley, A. P. Signal recognition particle-dependent inner membrane targeting of the PulG pseudopilin component of a type II secretion system. J. Bacteriol. 189, 1783–1793 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Arts, J., van Boxtel, R., Filloux, A., Tommassen, J. & Koster, M. Export of the pseudopilin XcpT of the Pseudomonas aeruginosa type II secretion system via the signal recognition particle-Sec pathway. J. Bacteriol. 189, 2069–2076 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Nunn, D. N. & Lory, S. Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase. Proc. Natl Acad. Sci. USA 88, 3281–3285 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strom, M. S., Nunn, D. N. & Lory, S. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl Acad. Sci. USA 90, 2404–2408 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nunn, D. N. & Lory, S. Components of the protein-excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. Proc. Natl Acad. Sci. USA 89, 47–51 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. LaPointe, C. F. & Taylor, R. K. The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J. Biol. Chem. 275, 1502–1510 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Hu, J., Xue, Y., Lee, S. & Ha, Y. The crystal structure of GXGD membrane protease FlaK. Nature 475, 528–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bleves, S. et al. The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX (GspK family). Mol. Microbiol. 27, 31–40 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Craig, L. et al. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23, 651–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Korotkov, K. V. & Hol, W. G. J. Structure of the GspK–GspI–GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system. Nature Struct. Mol. Biol. 15, 462–468 (2008). A report providing structural evidence for the quasihelical parameters of the pseudopilus tip.

    Article  CAS  Google Scholar 

  40. Campos, M., Nilges, M., Cisneros, D. A. & Francetic, O. Detailed structural and assembly model of the type II secretion pilus from sparse data. Proc. Natl Acad. Sci. USA 107, 13081–13086 (2010). A description of a pseudopilus model that combines experimental data and modelling methods.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Douzi, B. et al. The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus. J. Biol. Chem. 284, 34580–34589 (2009). A study describing the interaction network of pseudopilins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schraidt, O. & Marlovits, T. C. Three-dimensional model of Salmonella's needle complex at subnanometer resolution. Science 331, 1192–1195 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Collins, R. F. et al. Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-stain transmission electron microscopy. J. Bacteriol. 185, 2611–2617 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jain, S. et al. Structural characterization of outer membrane components of the type IV pili system in pathogenic Neisseria. PLoS ONE 6, e16624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burkhardt, J., Vonck, J. & Averhoff, B. Structure and function of PilQ, a secretin of the DNA transporter from the thermophilic bacterium Thermus thermophilus HB27. J. Biol. Chem. 286, 9977–9984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Opalka, N. et al. Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J. Mol. Biol. 325, 461–470 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Voulhoux, R., Bos, M. P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Knowles, T. J., Scott-Tucker, A., Overduin, M. & Henderson, I. R. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. Nature Rev. Microbiol. 7, 206–214 (2009).

    Article  CAS  Google Scholar 

  49. Collin, S., Guilvout, I., Chami, M. & Pugsley, A. P. YaeT-independent multimerization and outer membrane association of secretin PulD. Mol. Microbiol. 64, 1350–1357 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Hardie, K. R., Lory, S. & Pugsley, A. P. Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J. 15, 978–988 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shevchik, V. E., Robert-Baudouy, J. & Condemine, G. Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins. EMBO J. 16, 3007–3016 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Daefler, S., Guilvout, I., Hardie, K. R., Pugsley, A. P. & Russel, M. The C-terminal domain of the secretin PulD contains the binding site for its cognate chaperone, PulS, and confers PulS dependence on pIVf1 function. Mol. Microbiol. 24, 465–475 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Nickerson, N. N. et al. Outer membrane targeting of secretin PulD relies on disordered domain recognition by a dedicated chaperone. J. Biol. Chem. 286, 38833–38843 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Collin, S., Guilvout, I., Nickerson, N. N. & Pugsley, A. P. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin. Mol. Microbiol. 80, 655–665 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Viarre, V. et al. HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J. Biol. Chem. 284, 33815–33823 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu, N. T., Hung, M. N., Liao, C. T. & Lin, M. H. Subcellular location of XpsD, a protein required for extracellular protein secretion by Xanthomonas campestris pv. campestris. Microbiology 141, 1395–1406 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Li, G. & Howard, S. P. ExeA binds to peptidoglycan and forms a multimer for assembly of the type II secretion apparatus in Aeromonas hydrophila. Mol. Microbiol. 76, 772–781 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Li, G., Miller, A., Bull, H. & Howard, S. P. Assembly of the type II secretion system: identification of ExeA residues critical for peptidoglycan binding and secretin multimerization. J. Bacteriol. 193, 197–204 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Strozen, T. G. et al. Involvement of the GspAB complex in assembly of the type II secretion system secretin of Aeromonas and Vibrio species. J. Bacteriol. 193, 2322–2331 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seo, J., Brencic, A. & Darwin, A. J. Analysis of secretin-induced stress in Pseudomonas aeruginosa suggests prevention rather than response and identifies a novel protein involved in secretin function. J. Bacteriol. 191, 898–908 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Planet, P. J., Kachlany, S. C., DeSalle, R. & Figurski, D. H. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc. Natl Acad. Sci. USA 98, 2503–2508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Possot, O. M. & Pugsley, A. P. The conserved tetracysteine motif in the general secretory pathway component PulE is required for efficient pullulanase secretion. Gene 192, 45–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Robien, M. A., Krumm, B. E., Sandkvist, M. & Hol, W. G. J. Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae. J. Mol. Biol. 333, 657–674 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Camberg, J. L. & Sandkvist, M. Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J. Bacteriol. 187, 249–256 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hare, S. et al. Identification, structure and mode of action of a new regulator of the Helicobacter pylori HP0525 ATPase. EMBO J. 26, 4926–4934 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Misic, A. M., Satyshur, K. A. & Forest, K. T. P. aeruginosa PilT structures with and without nucleotide reveal a dynamic type IV pilus retraction motor. J. Mol. Biol. 400, 1011–1021 (2010). A crystallography study showing that the PilT monomer, a homologue of GspE, exists in three different conformations within the hexamer. A dynamic 'ready, active, release' model for the action of PilT is proposed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Camberg, J. L. et al. Synergistic stimulation of EpsE ATP hydrolysis by EpsL and acidic phospholipids. EMBO J. 26, 19–27 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Patrick, M., Korotkov, K. V., Hol, W. G. J. & Sandkvist, M. Oligomerization of EpsE coordinates residues from multiple subunits to facilitate ATPase activity. J. Biol. Chem. 286, 10378–10386 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sandkvist, M., Bagdasarian, M., Howard, S. P. & DiRita, V. J. Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J. 14, 1664–1673 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Michel, G., Bleves, S., Ball, G., Lazdunski, A. & Filloux, A. Mutual stabilization of the XcpZ and XcpY components of the secretory apparatus in Pseudomonas aeruginosa. Microbiology 144, 3379–3386 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Sandkvist, M., Hough, L. P., Bagdasarian, M. M. & Bagdasarian, M. Direct interaction of the EpsL and EpsM proteins of the general secretion apparatus in Vibrio cholerae. J. Bacteriol. 181, 3129–3135 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Robert, V., Filloux, A. & Michel, G. P. Subcomplexes from the Xcp secretion system of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 252, 43–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Lybarger, S. R., Johnson, T. L., Gray, M. D., Sikora, A. E. & Sandkvist, M. Docking and assembly of the type II secretion complex of Vibrio cholerae. J. Bacteriol. 191, 3149–3161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gray, M. D., Bagdasarian, M., Hol, W. G. & Sandkvist, M. In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the type II secretion system of Vibrio cholerae. Mol. Microbiol. 79, 786–798 (2011). A study describing the role of GspL as a connector between GspE and the pseudopilus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, H. M. et al. Association of the cytoplasmic membrane protein XpsN with the outer membrane protein XpsD in the type II protein secretion apparatus of Xanthomonas campestris pv. campestris. J. Bacteriol. 182, 1549–1557 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Korotkov, K. V., Krumm, B., Bagdasarian, M. & Hol, W. G. J. Structural and functional studies of EpsC, a crucial component of the type 2 secretion system from Vibrio cholerae. J. Mol. Biol. 363, 311–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Login, F. H., Fries, M., Wang, X., Pickersgill, R. W. & Shevchik, V. E. A. 20-residue peptide of the inner membrane protein OutC mediates interaction with two distinct sites of the outer membrane secretin OutD and is essential for the functional type II secretion system in Erwinia chrysanthemi. Mol. Microbiol. 76, 944–955 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Korotkov, K. V. et al. Structural and functional studies on the interaction of GspC and GspD in the type II secretion system. PLoS Pathog. 7, e1002228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Korotkov, K. V. et al. Calcium is essential for the major pseudopilin in the type 2 secretion system. J. Biol. Chem. 284, 25466–25470 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yanez, M. E., Korotkov, K. V., Abendroth, J. & Hol, W. G. J. Structure of the minor pseudopilin EpsH from the type 2 secretion system of Vibrio cholerae. J. Mol. Biol. 377, 91–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Yanez, M. E., Korotkov, K. V., Abendroth, J. & Hol, W. G. J. The crystal structure of a binary complex of two pseudopilins: EpsI and EpsJ from the type 2 secretion system of Vibrio vulnificus. J. Mol. Biol. 375, 471–486 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Franz, L. P. et al. Structure of the minor pseudopilin XcpW from the Pseudomonas aeruginosa type II secretion system. Acta Crystallogr. D Biol. Crystallogr. 67, 124–130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pugsley, A. P., Bayan, N. & Sauvonnet, N. Disulfide bond formation in secreton component PulK provides a possible explanation for the role of DsbA in pullulanase secretion. J. Bacteriol. 183, 1312–1319 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vignon, G. et al. Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J. Bacteriol. 185, 3416–3428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Durand, E. et al. XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus. J. Biol. Chem. 280, 31378–31389 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Cisneros, D. A., Bond, P. J., Pugsley, A. P., Campos, M. & Francetic, O. Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation. EMBO J. 31, 1041–1053 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Köhler, R. et al. Structure and assembly of the pseudopilin PulG. Mol. Microbiol. 54, 647–664 (2004).

    Article  PubMed  CAS  Google Scholar 

  88. Campos, M., Francetic, O. & Nilges, M. Modeling pilus structures from sparse data. J. Struct. Biol. 173, 436–444 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Biais, N., Higashi, D. L., Brujic, J., So, M. & Sheetz, M. P. Force-dependent polymorphism in type IV pili reveals hidden epitopes. Proc. Natl Acad. Sci. USA 107, 11358–11363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Forero, M., Yakovenko, O., Sokurenko, E. V., Thomas, W. E. & Vogel, V. Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds. PLoS Biol. 4, e298 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Li, Y. F. et al. Structure of CFA/I fimbriae from enterotoxigenic Escherichia coli. Proc. Natl Acad. Sci. USA 106, 10793–10798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Korotkov, K. V., Pardon, E., Steyaert, J. & Hol, W. G. J. Crystal structure of the N-terminal domain of the secretin GspD from ETEC determined with the assistance of a nanobody. Structure 17, 255–265 (2009). The first report of high-resolution structures of T2SS secretin domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Garcia-Herrero, A. & Vogel, H. J. Nuclear magnetic resonance solution structure of the periplasmic signalling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli. Mol. Microbiol. 58, 1226–1237 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Nakano, N., Kubori, T., Kinoshita, M., Imada, K. & Nagai, H. Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog. 6, e1001129 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Leiman, P. G. et al. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc. Natl Acad. Sci. USA 106, 4154–4159 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kanamaru, S. et al. Structure of the cell-puncturing device of bacteriophage T4. Nature 415, 553–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Valverde, R., Edwards, L. & Regan, L. Structure and function of KH domains. FEBS J. 275, 2712–2726 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Guilvout, I., Hardie, K. R., Sauvonnet, N. & Pugsley, A. P. Genetic dissection of the outer membrane secretin PulD: Are there distinct domains for multimerization and secretion specificity? J. Bacteriol. 181, 7212–7220 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tosi, T. et al. Pilotin-secretin recognition in the type II secretion system of Klebsiella oxytoca. Mol. Microbiol. 82, 1422–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Lario, P. I. et al. Structure and biochemical analysis of a secretin pilot protein. EMBO J. 24, 1111–1121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Izore, T. et al. Structural characterization and membrane localization of ExsB from the type III secretion system (T3SS) of Pseudomonas aeruginosa. J. Mol. Biol. 413, 236–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Kim, K. et al. Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Biochem. Biophys. Res. Commun. 340, 1028–1038 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Koo, J. et al. PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa type IV pilus secretin. J. Bacteriol. 190, 6961–6969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Trindade, M. B., Job, V., Contreras-Martel, C., Pelicic, V. & Dessen, A. Structure of a widely conserved type IV pilus biogenesis factor that affects the stability of secretin multimers. J. Mol. Biol. 378, 1031–1039 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Nouwen, N. et al. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. Proc. Natl Acad. Sci. USA 96, 8173–8177 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Turner, L. R., Lara, J. C., Nunn, D. N. & Lory, S. Mutations in the consensus ATP-binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa. J. Bacteriol. 175, 4962–4969 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Py, B., Loiseau, L. & Barras, F. Assembly of the type II secretion machinery of Erwinia chrysanthemi: direct interaction and associated conformational change between OutE, the putative ATP-binding component and the membrane protein OutL. J. Mol. Biol. 289, 659–670 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Yeo, H. J., Savvides, S. N., Herr, A. B., Lanka, E. & Waksman, G. Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol. Cell 6, 1461–1472 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Savvides, S. N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22, 1969–1980 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yamagata, A. & Tainer, J. A. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. EMBO J. 26, 878–890 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Satyshur, K. A. et al. Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure 15, 363–376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen, Y. et al. Structure and function of the XpsE N-terminal domain, an essential component of the Xanthomonas campestris type II secretion system. J. Biol. Chem. 280, 42356–42363 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Abendroth, J., Murphy, P., Sandkvist, M., Bagdasarian, M. & Hol, W. G. J. The X-ray structure of the type II secretion system complex formed by the N-terminal domain of EpsE and the cytoplasmic domain of EpsL of Vibrio cholerae. J. Mol. Biol. 348, 845–855 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Johnson, T. L., Abendroth, J., Hol, W. G. J. & Sandkvist, M. Type II secretion: from structure to function. FEMS Microbiol. Lett. 255, 175–186 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Abendroth, J., Rice, A. E., McLuskey, K., Bagdasarian, M. & Hol, W. G. J. The crystal structure of the periplasmic domain of the type II secretion system protein EpsM from Vibrio cholerae: the simplest version of the ferredoxin fold. J. Mol. Biol. 338, 585–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Abendroth, J., Bagdasarian, M., Sandkvist, M. & Hol, W. G. The structure of the cytoplasmic domain of EpsL, an inner membrane component of the type II secretion system of Vibrio cholerae: an unusual member of the actin-like ATPase superfamily. J. Mol. Biol. 344, 619–633 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Karuppiah, V. & Derrick, J. P. Structure of the PilM-PilN inner membrane type, IV pilus biogenesis complex from Thermus thermophilus. J. Biol. Chem. 286, 24434–24442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Abendroth, J., Kreger, A. C. & Hol, W. G. J. The dimer formed by the periplasmic domain of EpsL from the Type 2 Secretion System of Vibrio parahaemolyticus. J. Struct. Biol. 168, 313–322 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Abendroth, J. et al. The three-dimensional structure of the cytoplasmic domains of EpsF from the type 2 secretion system of Vibrio cholerae. J. Struct. Biol. 166, 303–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bleves, S., Gerard-Vincent, M., Lazdunski, A. & Filloux, A. Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J. Bacteriol. 181, 4012–4019 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gerard-Vincent, M. et al. Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol. Microbiol. 44, 1651–1665 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Bouley, J., Condemine, G. & Shevchik, V. E. The PDZ domain of OutC and the N-terminal region of OutD determine the secretion specificity of the type II out pathway of Erwinia chrysanthemi. J. Mol. Biol. 308, 205–219 (2001). Swapping of domains in either GspC or the secretin results in the secretion of heterologous exoproteins and identifies domains within the T2SS that determine secretion specificity.

    Article  CAS  PubMed  Google Scholar 

  123. Kagami, Y., Ratliff, M., Surber, M., Martinez, A. & Nunn, D. N. Type II protein secretion by Pseudomonas aeruginosa: genetic suppression of a conditional mutation in the pilin-like component XcpT by the cytoplasmic component XcpR. Mol. Microbiol. 27, 221–233 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Douet, V., Loiseau, L., Barras, F. & Py, B. Systematic analysis, by the yeast two-hybrid, of protein interaction between components of the type II secretory machinery of Erwinia chrysanthemi. Res. Microbiol. 55, 71–75 (2004).

    Article  CAS  Google Scholar 

  125. Douzi, B., Ball, G., Cambillau, C., Tegoni, M. & Voulhoux, R. Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates. J. Biol. Chem. 286, 40792–40801 (2011). Surface plasmon resonance experiments indicate that there are multiple interactions between secreted exoproteins and both GspC and the pseudopilus tip.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Voulhoux, R. et al. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J. 20, 6735–6741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hirst, T. R. & Holmgren, J. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae. Proc. Natl Acad. Sci. USA 84, 7418–7422 (1987). The first study to show that proteins to be secreted via the T2SS have already folded into tertiary and even quaternary conformations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Poquet, I., Faucher, D. & Pugsley, A. P. Stable periplasmic secretion intermediate in the general secretory pathway of Escherichia coli. EMBO J. 12, 271–278 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Reichow, S. L. et al. The binding of cholera toxin to the periplasmic vestibule of the type II secretion channel. Channels (Austin) 5, 215–218 (2011).

    Article  CAS  Google Scholar 

  130. Merz, A. J., So, M. & Sheetz, M. P. Pilus retraction powers bacterial twitching motility. Nature 407, 98–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Bortoli-German, I., Brun, E., Py, B., Chippaux, M. & Barras, F. Periplasmic disulphide bond formation is essential for cellulase secretion by the plant pathogen Erwinia chrysanthemi. Mol. Microbiol. 11, 545–553 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Hardie, K. R., Schulze, A., Parker, M. W. & Buckley, J. T. Vibrio spp. secrete proaerolysin as a folded dimer without the need for disulphide bond formation. Mol. Microbiol. 17, 1035–1044 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Shevchik, V. E. et al. Differential effect of dsbA and dsbC mutations on extracellular enzyme secretion in Erwinia chrysanthemi. Mol. Microbiol. 16, 745–753 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Chapon, V., Simpson, H. D., Morelli, X., Brun, E. & Barras, F. Alteration of a single tryptophan residue of the cellulose-binding domain blocks secretion of the Erwinia chrysanthemi Cel5 cellulase (ex-EGZ) via the type II system. J. Mol. Biol. 303, 117–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. DebRoy, S., Dao, J., Soderberg, M., Rossier, O. & Cianciotto, N. P. Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc. Natl Acad. Sci. USA 103, 19146–19151 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Coulthurst, S. J. et al. DsbA plays a critical and multifaceted role in the production of secreted virulence factors by the phytopathogen Erwinia carotovora subsp. atroseptica. J. Biol. Chem. 283, 23739–23753 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sikora, A. E., Zielke, R. A., Lawrence, D. A., Andrews, P. C. & Sandkvist, M. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins including three related serine proteases. J. Biol. Chem. 286, 16555–16566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Filloux, A. Secretion signal and protein targeting in bacteria: a biological puzzle. J. Bacteriol. 192, 3847–3849 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sandkvist, M. Biology of type II secretion. Mol. Microbiol. 40, 271–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Varga, J. J. et al. Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol. Microbiol. 62, 680–694 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Sampaleanu, L. M. et al. Periplasmic domains of Pseudomonas aeruginosa PilN and PilO form a stable heterodimeric complex. J. Mol. Biol. 394, 143–159 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Connell, T. D., Metzger, D. J., Wang, M., Jobling, M. G. & Holmes, R. K. Initial studies of the structural signal for extracellular transport of cholera toxin and other proteins recognized by Vibrio cholerae. Infect. Immun. 63, 4091–4098 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lu, H. M. & Lory, S. A specific targeting domain in mature exotoxin A is required for its extracellular secretion from Pseudomonas aeruginosa. EMBO J. 15, 429–436 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Palomaki, T., Pickersgill, R., Riekki, R., Romantschuk, M. & Saarilahti, H. T. A putative three-dimensional targeting motif of polygalacturonase (PehA), a protein secreted through the type II (GSP) pathway in Erwinia carotovora. Mol. Microbiol. 43, 585–596 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Folster, J. P. & Connell, T. D. The extracellular transport signal of the Vibrio cholerae endochitinase (ChiA) is a structural motif located between amino acids 75 and 555. J. Bacteriol. 184, 2225–2234 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Francetic, O. & Pugsley, A. P. Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J. Bacteriol. 187, 7045–7055 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. O.'Neal, C. J., Amaya, E. I., Jobling, M. G., Holmes, R. K. & Hol, W. G. J. Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism. Biochemistry 43, 3772–3782 (2004).

    Article  CAS  Google Scholar 

  148. Songsiriritthigul, C., Pantoom, S., Aguda, A. H., Robinson, R. C. & Suginta, W. Crystal structures of Vibrio harveyi chitinase A complexed with chitooligosaccharides: implications for the catalytic mechanism. J. Struct. Biol. 162, 491–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Moustafa, I. et al. Sialic acid recognition by Vibrio cholerae neuraminidase. J. Biol. Chem. 279, 40819–40826 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Thayer, M. M., Flaherty, K. M. & McKay, D. B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-Å resolution. J. Biol. Chem. 266, 2864–2871 (1991).

    CAS  PubMed  Google Scholar 

  151. Wedekind, J. E. et al. Refined crystallographic structure of Pseudomonas aeruginosa exotoxin A and its implications for the molecular mechanism of toxicity. J. Mol. Biol. 314, 823–837 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Parker, M. W. et al. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 367, 292–295 (1994).

    Article  CAS  PubMed  Google Scholar 

  153. Pauwels, K. et al. Structure of a membrane-based steric chaperone in complex with its lipase substrate. Nature Struct. Mol. Biol. 13, 374–375 (2006).

    Article  CAS  Google Scholar 

  154. Yoder, M. D. & Jurnak, F. Protein motifs. 3. The parallel β helix and other coiled folds. FASEB J. 9, 335–342 (1995).

    Article  CAS  PubMed  Google Scholar 

  155. Creze, C. et al. The crystal structure of pectate lyase peli from soft rot pathogen Erwinia chrysanthemi in complex with its substrate. J. Biol. Chem. 283, 18260–18268 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Chapon, V. et al. Type II protein secretion in gram-negative pathogenic bacteria: the study of the structure/secretion relationships of the cellulase Cel5 (formerly EGZ) from Erwinia chrysanthemi. J. Mol. Biol. 310, 1055–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Mikami, B. et al. Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J. Mol. Biol. 359, 690–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Urban, A., Leipelt, M., Eggert, T. & Jaeger, K. E. DsbA and DsbC affect extracellular enzyme formation in Pseudomonas aeruginosa. J. Bacteriol. 183, 587–596 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tokuda, H. Biogenesis of outer membranes in Gram-negative bacteria. Biosci. Biotechnol. Biochem. 73, 465–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Py, B., Loiseau, L. & Barras, F. An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep. 2, 244–248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. DeShazer, D., Brett, P. J., Burtnick, M. N. & Woods, D. E. Molecular characterization of genetic loci required for secretion of exoproducts in Burkholderia pseudomallei. J. Bacteriol. 181, 4661–4664 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Possot, O. M., Vignon, G., Bomchil, N., Ebel, F. & Pugsley, A. P. Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J. Bacteriol. 182, 2142–2152 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lam, A. Y., Pardon, E., Korotkov, K. V., Hol, W. G. J. & Steyaert, J. Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. J. Struct. Biol. 166, 8–15 (2009).

    Article  CAS  PubMed  Google Scholar 

  164. Alphonse, S. et al. Structure of the Pseudomonas aeruginosa XcpT pseudopilin, a major component of the type II secretion system. J. Struct. Biol. 169, 75–80 (2009).

    Article  PubMed  CAS  Google Scholar 

  165. Ferrandez, Y. & Condemine, G. Novel mechanism of outer membrane targeting of proteins in Gram-negative bacteria. Mol. Microbiol. 69, 1349–1357 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the many members of their groups who have made important contributions to the studies reported, and special thanks go to J. Abendroth, M. Robien, S. Turley, T. Johnson, M. Patrick and M. Gray. They also thank their many collaborators on the T2SS project, including J. Steyaert and E. Pardon for the preparation of valuable nanobodies, and T. Gonen and his group for electron microscopy studies. This work was supported by awards RO1AI049294 (to M.S.) and RO1AI34501 (to W.G.J.H.) from the US National Institutes of Health, National Institute of Allergy and Infectious Diseases, and earlier support from the Howard Hughes Medical Institute to W.G.J.H. is deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim G. J. Hol.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Supplementary information

Supplementary information

Structural data for the type II secretion proteins (PDF 293 kb)

Glossary

General secretory pathway

A traditional name for the type II secretion system (T2SS), in which substrates are transported through the inner membrane via the Sec or Tat pathways. Historically, the T2SS was found to rely on the Sec pathway, hence the use of 'general' in the name. However, many other systems also use the Sec pathway, so the term general secretory pathway is considered to be inaccurate by some scientists.

Sec translocon

A universal pathway for transport of proteins through the cytoplasmic membrane in bacteria and archaea and the endoplasmic reticulum membrane in eukaryotes. The bacterial and archaeal Sec translocon is composed of SecYEG (the integral membrane channel), SecA (the peripheral membrane ATPase), and SecD and SecF (the auxiliary release proteins). Targeting to the Sec translocon relies on the signal recognition particle for co-translational transport or on the cytoplasmic chaperone SecB for post-translational transport.

Signal recognition particle

(SRP). A universally conserved protein–RNA complex that is involved in targeting secreted proteins to the Sec translocon for co-translational transport. The bacterial and archaeal SRP is formed by the protein Ffh and 4.5S RNA.

β-barrel assembly machinery

A machinery for the correct folding and insertion of outer-membrane proteins which have a β-barrel structure.

Lol pathway

A machinery for the transport of outer-membrane lipoproteins from the inner to the outer membrane. The Lol pathway consists of LolCDE (the ABC (ATP-binding cassette) transporter), LolA (the periplasmic chaperone) and LolB (the outer-membrane receptor and release assistant).

Nanobodies

The smallest antigen-binding fragments of the heavy-chain-only antibodies from camelids. Nanobodies have a single immunoglobulin fold domain and three antigen-binding loops.

Crystallization chaperones

Proteins that are used in co-crystallization because they bind a particular target. Examples of crystallization chaperones include antibody fragments and designed scaffold proteins. These chaperones may reduce the conformational heterogeneity of the target protein and/or form favourable crystal contacts.

Walker A and B motifs

Two protein motifs. The Walker A motif, also known as the P-loop (phosphate-binding loop), is a GXXXGK(T/S) motif that is found in many nucleotide-binding proteins and interacts with phosphate groups of the bound nucleotide. The Walker B motif, XXXXD, coordinates Mg2+ and is essential for ATP hydrolysis.

Circular permutation

A change in the protein sequence that leads to a similar three-dimensional structure to that of the original sequence but with a different connectivity.

Ferredoxin fold

A common protein fold with a βαββαβ secondary structure.

PDZ domain

A ubiquitous protein domain of approximately 90 amino acids that is typically involved in protein–protein interactions or signalling. It is commonly found in eukaryotic proteins, but is relatively rare in bacterial proteins. The acronym is derived from the first proteins found to share this domain: postsynaptic density protein 95 (PSD95; also known as DLG4), Disks large 1 (DLG1) and zona occludens 1 (ZO1).

Tat complex

(Twin-Arg translocation complex). A system for the transport of folded proteins via the cytoplasmic membrane of bacteria and archaea or the thylakoid membrane of the plant chloroplast. A conserved twin-Arg motif is present in the amino-terminal signal sequence of substrate proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korotkov, K., Sandkvist, M. & Hol, W. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10, 336–351 (2012). https://doi.org/10.1038/nrmicro2762

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2762

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology